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ABSTRACT

Norms have been widely proposed as a means of coordinating and
controlling the behaviour of agents in a multi-agent system. A key
challenge in normative MAS is norm enforcement: how and when
to restrict the agents’ behaviour in order to obtain a desirable out-
come? Even if a norm can be enforced theoretically, it may not
be enforceable in a grounded, practical setting. In this paper we
study the problem of practical norm enforcement. The key notion
is that of a guard. Guards are functions which restrict the possi-
ble actions after a history of events. We propose a formal, com-
putational model of norms, guards and norm enforcement, based
on linear-time temporal logic with past operators. We show that
not all norms can be enforced by such guard functions, even in the
presence of unlimited computational power to reason about future
events. We analyse which norms can be enforced by guards if only
a fixed lookahead is available. We investigate decision problems
for this question with respect to specific classes of norms, related
to safety and liveness properties.

Categories and Subject Descriptors

[.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Multi-agent systems

Keywords

Norms; Run-time enforcement

1. INTRODUCTION

Multi-agent systems are often regulated using norms. Some norms
can be violated (agents are able to perform an action which leads to
a violation) and the violating behaviour is sanctioned. Some norms
are regimented, that is, agents are prevented from performing an
action that would lead to a violation. In this paper we focus on
regimented norms, and in particular on the case when norms are
temporal properties which potentially apply to infinite runs of the
system (the simplest case of such a norm is an invariant property
to be maintained). In a practical system, regimented norm enforce-
ment involves having access to a finite run of the system, and hav-
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ing to decide which successor states should be disallowed since all
the subsequent runs through those states would result in a norm
violation.

We assume that the decision regarding which successor states
should be enabled is provided by a guard function, which takes a fi-
nite run (history of the system’s behaviour so far) and returns ‘safe’
successor states: the states from where it is possible to continue
without violating the norm. The central problem in this setting is
defining an appropriate guard function. The guard function should
have several properties: (1) it must ensure that the resulting runs do
not violate the norm; (2) it must not rule out behaviours that do not
violate the norm; (3) it should be deadlock-free, that is every com-
pliant history should have at least one successor state. Note that the
problem of specifying the guard function is different from that of
run-time verification [9], where the problem is to check whether a
finite run violates a given property (rather than prevent a next step
on the run if it leads to a violation).

Clearly, achieving the three properties above is not always possi-
ble. Not all norms can be perfectly enforced using a guard function
(perfect enforcement means that the set of all infinite runs gener-
ated by the guard function is exactly the set of runs that conform to
the norm). An obvious example of such norms are liveness proper-
ties (or, in normative terms, obligations without a deadline). Sim-
ilarly, deadlock-free guard functions do not always exist: in the
simplest case, a norm may not be enforceable on a given system.

We assume that the normative organisation has access to a fi-
nite transition system describing all possible multi-agent system
behaviours, but only a bounded lookahead window that can be used
to decide which successor states of the current state on a run should
be disallowed. We study the minimal size of a lookahead window
required for successful norm enforcement and show that it is sur-
prisingly large for norms expressed in LTL.

The contributions of the paper are as follows.

e We define the notions of run-time norm enforcement, guard
functions and the problem of establishing whether a given
norm has a deadlock-free guard that (perfectly) enforces it
on a given transition system.

We study a special kind of guard function that correspond to
LTL with past formulas, and characterise which norms can be
perfectly enforced by LTL with past formulas and the com-
putational complexity of checking whether an LTL with past
formula is a deadlock-free guard.

e We show that liveness norms can always be enforced and



safety norms can be perfectly enforced (in the sense of Def-
inition 10 below) by the canonical guard with a sufficiently
large lookahead.

e We show that state-based safety norms can be always en-
forced with a lookahead window of size 1 by explicitly list-
ing ‘prohibited’ successor states; however some enforceable
LTL norms cannot be enforced with a lookahead window that
is smaller than the length of the longest cycle-free path is a
model.

The structure of the paper is as follows. We first define the sys-
tem model and LTL with past operators. Then, we introduce the
three key concepts of this paper: norms, guards and norm enforce-
ment, followed by a logic-based setting to define guards. In Section
5, we consider bounded lookahead, and discuss practical aspects in
Section 6. Finally, we discuss related work in Section 7 and con-
clude.

2. PRELIMINARIES

System Model. Our system model is a transition system con-
sisting of a set of states and a serial accessibility relation between
states. Each state is labelled with a set of propositions, modelling
the facts in the world.

DEFINITION 1  (TRANSITION SYSTEM). Let 11 be a finite set
of atomic propositions. A (transition) system is defined as M =
(S, R, V), where S is a set of states, R C S x S is a serial ac-
cessibility relation and V : S — 2 is a labelling function. In
order to simplify the presentation, we sometimes implicitly assume
that there is a non-empty set So C S of initial states. If not stated
otherwise, it can be assumed that So = S.

A transition system M describes the computational behaviour
of a (multi) agent system. The relation R corresponds to the ac-
tions agents may execute, sequentially or in parallel, in each state
to bring the system to a new state. A history and a run in the transi-
tion system are finite and infinite sequences of states interconnected
by the accessibility relation, respectively.

DEFINITION 2 (RUNS AND HISTORIES). Given a transition
system M = (S, R, V'), arun of M is an infinite sequence of states

= 508182 ... such that for i > 0 we have (s;, si+1) € R. The
set of runs of M starting in s is denoted by Rar(s). We simply
write Ry = USES R () for the set of all runs, and R (So)
as the set of runs starting in So. A history h of M is a finite prefix
of a run. We use h [ p to indicate that h is a (prefix) history of
the run p; h T K’ to indicate that the history h is a prefix of the
history h'; and h T b/ if h © b’ or h = h'. The set of histories
of M starting in s is denoted by H i (s) and, analogously to runs,
we define Har and Har(So). Finally, the operator o is used to
concatenate a history h with another history h' (h o h') and run p
(h o p), respectively. We often omit o and just write hs, hh', hp,
etc.

Given a run p we write p[i], p[4, j], p[i, 0o], for ¢ > 0, to refer to
the ith state on p, the history starting at position ¢ on p and ending
at position j of p, and the suffix (run) of p starting at position ¢ on
p, respectively. We assume that ¢ and j are non-negative integers
with ¢ < j. We use similar notation for histories; in particular, for
a history h, h[oo] refers to the last state of h. We omit the formal
details.

LTL with past operators. Below, we use LT L to specify norms
and LT'L with past operators [23] to specify guards: the temporal
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operator Y stands for “yesterday”, P for “now or at some point in
the past”, S for “since”, X for “tomorrow (next)”, F' for “now or
sometime in the future”, and U for “until”’. We denote LT L with
past operators by LT L™?,

DEFINITION 3
of LTL*Y? are defined by the grammar: ¢ =:=p | =¢ | ¢ A ¢ |
Yo | pSo | Xp | U where p € 11 is a proposition. We define
F¢ =TU¢and Py = T S¢ as macros. Given a transition system
M, a run p, and a position i € Ny, the truth of LTL*p—formulas
is defied by the semantic relation |= as follows:

M, p,i=piffp € V(pli)

M, p,il=—¢iff M, p,i b= ¢

M,p,i = ¢ AYiff M,p,i = ¢and M,p,i = ¢

M,p,i EY¢iffi >0and M,p,i — 1 = ¢,

M,p,i = ¢pSY iff3j <ist M,p,j EvandVk:j <k<i:
M, p,k = ¢

M,p,il= X6 iff M,pi+1F o

M,p,i = oUv¢ iff 34,4 < jst. M,p,j EvandVk :i <k <
J:Mp k¢

LT L-formulae are LT L™P-formulae that do not contain any past-
time modalities, i.e. Y, P and S. We call an LTL™P -formula
simple if it contains at most one temporal operator.

We note that LT L™P over infinite runs is no more expressive
than pure LTL (without past operators). However, the past opera-
tors allow more intuitive and succinct specifications [20].

3. NORMS, GUARDS AND ENFORCEMENT

In this section, we introduce the three key concepts of this paper:
norms, guards and norm enforcement. A norm can be seen as a
linear-time property over a set of propositions, or as a set of ‘good’
runs of a transition system uniquely defining a linear time property.
A guard is a means to control the system’s run-time behaviour; it
allows to disable transitions after a history. Finally, the notion of
enforcement links norms and guards. We say that a guard enforces
a norm if all possible behaviours resulting from the application of
the guard are normative. Throughout this section we assume that
M = (S, R, V) is a finite transition system with initial states Sy C
S over a finite set of propositions II. We also assume that formulae
are constructed over II.

3.1 Specification of Regimentation Norms

We begin with our representation of norms. A norm describes
the ‘good’, the normative behaviour of a system. In general, this
behaviour can be defined independently of a transition system, just
over a set of propositions II. In this sense, a norm is a set of infi-
nite words over 2'". For example, the norm “it is prohibited to take
drugs” corresponds to the set of all infinite words wow; ... € oll
such that drugs &€ w; for all i € Np. If a norm is considered in
the context of a transition system it is often convenient to identify
a linear-time properties with a subset of the runs of the transition
system, namely those runs which (given the labelling function V')
correspond to one of the behaviours of the norm. In the remain-
der of this paper we use LT L-formulae ¢ to characterise a norm.
This supports both views: if we talk about a norm independent
of a model, the (LT L-)norm ¢ is identified with all linear-time
behaviours satisfying ¢ (over a fixed set of proposition). In the
context of a transition system M, we write s to refer to a norm
defined as the set of all runs p € R (So) that satisfy the LT L-
formula ¢. The formal definition is given next.

(LTL PLUS PAST, SIMPLE FORMULA). Formulae



DEFINITION 4 (REGIMENTATION NORM). A (regimentation)
norm is an L'T'L-formula ¢. A norm ¢ over a transition system M
is given by

om = {p € Ru(So) | M, p,0 = ¢}

As seen from this definition a norm has a descriptive flavour. It
specifies, from a global point of view, which runs or linear time
behaviours are good.

3.2 Guards

A transition system encodes all possible behaviours, both the
‘good’ ones as well as the ‘bad’/undesirable ones according to a
given norm. The system designer may wish to control the be-
haviour of the agents to ensure a desirable system outcome. Using
the notation introduced above, the system designer needs a mech-
anism to ensure that all behaviours are normative, but which at the
same time does not overly restrict the agents’ autonomy. Guards
are used to implement norms by disabling specific transitions fol-
lowing a history. It is important to note that guards operate and re-
strict behaviours at run-time. This is in general more flexible than
approaches operating at design-time, in the sense that transitions
in the (static) model are altered. Moreover, a run-time approach is
in general less restrictive and offers agents more autonomy as the
disabling of transitions dynamically depends on the history.

A guard over a transition system M is a function that maps his-
tories to a set of states enabled after the history.

DEFINITION 5
’H]VI — 2S.

If the system restricts the actions according to the guard some
histories are no longer possible. A history that is possible given the
application of a guard is called consistent (with the guard).

(GUARD). A guardover M is defined as G :

DEFINITION 6  (CONSISTENT HISTORY). Let G s be a guard
and h € H . We call a history h consistent with the guard G if,
andonly if, h = s € Soors € Gy (') forall W' € Hy, s € S
with h' o s T h.

A guard is deadlock free if each consistent history can be ex-
tended to another consistent history.

DEFINITION 7 (DEADLOCK-FREE). A guard G is called
deadlock-free, or df-guard for short, if, and only if, Gar(h) # 0
for all histories h € H(So) that are consistent with G .

The application of a guard restricts the set of runs of a transitions
system as follows:

DEFINITION 8 (GUARD APPLICATION). The application of a
df-guard G in s restricts the runs starting in s to

R$(s) ={p € Rum(s) | YVhe Hun,s € S,hs' Cp: s € Gu(h)}.

It is easy to see that if G/ is a df-guard then Rz (s) # ( for all
s € So. We note that the transitions disabled by the guard are not
disabled in the model but at run-time.

Clearly, a more general guard is preferable as it allows the agents
greater autonomy. This is captured by the following definition.

DEFINITION 9 (GENERALITY ORDERING). Given two guards

G v and Gy we say that Gy, is at least as general as Gy, denoted
by Gy < Gy, ifs forall h € Ha, Gu(h) C Gy (h). As usual,
we use < to refer to the strict variant.

The following proposition captures the intuition that the application
of a more general guard results in a larger set of system behaviours.

PROPOSITION 1. IfG < Gy for two df-guards, then R (s) C
Rﬁf}/ (s) forall s € So.
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3.3 Norm Enforcement

A key question is whether we can construct a guard such that, if
the guard is applied, then all possible runs of the system are nor-
mative. This is formally captured by the following definition:

DEFINITION 10  ((PERFECT, OPTIMAL) NORM ENFORCEMENT).
We say that a df-guard G v enforces anorm oy iff o = 0 or ) #
R$(So) C @nr. The enforcement is perfect iff RS (So) = our.
The enforcement is optimal if there is no other df-guard G'y; such
that R%Z(So) - ’Rf/[ (So) C om.

EXAMPLE 1 (A LIVENESS NORM). Consider the transition sys-
tem Mo = (S, R, V) with S = {so0, s1}, R = {(s0, s0), (s0, s1),(s1,51)},
and V(so) = 0, V(s1) = {p}, and So = S. Possible runs
in the transition system are: s§ 5080 - . . (always stay in so),
$08T = S08181 - .. (stay in so once, then proceed to s1 and stay
there forever), s%s‘f = 808087 (stay in so twice, then proceed to s1
and stay there forever), and s (stay in s1 forever). We consider the
norm wo = F'p, the set of all runs which eventually visit a state in
which proposition p holds, formally: (vo)m, = {s5st | n € No}.
Intuitively, the norm states that it is prohibited to stay in so forever.
This is a liveness property. We would like to construct a guard
which enforces the norm. We define the following guard function
G1,0my° G1,Mm, (h) = {s1} for all histories h. It is easy to see that
this norm enforces (o), as we have: R]\G/}O = {sos?,st} C
(¢0)mqy- Clearly, the guard does not perfectly nor optimally en-
force (po)m, as for example sosos? & Rg}o but the run is nor-
mative. Another alternative would be guard function G2, n, with
G2, (h) = {s0, s1} if h ends in so, and G2 a1, (h) = {s1} ends
in s1. This norm, however, does not enforce (Lpo) M- Actually,
there is no guard function which can perfectly enforce (o) m,. We
will make this more formal in Section 4.2.

EXAMPLE 2 (A SAFETY NORM). Consider the transition sys-
tem M, = (S1,R1,V1) with S1 = {50781,82,53754785} with
R, = {(307 81)7 (817 52)3 (52’ 53)7 (837 83)7 (507 54)’ (54, 85)’(557 55)}
and V(s) = {p} for all s € Si\{s3} and V(s3) = 0. The
norm o1 = Gp with (p1)m, = {sosast} is a safety property.
The guard G, a, with Gy (so) = {sa}, G,y (S0s4) = {ss5},
and Gs,ar, (08485 ) = {ss} for all n € N does perfectly enforce
(1), for So {s0}. In Section 6.2 we show that all safety
properties can be perfectly enforced.

4. LOGIC-BASED GUARDS

In this section we define guards in L7 L*? and introduce the im-
portant concept of a canonical guard. We investigate when guards
are deadlock free and when norms can be perfectly enforced. As
before, we assume that M = (S, R, V') is a finite transition system
with initial states Sy over a finite set of propositions II.

4.1 Guards in LTL+Past

We first show how LT L+P-formulae can be used to define guards.
The guard G, defined by the guard formula , returns, for a his-
tory h, the set of states s such that, on some run p that extends the
history hs,  holds.

DEFINITION 11 (LT LTP-DEFINED GUARD). Fora given LT LP-
formula ~y, we define the y-defined guard over M G, by
Gl(h)y={s€S|IpeRm:hsC pand M, p, |h| E~}.

We sometimes refer to 7y as the guard formula. When G, is applied

to M we simply write R}, instead of Rf] to refer to the set of
possible runs when the guard G, is applied.



It is important to note that, in addition to the current history, such
a guard can make use of additional information contained in the
model. That is, the decision which transitions to disable can take
into account the future and the past. In this sense the guard has un-
bounded lookahead. In Section 5 we consider guards with bounded
lookahead.

REMARK 1. We note that the guard v is interpreted in/after the
history hs. Equivalently, it would be possible to interpret it in his-
tory h.

Deadlock-free guards are particularly important. According to
the definition of a df-guard, the set of states returned must always
be non-empty; that is, it must always be possible for the system
to continue execution following a history. In general, this is not
ensured for guards defined using guard formulas; consider, for ex-
ample, a formula that is never true in the model. So, a key problem
is to check whether a guard formula does actually define a df-guard.
In Section 4.3 we show that this is a difficult problem.

EXAMPLE 3
with v1 = p. We have that wao = G1,m,. We can also define
Ga, M, by GLO. We consider the guard 7y, (this guard will play an
important role in the remainder of the paper and is formally intro-
duce in Definition 12). The guard G}}”OO with v,, = P(Y L A ¢0)
seems to be a good choice to enforce p . Intuitively, it enables all
paths that satisfy the norm. But the guard does not enforce (o) uy,
since it allows the run s§. In general, if a norm corresponds to a
property that is not violated on any finite initial segment of a run,
then it is not possible to perfectly enforce it using guards. This
relates to run-time verification and the non-existence of finite bad
prefixes for liveness properties [9].

EXAMPLE 4 (EXAMPLE 2 CONT.). The guard Gj with~ys =
Gp is equivalent to Gz nr,. In this example, the canonical guard
Vo1 = P(Y L A Gp) does enforce (1) u,, perfectly and thus also
optimally.

4.2 Canonical Guards

Given a norm ¢ it is possible to define a specific guard from the
norm itself: the canonical guard. We have already seen this guard
in Examples 3 and 5. If the canonical guard enforces a norm then it
is the most general guard which enforces the norm. The canonical
guard has other interesting properties which we discuss below.

DEFINITION 12 (CANONICAL GUARD). Let o be anorm. The
canonical guard (formula) of ¢ is defined as v, = P(Y L A ).

Before studying properties of the canonical guard we make the
following easy observation.

PROPOSITION 2. If = v — 7/ then for any transition system
M, G}, <G

The following result states that if the canonical guard of a norm
is deadlock-free and enforces the norm, then it is the optimal df-
guard in the sense that it leaves the agents with the greatest degree
of autonomy.

PROPOSITION 3. If the canonical guard G'ij of a norm ¢ is
deadlock-free and enforces pur then it is optimal.

PROOF. Consider a df-guard G, that enforces ¢ ;. That is, for
all p € R}, we have that p € @as which means that M, p,0 = p.
So, if G},(h) # 0 there is arun p with h C p and p € R},. This
show that M, p, |h| |= ., and thus G% (k) # 0. We conclude that
Gu<Gy. O

(EXAMPLE 1 CONT.). We consider the guard G}
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The canonical guard can also be used to show that there is no
df-guard to enforce a norm from a given history. In other words,
Proposition 3 tells us that, in order to enforce a norm from a history
h with G;% (h) = (), we must define a df-guard which regiments
the history h.

PROPOSITION 4. Let ¢ be a norm. If there is a history h €
Har with G3¢ (h) = O then there is no df-guard which can enforce
@ from history h on.

PROOF. Suppose G}7 (h) = () and there were a df-guard G7,
with G];(h) # 0 and for all runs p € R}, with b C p we have
that p € @ns. Then, we must have that M, p, |h| = v, and thus
pllh]] € G1f (h) = 0. Contradiction. [J

Finally, the canonical guard suggests a decision method for de-
termining whether a norm can be enforced perfectly: a norm can-
not be perfectly enforced if the canonical guard does not enforce
the norm.

PROPOSITION 5. Given anorm . IfGX/}’ does not enforce p
then @ cannot be perfectly enforced by any guard.

PROOF. Suppose p* € R;’j \¢n is a run witnessing that the
canonical guard does not enforce the norm. Because p* € R,¢
we have that for any h T p*, G12(h) # 0. In particular, for
any such h there must be a run p, with h C pp and pr, € pum
because the guard is canonical. Now, suppose there were a guard
G, that enforces ps. Then, it cannot be the case that p* € R},.
To avoid this, the guard has to regiment from some h the transition
which results in p*. Suppose h denotes this very history where the
regimentation takes place and hs [ p*. Then, however, the run
Phs € @ur (using the notation above) would also not be in R},.
This shows that G}, cannot perfectly enforce pas. [

4.3 Determining Deadlock Freeness

Many of these results rely on deadlock-free guards. Deadlock-
free guards are also of practical importance, as it is often unde-
sirable if a system deadlocks. Unfortunately, a LT L*?-defined
guard is not necessarily deadlock free. As a result, using a guard to
regiment the behaviour of the system can result in deadlock. The
following proposition suggests that, in general, verifying whether
a guard is deadlock-free is a difficult problem. However, we can
identify classes of guards with better computational properties.

PROPOSITION 6. The problem of checking whether G, is deadlock-

free is in 2EXPTIME. If vy is simple (cf. Definition 3) and contains
no future time operators, then it is in PSPACE, and if v is a Boolean
Sformula, then in P.

PROOF. We have that G?VI is deadlock free, iff, for all s € Sy
we have that M,s,0 E EXy A AG(AX—y — P—). For an
arbitrary LT LP-formula ~, this is a formula of CTL* + past,
and the model checking problem for CTL* 4 past is in 2EXP-
TIME [10]. If y is simple (cf. Definition 3) and contains no future
time operators, then the formula above is equivalent to EX Ey A
AG(AX A—~y — EPE—) (where we assume linear past) which
is a CTL + past formula, and the model checking problem for
CTL + past is PSPACE-complete [19]. If « is a Boolean for-
mula, then the initial formula is equivalent to the future time CTL-
formula EX~yA—E(~yU(yAAX—)), and the CTL model check-
ing problem is in P [12]. [



S. BOUNDED LOOKAHEAD

The application of guards assumes that in addition to a history,
the guard has access to the state transition system. Using the in-
formation in the transition system, we attempt to construct guard
functions that given a history, rule out certain successors of the
last state on the history (intuitively, those leading to a norm viola-
tion). In this section, we consider a setting with bounded looka-
head. Bounding the lookahead reduces the amount of computation
required to enforce the norm, by restricting the ability of the nor-
mative organisation to reason about and to take into consideration
the future evolution of the system. In Section 6 we consider the
problem of the minimal size of the lookahead window required to
perfectly enforce a given norm on a given model. In this section,
we introduce the formal machinery to define guards which operate
with a bounded lookahead, in contrast to guards which have un-
bounded lookahead. We introduce the notion of a view, as the part
of a run considered by a guard. The length of a view is defined by
a window. To simplify the presentation, we assume that windows
only restrict the lookahead, and that all past events are remembered
and can be perfectly observed. Note that a past-restricting window
could be seen as a way to limit the amount of memory the norma-
tive organisation can use to store information about the past. While
restricting the past window is important for resource-bounded sys-
tems, we leave it for future work. In the remainder of this section
we again assume that M = (S, R, V) is a finite transition system.

5.1 Windows and Views

We consider the case of a contiguous view consisting of the se-
quence of states before and some finite sequence of states after the
current position on a run p. A window defines the size of the view
and is just a natural number defining the future lookahead. A view
maps a run together with the current position on the run to a his-
tory. Given a run p and a position 4, the view view(p, i) with re-
spect to window W returns the history consisting of all past events
p[0,i — 1], the current state p[i] and the future states p[i, i + W]
which fit into the window.

DEFINITION 13 (WINDOW AND VIEW). A (future) window
is given by W € N. Let p be a run, W a window and i € Ng
(the current position on p). The view of p at 1 with respect to W,
vieWW(p, i), is defined by the function: view"W : R xNo — Has
with (p,i) — p[0,i + W]. We also lift the view with respect to a
window to a set of runs X : view" (X, 1) = U,ex view" (p, 1)

Consider for example the run p = s152535485¢ . Then, we have
that: view?(p, 1) = s1525354. The part s;s2 is the current history
where s2 is the current state; and s3s4 encodes the lookahead. The
window has size 2.

5.2 Window-Filtered Guards

We now integrate windows with guards and their application.
A guard applied in context of a window can only be evaluated on
the current view and thus has to decide which actions to disable
based on a history rather then on a run. The W -filtered guard of a
guard formula  takes as an input a history h and returns a set of
enabled states. In order to give the formal definition we first need
to introduce a finite trace semantics for LT L -formulae.

DEFINITION 14  (FINITE TRACE SEMANTICS). We define a fi-
nite trace semantics for LT LP with two truth values (t and f).
Given a transition system M, a history h, and a positiont 0 < i <
h, ;he truth of LT L™? formulas is defined by the semantic relation

=7
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M, h,i =5 piffp € V(pli))

M, h,il=f =g iff M, h,i =5 ¢

M, hi=F ¢ A if M, hi =7 ¢and M, p,i =7 ¢
M, h,i =" Yo iffi>0and M,p,i —1 7 ¢,

M, h,i = ¢Sy iff 35,0 < j < st M,h,j = 4 and
Vk:j<k<i:MhkE¢

M, h,i|=f Xoiffi < |h|and M,p,i+1 " ¢

M, h,i B ¢U iff 3j,i < j < |h| s.t. M,p,j = ¢ and
Vk:i<k<j:MpkE ¢

This semantics captures an essentially pessimistic view, meaning
that false positives are not acceptable. This semantics is used to
interpret guards on a finite trace because a transition should only
be enabled if the guard is definitely true on the view. We note that
if used for (future-time) L7’ L-formulae, this semantics coincides
with the finite trace semantics given in [14].

We also note that the finite trace semantics would not always
be appropriate when evaluating norms on a finite trace in order to
detect norm violations. In this case, a violation should only be
reported if the violation has or will definitely take place, that is
false negatives are not appropriate. A formal definition of such a
semantics can be easily obtained by slightly modifying the truth
conditions given for |='. In the following we shall denote the ‘op-
timistic variant’ of =7 by =2.

We can now formally define the notion of window-filtered guard.
Given a guard formula - the W -filtered guard GX/’[W returns, for an
input history h, all states s such that there is a run p which extends
hs in such a way that the history view"Y (p, || — 1) satisfies the
guard ~y. For convenience, the evaluation of the guard takes place in
the last state of the view. We note, however, that the guard formula
+y could equivalently be evaluated at position || on view" (p, |k| —
1) as done in the unbounded setting.

DEFINITION 15 (WINDOW-FILTERED GUARDS). Let v be a
guard formula and W a window. The W -filtered guard G}}W is
defined as follows:

G1 (n)

{seS|3IpeRnm:hsC pand

M, view" (p, [h] = 1), [h] + W — 1 =¥ ~}

for all histories h € H . Analogously, GYV}W is called deadlock-
free if it is non-empty for all consistent histories h (now with re-
spect to the W-filtered guard). The application of a W -filtered

. . . . GlpW
guard is defined as before, where we write R]V}W instead of R\ M .

EXAMPLE 5 (EXAMPLE 2 CONT.). We consider the W -filtered
guard G’ G;\’jiw, with v3 = Gp. For W = 3 the guard G’ (per-
fectly) enforces (p1) ;- Let us consider G'(so). The views of the
two possible runs from so are soS15283 and sosaSsSs. The first
view is discarded as M, s0$15283,3 béf v3. 1t is also easy to
see that G' is deadlock-free for W = 3. For all W < 3 however,
the guard G’ is not deadlock free. Suppose e.g. W = 2. Then
s1 € G'(s0) as M1, s081582,2 |:f ~s3. In the next step, however,
we have G’ (sos1) = 0 as M1, s05152583,3 ):f ~s, and the system
deadlocks after the history sosi.

A key problem is to determine (a minimal) window W and a
(as general as possible) guard v such that G}V’IW does (optimally)
enforce a given norm ¢)s. We consider this problem in the next

section.



6. PRACTICAL ENFORCEMENT

In this section we study some practical aspects of norm enforce-
ment. First, we show that, in general, norm enforcement is a diffi-
cult problem. Then we study canonical guards for bounded looka-
head for liveness and safety properties. We show that the canonical
guard can always enforce such norms if the window size is suffi-
ciently large. We also look at other, more practical, guard functions
with bounded lookahead.

6.1 The General Problem

The first problem we investigate is whether a guard function en-
forces a norm given unbounded lookahead. We show that this prob-
lem is intractable.

PROPOSITION 7 (ENFORCEMENT: UNBOUNDED CASE). Let
M be a transition system, G, be a LT L*?-defined df-guard, and
¢ an LT L-defined norm. The problem whether G, enforces par
is PSPACE-hard and in 2EXPTIME.

PROOF IDEA. The guard +y is a pure LT L P-formula and ¢
is an LT L-formula; thus, A(GXE~vy — ¢) is a CTL* + past-
formula. The model checking problem for CTL* + past is shown
to be in 2EXPTIME [10]. Moreover, M,s = A(GXE~vy — ¢)
for all s € Sp iff G}, enforces ¢as. To see this we analyse the for-
mula: M,s E A(GXEy — @) iff Vp € Ru(s)[(ViV3Ip' €
Rar,pl0,i] T p',M,p',i = v) = M,p,0 | o] iff Vp €
R (s)[(Vhs € Har,hs' T p, s € Gi,(h)) = M, p,0 = ¢l iff
Vp € Ru(s)[p € Ris(s) = p € puml.

Hardness. For ¢ = | and v = P(Y L A +’) for some LT L*?-

formulay’ we have: M, s = A(GXEy — ¢)iff M,s = A(GXEvy —

L) iff forall runs p € Rar(s), M, p,0 = ~" iff there is no run
p € R with M, p,0, = «'. The latter problem corresponds to
(universal) model checking the LT L™P-formula 7. A PSPACE-
complete problem [23]. [

In the case of bounded lookahead, a norm can be enforced given
a window of size k, if it is possible to determine by looking only
k steps ahead, whether the norm must be violated on all paths al-
lowed by the guard from a given state s. Conversely, a norm cannot
be enforced given a window of size k and a guard G if all paths
consistent with the guard G from a state violate the norm but only
after at least k steps. In that case, a transition is made which will
inevitably violate the norm at some later moment.

Suppose the current history is A and we need to decide whether
a transition to s should be allowed. For any LTL norm ¢, this
problem can be solved in a straightforward (but computationally
expensive) way by checking: (1) for each finite trace ¢ in the k-
unraveling from the current state s, whether M, ht, 0 |={ ¢ (using
the ‘optimistic’ finite trace semantics; that is, a violation is only
reported if there is no way to satisfy the norm); (2) M, ht, |h| +
|t — 1 =F 4 and (3) M, p,0 }& ¢ for all p with hs T p. That
is, whether a transition to s inevitably results in the violation of the
norm, but this cannot be detected in k steps. Such an approach has
exponential complexity.

These results show that norm enforcement is in general a difficult
problem. In the remainder of this section, we consider the special
cases of safety and liveness norms. We use LTL"(T1,T5,...)
to refer to the fragment of LT L which only allows the temporal
operators 11,715, . . ., and only outside the scope of negation. These
fragments can be used to define safety and liveness properties:

DEFINITION 16  (SAFETY AND LIVENESS NORM). We say that
an LT L-formula o is a safety norm if p € LTL" (G, X). The for-
mula is a (finite) liveness norm if p € LT L™ (F,U).
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For example, the formula G(p — X¢) is a safety property, and F'p
and p Uq are simple liveness properties.

We define prefixes which can be used to witness the truth/or non-
truth of such a property with respect to a given model M. For a
(finite) liveness property ¢ we say that h € H s is a good prefix of
win M if for all p € Rar with h T p, M, p,0 = ¢. Similarly,
for a safety property ¢ we say that h € H s is a bad prefix of ¢
in M if for all p € Ras with h C p, M, p,0 & . We note that
for a liveness property ¢, each p € ¢ has a good prefix; and for
a safety property ¢, each p & s has a bad prefix (cf. [8] for a
general discussion).

Unfortunately, even for safety and liveness properties the prob-
lem presented in Proposition 7 remains intractable. Even if the
guards are given by Boolean formulae the problem is PSPACE-
complete. This follows from [21], where it is shown that model
checking formulae of LT LT (G, X) as well as of LTL"(U) is
PSPACE-complete.

Given this observation, an interesting question is, whether we
can construct a guard from which we know that it will enforce a
safety property, without having to check whether it actually en-
forces the norm. More precisely, we consider two types of results:

e We show that we can compute an upper bound such that the
canonical guard always enforces the norm. At run-time we
simply have to check whether the canonical guard is satis-
fied. It is important to note, that this does not require model-
checking the guard, which would again be intractable. Other
techniques, like progression or automata theoretic approaches
can be used to efficiently monitor the truth of safety and live-
ness norms [9]. Propositions 8, 9, and 12 are in line with this
view.

e We show how to precompute a guard function which operates
by simply disabling successor states which are in a list of
prohibited states. Proposition 10 is a result in this direction.

6.2 Enforcement of Safety Norms

The next proposition gives a positive answer to the question above:
if we choose a window of sufficient size, then the canonical guard
for a safety norm guarantees that the norm will be enforced, more-
over the enforcement is perfect.

Let ¢ be a safety norm of type ¢ = Gp. Then, a state s should
be disabled from the current history h, if Gp cannot be ensured on
any path from s. In order for a path satisfying Gp to exist, we need
to find a cycle on which Gp holds. If such a cycle exists, it must be
found within |S| steps. This is an upper bound for the lookahead
needed to decide whether safety norm ¢ = Gp will be violated
if state s is reached. For arbitrary safety norms, the reasoning for
computing the lookahead is similar.

PROPOSITION 8 (SAFETY NORM: PERFECT ENFORCEMENT).
Let @ be an LT L-safety property and M a transition system. One
can compute a window W such that the canonical guard of ¢ en-
forces perfectly pnr under window size W.

Earlier in Example 5 we have seen that, even with very simple
norms such as Gp, enforcement may require arbitrary long looka-
head windows, depending on the size of the model. However, de-
pending on the class of models the lookahead can be significantly
reduced as illustrated by the next example.

EXAMPLE 6 (CLASS OF MODELS WITH LOOKAHEAD ONE).
There is a special class of model where Gp can be perfectly en-
Sforced with a lookahead window of just one. This holds for models
M that are reflexive and have at least one run from each state in



So satisfying Gp. For such an M, a df-guard for Gp can be de-
fined as follows: Gp(h) = {s | (h[oo],s) € Randp € V(s)}
Clearly, this guarantees that the next state always exists (since
(h[oo], h[oo]) € R) and all states on runs consistent with Gy

satisfy p.

We now show how to determine the minimal size of a lookahead
for a simple kind of safety norms.

DEFINITION 17 (STATE-BASED SAFETY NORM). A state-base
safety norm is of the form Gv) where ) € LT L™ (X).

State-based safety norms have a useful property: it is possible
to define a set of states from which all paths inevitably violate the
norm (do not satisfy 7). Note that this is a CTL-definable property,
using only AX operators. We call this set of states Violas ().

EXAMPLE 7. An example of a state-based safety norm is Gp.
For this norm, the set Violar () is the set of states where p is false.

Similarly, for a state-based safety norm ¢ = G(p — Xq) the
set Violp (@) consist of all states s such that p € V (s) and for all
states s' reachable from s in one step, ¢ € V (s'). This is definable
asp N AX—q.

Clearly, a guard function for ¢ should not return successors in
Violar (¢). Tt should also disable states which are not themselves
in Viola (@), but from which all paths lead inevitably to a Viiolas ()
state. We call the latter set of states Viol{,(¢) states. This latter
set is also CTL-definable as AF'y where x describes Violar (o).
To enforce a state-based safety norm, we need to avoid states in
Violy ().

In the following, we show how to compute the minimal window
size k of Proposition 8, such that the canonical guard of a state-
based safety norm enforces the norm. We show that the complexity
of finding the minimal k is polynomial.

We give an algorithm to compute the minimum window size for
enforcing ¢ on M (see Algorithm 1). The algorithm works by
computing the set of states 7 = V'iol},(¢) from which all paths
lead to Violar (). Starting from the states in Violas (@), v, we
repeatedly compute the set of transitions on a path leading to v
states, 0, the states 7 from which all transitions lead to a v state
or a 7 state, and the set of simple paths to states in 7, o. Finally
we compute the longest simple path between two states in 7, which
gives us the required lookahead k.

Note that Violar () can be computed using CTL model-checking
in time polynomial in the size of the ¢ and M. It is also possible to
compute 7 by computing the set of states satisfying AF'x where x
describes Violas (). Instead we give an explicit algorithm, since
it also computes the size of the longest simple path from a state to
a state in 7. The complexity of Algorithm 1 is O(|S| x |R|).

From the algorithm the following proposition immediately fol-
lows:

PROPOSITION 9. The problem of deciding whether window size
k is sufficient for the canonical guard to enforce a state-based
safety norm on a model M is in P.

The most straightforward way to solve this problem is to find the
minimal size of the window and compare it to k. We can also define
a decision variant of Algorithm 1, which simply checks whether a
given window size is sufficient to enforce the norm. Rather than
looping until 7 does not change, we repeat the loop k + 1 times
(for a window size of k), and check if the length of the longest path
returned is > k. However given the complexity of the algorithm, it
is not clear that the reduction in computation is worthwhile.

d
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Algorithm 1 Computing window size for state-based norm ¢

function WINDOW-SIZE(p, M = (S, R,V))
V4 ViOlA{( )
5« {(s,(s,8") \(s,s’)ER/\s € v}
T+ {s \V(s,s/) € R ((s,(s,5")) 65)}
o {(s;s0[s']) | s€TA(s,(s,5)) € 0}
e+ {(s,(s,8)) | (s,8") ER/\S GUUT}

while § C edo
d ¢

T+ 7U{s|V(s,s") € R((s,(s,5)) €9)}
o+ {(s,s0p)|seTA
pE arg max |p]

(s,(s,8"))€3, (s',p)€E0, s¢p
e+ {(5,(58)|(s,s) e RAs" evUT}
end while

return argmax , e, |o|
end function

An alternative to computing the size of the window and using it at
run-time in combination with the canonical guard, is to use the set
of ‘bad’ states Viol}, (i) directly in implementing the enforcement
of the norm. The guard is defined as follows:

Gu(h) ={s"| (h[oo],s’) € Rand s ¢ Violxl(np)}

where Viol, () is 7 computed by Algorithm 1. We note that the
guard can be implemented by looking only at the last state of the
view, that is, whether the last state is prohibited (is in Viol}, ().
In this approach, enforcement effectively requires a window of size
1, since all that is required is to check if the state resulting from a
transition is in Viol}, (¢), so we have:

PROPOSITION 10. State-based safety norms can be perfectly
enforced by a guard which only requires one step lookahead.

6.3 Enforcement of Liveness Norms

In Proposition 8 we have shown that safety norms can be per-
fectly enforced. This is not the case for liveness norm:

PROPOSITION 11. Let M be a transition system. In general,
an LT L-liveness property @ cannot be perfectly enforced.

PROOF. In Example 3 we have shown that the norm o = F'p
which is a liveness property in My is not enforced by the canonical
guard v,, = P(Y_L A o). Thus, by Proposition 5 ¢ cannot be
perfectly enforced by any guard. [

However, we can compute a lookahead that allows us to en-
force (though not perfectly or optimally), a liveness norm. Let ¢
be a liveness property. Then, for each initial state s € So, there
is a minimal length good prefix of ¢ in M. We define function
dayr @ So — Ng° which assigns to each initial state the length of
a minimal length good prefix of ¢. If such a history does not ex-
ist we set das(s) = oo. That is, from each state so the norm can
be satisfied in das(so)-many transitions. Now, we define LY, =
max{dam(s) | s € So,dn(s) # oo} if for some s € Sy we have
that d(s) < oo; and L5, = oo otherwise. Consequently, a looka-
head of LY, would be sufficient do decide whether a transition to
the a next state should be enabled or not, if it is possible to satisfy
the norm at all. So, the good news is that, in general, simple live-
ness norms can be enforced. Moreover, an upper bound for LY,
is || - |S]. This can be seen by decomposing ¢ into at most ||
independent checks of simpler liveness formulae. Each of these
formula can be witnesses within | S| steps in the model.



PROPOSITION 12 (LIVENESS CAN BE ENFORCED). Let ¢ be

an LT L liveness property and M a transition system. The canonical-

guard of p enforces par under window size W = L%, in general,
the enforcement is neither optimal nor perfect. An upper bound for
L, is gl - 15].

In order to use this result, we can either use the upper bound or
compute the minimal lookahead L%,. For liveness norms of type
¢ = Fpand ¢ = qUp, for example, the value L%, can be com-
puted in polynomial time in the size of the model. For both types
of formulae the upper bound for L%, is |S|. Moreover, in both
cases, we can use Dijkstra’s algorithm [15] to compute the short-
est path between an initial state s and a state s’ with p € V(s').
In the case of ¢ = qUp the search simply ignores states s’ with
{a:p} N V() = 0.

7. RELATED WORK

In the literature on multi-agent systems, many computational and
programming frameworks for norms and norm enforcement have
been proposed. Existing frameworks mainly focus on specific types
of norms, and norm monitoring and enforcement mechanisms, e.g.,
[18, 16, 6, 13]. Of these, our approach is closest to that of [16];
however their approach does not support prediction of future viola-
tions, or attempt to ensure that violations do not occur. The focus
of our paper is different, as we are interested in a formally defined
computational model for a run-time enforcement mechanism that
monitors LTL norms to prevent future norm violations at run-time.
In particular, we are interested in formal models of run-time norm
enforcement and their computational complexity. Our model can
be applied to develop computational frameworks for run-time norm
enforcement mechanisms.

Our work is closely related to [1] where multi-agent systems are
modelled as transition systems and norm regimentation is modelled
by removing bad transitions. However, in contrast to our approach,
[1] considers norms semantically by means of a set of bad tran-
sitions that are removed at design time by updating the transition
system with norms. In our work, norms are specified syntactically
by means of LTL formulas, and bad transitions are disabled at run-
time by means of a guard function.

Another related work on norm monitoring is [11, 5], where norms
are considered in the context of imperfect monitors. Similar to our
work, [11, 5] considers norms syntactically by means of LTL for-
mulas, and monitors are assumed to be imperfect. However, [11, 5]
consider imperfect monitors at an abstract level and by means of an
indistinguishability relation between runs, while we consider im-
perfect monitors at a practical level and by means of a windowing
mechanism. In particular, the window mechanism in our approach
restricts the computational effort required to predict the future of
the actual run. Moreover, [11] ignores the problem of run-time
norm monitoring and focus on the notion of imperfect monitors,
while [5] focuses on the problem of synthesising the closest ap-
proximation of a norm that can be monitored with a set of imperfect
monitors. Finally, imperfect monitors in [11] can be improved by
means of their combinations, while in our approach an imperfect
monitor can be improved by increasing the size of its window.

It is obvious that our work is closely related to, and actually in-
spired by, the run-time verification literature, e.g., [9]. We build
on this work to evaluate norms (LTL properties) on finite runs, but
in contrast to run-time verification literature, we consider the con-
struction of a guard function that enforces norms by avoiding norm
violations. Our work also extends run-time verification approaches
by proposing lookahead and windowing mechanisms to predict vi-
olations of LTL properties. Our work is also closely related to su-
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pervisory control theory for discrete event systems, e.g., [22, 7].
While supervisory control theory approaches the problem of syn-
thesising control mechanisms at an abstract level by means of op-
erations on formal languages (e.g., intersection, inclusion, prod-
uct), our approach is more practical focusing on the construction of
guard functions that disable violating transitions at run-time.

We would like to emphasise that our work differs from work on
the verification of normative updates and and the compliance of
protocols with norms as proposed in [17, 4, 13, 2]. One differ-
ence is that we focus on run-time norm enforcement while [17, 4,
13, 2] consider offline verification of normative updates and pro-
tocols. Second, [4] consider specific norms (conditional prohibi-
tions/obligations with deadline) that can be expressed in a fragment
of CTL™* with Past, while we consider various types of norms that
can be expressed by various fragments of LTL. Third, [4, 13] con-
sider norm enforcement at design time by means of both regimen-
tation and sanctioning, while our work focuses on run-time norm
regimentation. Enforcing norms by sanctions allows norm to be
violated, but imposes sanctions when norms are violated. We be-
lieve that our approach can be extended to model enforcement by
sanctions. This can be done by, for example, imposing sanctions on
the states that are reached by violating transitions, instead of dis-
abling those transitions. We consider norm enforcement by means
of sanctions as a future direction of our research.

In this work, we have focused on norm regimentation from an
organisational perspective. Accordingly, the guard function is con-
sidered as a functionality of the agents’ organisation, which en-
ables/disables the options that are available to the agents at run-
time. We did not focus on norm regimentation mechanism from
an agent perspective and have ignored issues such as agents’ norm
awareness as studied in [24, 3]. Of course, our work can be applied
to make individual agents norm aware in the sense that the agents
themselves compute the options that cause norm violations. Us-
ing this ability the agents can decide whether to violate or to obey
the norms at run-time. We consider the norm awareness issue as a
future direction of our research.

8. CONCLUSIONS

This paper presents a formally defined computational model for
run-time norm enforcement mechanism. The model is based on
a guard function that enables/disables options that (could) violate
norms after a system history. The guard function, which is char-
acterised by LTL formulae with past operators, may use computa-
tional resources to reason about the future of the actual run in order
to disable the options that cause norm violations. The computa-
tional resources that allow to reason about the future of the run is
modelled by means of a window of a particular size. The model
is formally analysed and the computational complexity for various
types of run-time norm enforcement is provided.

Our approach can be extended in various directions. A possi-
ble extension would be to allow norm enforcement by means of
sanctions. In this regard, the interaction between the predication of
norm violations and sanctioning becomes an interesting but chal-
lenging issue. Another possible extension is to allow windows
with limited size in the past. In this paper, a window covers the
complete history from a starting state, but this is obviously not a
practical assumption as this requires sufficient memory capacity to
store the history; so we have already investigated cases where the
full history is not used. Limiting the history size of a window may
cause some norm violations to be undetected and not enforceable.
Finally, our model can be used to allow agents to evaluate and to
reason about the system behaviours in order to decide whether they
obey or violate norms.
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