
HAC-ER: A Disaster Response System based on
Human-Agent Collectives∗

Sarvapali D. Ramchurn,
Trung Dong Huynh,

Yuki Ikuno, Jack Flann,
Feng Wu, Luc Moreau,
Nicholas R. Jennings
Electronics and Computer

Science
University of Southampton

Southampton, UK

Joel E. Fischer,
Wenchao Jiang,

Tom Rodden
Mixed Reality Lab

University of Nottingham
Nottingham, UK

Edwin Simpson,
Steven Reece,

Stephen Roberts
Pattern Recognition Group

University of Oxford
Oxford, UK

ABSTRACT
This paper proposes a novel disaster management system called
HAC-ER that addresses some of the challenges faced by emer-
gency responders by enabling humans and agents, using state-of-
the-art algorithms, to collaboratively plan and carry out tasks in
teams referred to as human-agent collectives. In particular, HAC-
ER utilises crowdsourcing combined with machine learning to ex-
tract situational awareness information from large streams of re-
ports posted by members of the public and trusted organisations.
We then show how this information can inform human-agent teams
in coordinating multi-UAV deployments as well as task planning
for responders on the ground. Finally, HAC-ER incorporates a tool
for tracking and analysing the provenance of information shared
across the entire system. In summary, this paper describes a pro-
totype system, validated by real-world emergency responders, that
combines several state-of-the-art techniques for integrating humans
and agents, and illustrates, for the first time, how such an approach
can enable more effective disaster response operations.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Intelligent agents; H.5.2
[User Interfaces ]: User-centered design

General Terms
Applications

Keywords
Innovative Applications; Human and Agents; Disaster Response.

1. INTRODUCTION
In the aftermath of major disasters (man-made or natural), such as
the Haiti earthquake of 2010 or typhoon Haiyan in 2013, emer-
gency response agencies face a number of key challenges [19].
First, it is vital to gain situational awareness of the unfolding event
to determine where aid is required and how it can be delivered,
given that infrastructure may be damaged. Useful information can
come from a variety of sources, including people on the ground,
relief agencies, or satellite imagery. However, making sense of this

∗Watch a video on HAC-ER here: http://bit.ly/17aDRqt.

Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum
(eds.), May 4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

information is a painstaking process, particularly as the information
sources are liable to noise, bias, and delays. Second, emergency
response agencies typically need to gather additional information
by deploying unmanned aerial vehicles (UAVs). Using multiple
UAVs avoids risking human life but involves additional complex-
ity in controlling the vehicles and visualising the information they
feed back [2]. Tasks should be allocated to maximise the amount
of information collected, whilst considering limited battery capac-
ity and ensuring human coordinators are not overwhelmed by the
need to manually operate individual UAVs. The third challenge is
to use situational awareness to allocate relief tasks to emergency
responders, for example, digging people out of rubble, moving wa-
ter treatment units to populated areas, or extinguishing fires. It is
crucial to consider the travelling time required for each task, as this
blocks responders from performing other tasks [9]. However, the
capabilities of individual responders must be considered to ensure
that all tasks can be performed effectively and that no one is put in
harm’s way. For example, it may not be suitable to allocate medics
to densely built-up areas where a fire is spreading, or to attend ca-
sualties during riots. Finally, given that the disaster environment is
highly uncertain and liable to change significantly, it is crucial that
emergency response agencies can track and verify the information
and decisions that they use, allowing them to modify or reinforce
the current course of action whenever new information is detected
or previously trusted information is invalidated, e.g. through direct
verification by other organisations.

Against this background, we propose a prototype disaster man-
agement system called Human-Agent Collectives for Emergency
Response, or HAC-ER (pronounced ‘hacker’), that demonstrates
how humans and agents can be coalesced into teams called Human-
Agent Collectives (HACs) [8] to address the above challenges. We
designed our system collaboratively with emergency responders
from Rescue Global1 and other defence organisations in the UK,
and trialled our system with over 100 users, to determine how HACs
can support emergency response in different activities. In more
detail, this paper first demonstrates a HAC that integrates crowd-
sourcing to gather, interpret and fuse information from both trusted
agencies and members of the public on the ground, and thereby de-
termine priority areas for responders. We then develop a system for
multi-UAV coordination using a HAC, which involves both a dis-
tributed coordination algorithm and a number of human operators
to prioritise search areas. Rescue targets identified by UAVs are
then passed to a HAC composed of a planning agent and respon-
ders on the ground, who work together to determine a schedule for

1http://www.rescueglobal.org.

533



the completion of tasks. Finally, we employ a provenance tracking
and analysis tool to allow the HACs to react to events and provide
accountability for both human and agent-based decision making.

The rest of this paper is structured as follows. Section 2 dis-
cusses the decision making challenges addressed by HAC-ER. Sec-
tion 3 presents our crowdsourcing support tool, while Section 4 de-
scribes our mixed-initiative UAV command interfaces. Section 5
then shows how to allocate emergency responders to rescue tar-
gets and Section 6 describes how information and decisions are
tracked by a provenance manager to guarantee system reliability in
dynamic environments. Finally, Section 7 concludes the paper.

2. DECISION MAKING IN DISASTER RE-
SPONSE

Emergency response agencies are typically hierarchical, military-
style organisations that employ the OODA framework2 [5, 6]. A
command and control structure is established whereby decision
making is divided into strategic, tactical, and operational levels.
The teams responsible for each are sometimes referred to as Gold,
Silver, and Bronze respectively.3 At the strategic (Gold) level, de-
cision makers from all major response agencies involved decide
on the main objectives of the response effort. At the tactical level,
based on the specified objectives, the Silver command team decides
on the allocation of resources and tasks to be carried out, while at
the operational level, Bronze first responders (FRs), on the ground,
determine the logistics required to carry out those tasks. Informa-
tion gathered from the ground is also passed back up from Bronze,
through Silver, to Gold.

In this paper, we focus on the challenges faced by the Silver and
Bronze levels of these organisations respectively. The Silver com-
manders need to gain situational awareness, that is, gather infor-
mation from the disaster scene, ensure this information is reliable,
and then attempt to efficiently schedule resources and tasks on the
ground to meet their objectives. Thus, situational awareness may
be gathered using a combination of: (i) crowdsourced reports from
members of the public, (ii) deployments of UAVs in collaboration
with Bronze FRs to collect aerial imagery and locate key targets
(iii) deployments of FRs to gather first-hand information, while
carrying out response efforts in collaboration with other agencies
and citizens.

These different information sources come with different levels of
reliability and at different costs. For example, gathering data from
online crowdsourcing platforms such as Twitter4 or Ushahidi5 only
requires relatively cheap web technology, but the reports from such
platforms can be posted by unverified sources. Instead, deploying
UAVs or FRs on the ground helps gather more reliable data and in-
formation but this may turn out to be an expensive exercise if the
UAVs get damaged, or even tragic if FRs are put in danger. Hence,
it is important to avoid deploying FRs to the ground, and instead fo-
cus on gathering as much high quality data from crowds and UAVs
as quickly as possible. To this end, we design HAC-ER with the
aim to support the work of human emergency responders with a
number of agent-based tools. In more detail, we first develop ma-
chine learning agents to annotate crowdsourced reports and gener-
ate heatmaps for Silver commanders to visualise key priority areas

2OODA stands for Observe-Orientate-Decide-Act. It is a well es-
tablished information gathering and decision making process for
deployments in dynamic environments.
3Variants of this organisational structure do exist but we find that
the Gold, Silver, Bronze model is the most prevalent from our in-
teractions with emergency responders such as Rescue Global and
Hampshire County Council.
4www.twitter.com.
5www.ushahidi.com.

Rescue Mission Planning Crowdsourcing and UAV Mission Planning for 
Situational Awareness 

Send out UAVs 
Allocate UAVs to 
targets 

Create an Allocation 
for First Responders 

Create Targets for 
First Responders 

Provenance Tracking of Decisions and Information 

Crowdsourced 
Data collection 

0101 

Collect Data from 
UAVS 

010 

Send out 
Responders 

Classify & 
Summarise Crowd 
Reports 

01011 

010 Human Agent UAV 

Figure 1: Information gathering and decision making process in the
HAC-ER disaster management system.

(see Section 3). We then show how information from heatmaps can
be used in determining UAV deployment plans that are generated
using a decentralised coordination algorithm (see Section 4). Fig. 1
describes these two steps (top-left box) as part of an OODA loop,
where the information gathered from the crowd (Observe) is used
to decide on a plan for the UAV deployment (Orientate/Decide),
which is then is carried out (Act).

During UAV missions, Silver operators at headquarters will typ-
ically monitor the video feeds coming back from the UAVs, while
Bronze operators will supervise individual UAVs, and, at times,
tele-operate them to gather more detailed information. As targets
on the ground (e.g., casualties, collapsed buildings, fuel sources)
are identified through this process, these targets are used by Silver
commanders to allocate tasks to FRs. To help make these deci-
sions, we developed interfaces for mixed-initiative task allocation,
whereby human commanders interact with planning agents running
coordination algorithms that exploit sensor data. Through this in-
teraction, planning agents can compute plans that are efficient and
acceptable, i.e. satisfy human preferences. The different steps of
the mission planning process are graphically expressed in Fig. 1
(top-right box).

In general, a large amount of information is generated by various
actors (humans, software agents, and UAVs) in a disaster response
operation. Hence, a major contribution of this paper is the method
by which provenance is tracked and used to improve the decision
making process, providing accountability and ensuring dependen-
cies between information and decisions are continuously recorded.
This tracking system underlies all the decision making processes in
our disaster management system (the bottom box in Fig. 1).

In this section, we have described how different components of
HAC-ER fit into the organisation of emergency response agencies
during major disasters. The following sections elaborate on each
element of the HAC-ER system, namely the CrowdScanner, the
Mixed-Initiative UAV Controller, the Mixed-Initiative Task Allo-
cation System, and the Provenance Tracking System.

3. CROWDSCANNER
With the widespread popularity of mobile networks and the Inter-
net, people affected by a disaster nowadays routinely post text mes-
sages or photographs to platforms such as Twitter or Ushahidi, re-
porting the situations on the ground in real time covering a wide
area before FRs even arrive [12]. Thus, first-hand reports by mem-
bers of the public has become a key source of information during
a disaster, in addition to reports from FRs and aerial imagery of
the effected areas. Vast quantities of data can be produced very
rapidly as the disaster unfolds, which can overwhelm the silver
commanders who require situational awareness to plan operations.

534

www.twitter.com
www.ushahidi.com


Only some of the information may be relevant and reports may
be erroneous, out of date or duplicated (e.g. retweets). To over-
come information overload, we design a software agent for situa-
tional awareness, the CrowdScanner, which uses machine learning
to fuses heterogeneous reports into a common picture of the disas-
ter, or a heatmap of incidents. Our approach is able to automatically
combine information from both unreliable and trusted sources, fil-
ter out erroneous data, and help Silver commanders visualise the
relevant information via a series of map overlays on a computer
screen (see Fig. 2).

Our approach takes a large set of unstructured data from across
a disaster zone, including geo-tagged text reports or images, and
converts this to structured data with the help of a crowd of non-
experts. The crowd answers key questions about each image or
report and either (a) classifies it as one of several types of emer-
gency, such as a collapsed building or medical emergency, or (b)
indicates no emergency at that location, or (c) marks it as irrele-
vant. The crowd may also correct locations associated with reports
if places are mentioned in the text do not correspond with their geo-
tags. Machine learning algorithms then interpret this crowdsourced
structured data to build a statistical model of the disaster area.

Our approach combines two key machine learning techniques,
independent Bayesian classifier combination (IBCC) [17] and the
Gaussian Process (GP) [14] into an algorithm that uses the princi-
pled Bayesian information framework to:

• efficiently combine classifications from different members of
the crowd to remove erroneous information and rectify mis-
classifications,

• predict the location of emergencies across an entire disaster
area by interpolating between sparse reports, and

• select subsets of reports to pass to the crowd for labelling and
thus minimise the work undertaken by the crowd.

The IBCC algorithm combines crowd-classified reports from het-
erogeneous sources at each location to estimate the probability of
an emergency at those locations. To do this, IBCC learns a confu-
sion matrix [17] that encodes the reliability of each information
source, such as an individual reporter or an NGO. By account-
ing for variations in accuracy of reports from different sources,
we can fuse both highly trusted reports and weaker, error-prone
data. Our prototype application demonstrates this by combining
real Ushahidi reports written by people in Haiti after the 2010 earth-
quake, with simulated FR reports. Each FR is given a separate
confusion matrix, but we do not have identifiers for the authors of
Ushahidi reports. Instead, we have several classes of reports cor-
responding to different emergency categories,6 which we treat as
distinct information sources with separate confusion matrices. We
can thereby account for the relevance of each type of report when
predicting emergencies at a specific location.

IBCC does not require training with ground truth labels, but is in-
stead an unsupervised approach that fits a model given only crowd-
sourced data and prior distributions over the confusion matrices and
emergency occurrence probability, κ. We set the confusion matrix
priors for Ushahidi reports to have a weak bias towards correctly
indicating emergencies, encoding our initial uncertainty about their
reliability. For the FRs, the priors are set to reflect our greater prior
confidence in the accuracy of their reports. As more data is assimi-
lated, IBCC is updated, and uncertainty in both κ and the confusion
matrices decreases.

Now, we note that disasters can impact neighbouring areas in
very similar ways. For instance, an earthquake will affect similar
6The Ushahidi dataset does not contain labels indicating ‘no emer-
gency here’; such reports were collected but not marked in the orig-
inal Ushahidi project, although this would be useful in future.

Figure 2: Heatmap user interface for Port-au-Prince after the 2010
Earthquake, showing high probability of emergency (red) and low
probability (blue). The area marked as low emergency probabil-
ity was identified using reports from FRs. Targets for UAVs are
marked identified by red ‘?’ icons.

infrastructure in neighbouring locations, and a flood can impact ad-
jacent areas in similar ways. Hence, we extend the standard IBCC
model to accommodate this insight into a novel algorithm that can
make predictions at locations where we are missing reports. Our
extended model assumes that the emergency occurrence probabil-
ity varies reasonably smoothly from location to location. To model
this, we assume that κ(x, y) ∈ [0, 1] at coordinates (x, y) is drawn
from a Gaussian process (GP), which is a distribution over smooth
functions defined over the entire spatial disaster zone. The GP is
mapped through a sigmoid function so that the distribution over
κ(x, y) is in the range [0, 1] as detailed in [15]. We choose a low
order isotropic, stationary Matérn covariance function to model the
emergency occurrence probability over the two dimensional dis-
aster zone as this does not impose a too stringent smoothness on
κ(). The GP is fully integrated within the IBCC framework and
consequently, inference of the combined IBCC/GP model is per-
formed efficiently by variational Bayes. The length scales of the
GPs are the most likely values found using the Nelder-Mead algo-
rithm to optimise the variational lower bound. Our algorithm uses
the GP to aggregate neighbouring reports and interpolate between
them to determine the posterior distribution of κ(x, y) across the
entire space.

We plot the posterior distribution of emergencies over the en-
tire disaster zone as a heatmap, as shown in Fig. 2, to highlight
areas that require emergency aid. We can also show a heatmap
of the variance in κ(), where high variance indicates regions for
which little information about the emergency status is available.
By fully exploiting information between neighbourhoods, our new
method reduces uncertainty in the emergency situation at each lo-
cation and consequently decreases the number of reports that must
be labelled by the crowd. Furthermore, we use our algorithm to
prioritise crowd labelling of reports at highly uncertain locations,
and, when such reports are not available, to identify locations for
further reconnaissance. From the heatmaps, we can automatically
extract targets for UAVs to gather aerial imagery from likely emer-
gency locations, to either confirm the precise nature of the emer-
gency or invalidate reports and refocus response efforts. Targets
are extracted by marking the peaks of the heatmap within the flight
range of a UAV. These are depicted by red ‘?’ icons in Fig. 2. The
next section details our HAC approach for deploying UAVs to these
targets.

535



4. MIXED-INITIATIVE UAV CONTROLLER
The targets suggested by the CrowdScanner come with varying de-
grees of certainty. Hence, the emergency response team will aim
to verify these targets with first-hand knowledge. UAVs are typ-
ically used for this purpose to avoid putting personnel in harm’s
way. However, in most cases, the number of UAV operators avail-
able will be limited and the team will aim to send as many UAVs
out as possible to gather information as quickly and effectively as
possible. Hence, in what follows, we describe HAC-ER’s UAV
mission planning and command system that provides Silver com-
manders with supervisory control to allocate multiple UAVs to fly
over points of interest in a disaster area so as to verify the potential
targets. Moreover, we develop interfaces for low-level UAV tele-
operation by individual Bronze operators on the ground to identify
specific items of interest from the UAVs’ camera feeds.

In more detail, the interaction between Silver and Bronze op-
erators is mediated through voice-based communication as well as
interface elements (see Section 4.2). This is an important part of the
system as Bronze and Silver operators may have diverging views on
how to operate the UAVs. For example, in the dynamic conditions
of a disaster scenario, a Bronze operator may ground a UAV if she
thinks the weather conditions are inappropriate, or she may take
control to focus the UAV on a particular area to gather imagery.
This may disrupt the plan decided by the Silver operators. We ad-
dress this in Section 4.2.3 by designing the interaction to support
dynamic handover of control between Silver and Bronze.

Furthermore, the human team is supported by coordinating agents
that are individually in charge of the UAVs. More specifically,
agents employ a decentralised coordination algorithm to allocate
tasks among themselves. Thus, Silver operators are able to specify
goals for the UAVs to achieve (fly to a point, scan a region) and
the algorithm (distributively run by individual agents) allows the
UAVs to decide which of them is best suited for each task. Cru-
cially, our approach coordination implements the notion of flexible
autonomy [8], whereby the agents’ plan can be influenced by the
human operators. We elaborate on this in the following section.

4.1 Flexible Decentralised Coordination
The flexible coordination module continuously monitors the state
of the UAVs and tasks defined in the system and dynamically de-
termines a task allocation plan to minimise the time that the UAVs
take to complete their allocated task(s). We employ max-sum as
the de facto coordination algorithm given that UAVs are naturally
distributed in the scenario. As shown in [16], max-sum provides
good approximate solutions to challenging dynamic decentralised
optimisation.7 However, max-sum does not explicitly handle con-
straints imposed by human operators. For example, if after running
max-sum, agent A is tasked to go to point X, agent B to point Y,
and agent C to point Z, there is no explicit method for human oper-
ators to partially modify the plan such that agent A goes to point Y,
and B and C automatically re-allocate points Y and Z among them-
selves in the best way possible. Hence, to cater for such situations,
we extend the max-sum algorithm to include constraints specified
by human operators. In what follows, we provide a brief overview
of the max-sum algorithm.8

4.1.1 The Max-Sum Algorithm
The max-sum algorithm works by first constructing a factor graph
representation of a set of tasks (each representing a point or way-
7Other decentralised coordination algorithms could be used here
(e.g., DPOP, ADOPT, BnB-ADOPT) as we only adapt the tree over
which they run to compute a solution.
8A detailed description of max-sum is beyond the scope of this
paper. The reader is referred to [3, 10, 16] for more details on the
implementation of max-sum for UAVs and task allocation domains.

points UAVs are meant to fly to) and the set of agents (each repre-
senting a UAV) and then sets a protocol for an exchange of mes-
sages between different nodes in the factor-graph. The factor graph
is a bipartite graph where vertices represent agents and tasks, and
edges the dependencies between them. Given a set of tasks, D,
max-sum determines a subset of these tasks Di ⊆ D that are
most appropriate for each UAV, i, using branch-and-bound tech-
niques [16]. Effectively, this means pruning the factor graph to
generate an acyclic graph over which max-sum is guaranteed to
converge to a solution. Given this graph, agent and task nodes ex-
change messages that capture the utility of different allocations.
Eventually, each agent node determines its best allocation by max-
imising over the sum of all messages it receives.

4.1.2 Integrating Human Input
Using a utility function defined from the time required for a UAV to
fly to tasks, the priority of each task, and its urgency, max-sum allo-
cates each UAV to a task to maximise the overall utility as per [3].
However, this assignment may not be accepted by the human oper-
ators as it may not consider the qualitative and quatitative priorities
that humans attribute to tasks [18] as well as flight paths. For exam-
ple, a UAV may be allocated by max-sum to fly from its position in
the East to a task in the West but the human operators may, instead,
prefer a UAV to fly from the South to the same task to provide
imagery over the area covered by that path, which may be more
important than the lateral traversal from East to West.

Against this background, given a plan computed by max-sum,
through our planner interfaces (see Section 4.2), users can specify
manual allocations of UAVs to tasks. These manual allocations
specify a task-agent pair. Given this, for each agent i, we then
define a set of tasks Di = {j}. This effectively results in the
deletion of all edges in the factor graph that connect the agent node
i with other task nodes apart from that of j. This, in turn, forces
max-sum to only allocate agent i to task j, and if two or more
agents are required by task j, another agent will be chosen based
on this restriction.

4.2 Interaction Design
We designed a number of fully functional, web-based user inter-
faces to allow a human-agent team to coordinate the UAVs. Through
these interfaces, Silver operators visualise the plans suggested by
max-sum and modify these plans as required. We also provide an
interface for the Bronze operator to tele-operate a selected UAV.
We next detail the interactions within each view.

4.2.1 Camera View
The camera view provides multiple live video streams from the
UAVs (an MPEG stream is available from typical UAV camera
modules). In a simulation of the system, we employed Google
Maps9 aerial view (see left of Fig. 3 for feeds from six UAVs).
The images displayed are taken at real GPS locations of the UAVs
in the disaster area. Targets, as identified by the CrowdScanner, are
positioned at specific points in the area considered and displayed
on the aerial view whenever the UAV flies over it. The user can
then click on the map and create an annotation with the matching
description as perceived by the Silver or Bronze operator. Once a
target has been identified, an icon describing the target is then dis-
played across all views to ensure immediate situational awareness
across the team.

An important feature of the interface is the flagging system, which
Silver operators can use to alert Bronze operators when specific
items of interest appear in the camera view. A special (clickable)
button on each camera view highlights to the Bronze operator that

9http://maps.google.com.

536



Figure 3: Silver operators’ views including the camera view and the two modes of the planner view.

a specific UAV needs attention (see Section 4.2.3). Moreover, if a
Bronze operator takes over control of a particular UAV, this UAV’s
camera view updates its status to ‘tele-operated’. By so doing, we
allow Silver and Bronze operators to coordinate their actions.

4.2.2 Planner View
This is the main planning tool that provides both monitoring and
planning capabilities (see right of Fig. 3). Operators can choose
to create two types of tasks for the UAVs; point tasks with way
points for UAVs to fly to specific points in the space and scan the
area along the way, and region tasks that define areas that teams
of UAVs can self-organise to sweep-scan (i.e., they automatically
divide the area between themselves and scan their individual sec-
tions). The operator can decide, either using max-sum or manually,
which UAV should go to each of these tasks. These capabilities
are accessible in two modes accessible through the tabs on the top
right, namely ‘Monitor’ and ‘Task Edit’. We describe each of these
modes in turn.

Monitor Mode
This mode shows the current status of the allocation (see the right
part of Fig. 3). The allocation of UAVs to tasks is represented as
lines with arrowheads. Region tasks are marked as grey boxes and
point tasks using icons. Paths chosen by the max-sum algorithm
are shown in black, while paths chosen manually by the users are
shown in orange. Once a region task has been completed, the grey
box turns green. A region task is deemed completed when UAVs
have covered its area, and a point task is considered completed
when the allocated UAV has reached that task and hovered for 5
seconds. Once a point task is completed, the task disappears from
the map. The right side of the monitor displays the current allo-
cation of agents to tasks, the expected completion times and the
schedule (as a Gantt chart) of the UAVs going to the tasks.

Task Edit Mode
This mode provides the user with a number of planning options (see
right part of Fig. 3) through a number of sub-modes. The user can:

1. add/delete tasks (region or point): Users can create two types
of tasks: (i) region tasks — this task requires two UAVs to
carry out a sweep scan of the area selected by the user, and
(ii) point tasks — a point selected in the map.

2. change/adapt the allocation of tasks to agents: the allocation
automatically computed by max-sum can be changed by the
user by clicking on a UAV and allocating it to another task.
Max-sum then adapts its allocation to fit to the constraint
set by the user (as per Section 4.1.1). For each allocation,
a straight line is drawn from the selected UAV to the selected
task (unless way points are specified).

3. add way points to the paths taken by the UAVs: this applies
to paths chosen to point tasks, whereby users can adjust the
path taken by a UAV to cover areas in more complex ways
than in region tasks.

Once an allocation of UAVs to tasks has been chosen, the user can
verify the completion time of the tasks using the side bar widgets
and then decide to execute the plan.

4.2.3 Bronze Operator View

Figure 4: Tablet-based Bronze Operator Views.

The Bronze operator view is displayed on a tablet interface. In
this view (see Fig. 4), the Bronze operator can select the specific
UAV she may want to tele-operate or supervise more closely. Each
UAV’s camera view is accessible under different tabs (left of the
screen). Additionally, in this view, we provide a notification mech-
anism for the Silver commanders to alert the Bronze operators,
whereby the tab related to a specific UAV can be made to flash
when the Silver commander ‘flags’ the UAV in their screen.

The view also incorporates a simulated joystick that controls the
direction and speed of the UAV (pushing further in a given direction
speeds up the UAV) and a slider that regulates the altitude of the
UAV. The Bronze view is designed to receive live video feed from
any drone that transmits an MPEG video stream.

5. MIXED-INITIATIVE TASK ALLOCATION
Having confirmed the locations of key targets in the disaster area
through the UAVs, we next consider the deployment of FRs on the
ground. More specifically, in this section we describe the system
for Silver commanders to compute task allocations for Bronze FRs
using the help of a planning agent. In this section, we first provide
an overview of the model used by the planner agent, then describe
the interaction mechanisms for the planner agent to allocate tasks
to the FRs.

537



5.1 The Planner Agent
We developed an algorithm for a planner agent, that computation-
ally models the behaviour of FRs in terms of the actions they take
and the teams they form to complete their tasks. In contrast to
the UAV task allocation problem where operators (Bronze or Sil-
ver) control UAVs at will, allocating human FRs requires judging
whether they are fit to perform their tasks and whether there are any
constraints that prevent them, individually, from doing so.

Given such uncertainties due to human behaviour, we model the
task allocation problem using decision theoretic techniques. In
more detail, the algorithm receives GPS locations of targets from
the Mixed-Initiative UAV Controller and the location of FRs through
their mobile responder tool (see Section 5.2.2). We model the
problem of allocating FRs to targets using a Multi-Agent Markov
Decision Process (MMDP). In what follows we only describe the
MMDP model we use to solve the planning problem as the imple-
mentation details are beyond the scope of this paper.

Formally, an MMDP is defined as tuple 〈I, S, {Ai}, T,R, s0, γ〉,
where: I = {1, 2, · · · , n} is the set of n FRs as described above;
S is a set of system states (e.g., where the FRs are positioned, their
current task); Ai is the action set of FR i ∈ I; T : S × ~A × S →
[0, 1] is the transition function where ~A = ×i∈IAi is the set of
joint actions; R : S× ~A→ < is the reward function (e.g., the level
of completion of a rescue mission or the time it takes to distribute
vital resources); s0 ∈ S is the initial state; and γ ∈ (0, 1] is the
discount factor. Here, an action ai ∈ Ai is what an FR can do in
one step in a fixed amount of time so all FRs complete their actions
at the same time as commonly assumed in other MMDP applica-
tions. If some task takes much longer than others, FRs only need
to repeat their actions several times until the task is finished. The
outcome of solving an MMDP is a policy π : S → ~A that maps
from states to joint actions. Starting in state s0, a joint action ~a is
selected based on policy π. Each agent executes its component ai
of the joint action and the system transitions to next state s′ based
on the transition function. This process repeats with the new state
s′. The objective of solving an MMDP is to find a policy that max-
imises the discounted expected values.

This MMDP can be fed to standard solvers (e.g., UCT [1]). How-
ever, this will be very inefficient due to the large search space of the
model. Hence, we decompose the decision-making process into a
hierarchical planning process: at the top level, a task planning al-
gorithm is run for the whole team to assign the best task to each FR
given the current state of the world; at the lower level, given a task,
a path planning algorithm is run by each FR to find the best path to
the task from her current location. Furthermore, since not all states
of MMDPs are relevant to the problem, we only need to consider
the reachable states given the current state. Hence, we compute the
policy online, starting from the current state. This reduces com-
putation significantly because the number of the reachable states is
usually much smaller than the overall state space.

In more detail, we define the team values that reflect the level
of performance of FR teams in performing tasks. This is computed
from the estimated rewards that the teams obtain for performing the
tasks. The expected values after completing the tasks are estimated
by Monte-Carlo simulations. Given the team values, we assign a
task to each team by solving a mixed integer linear program that
maximises the overall team performance given the current state,
subject to the requirements of each task to FRs. In the path planning
phase, we compute the best path for a FR to her assigned task.
Since there are uncertainties in the environment and the responders’
actions, we model this problem as a single-agent MDP that can be
solved by real-time dynamic programming. By so doing, we assign
tasks to FRs such that their long term effects are rewarding while
reduce the search space to a tractable size.

Figure 5: The Silver commanders’ task allocation interface.

The output of our algorithm is a set of actions that describes
which task each FR should undertake and their best paths given the
tasks in the current state. This plan can then be provided on demand
to Silver commanders. The challenge, however, is that such plans
do not factor (i) whether the FRs are tired — if FRs are tired they
may not be able to do the task allocated and may prefer to do easier
(closer) tasks, and (ii) existing relationships between FRs — this
can result in some FRs preferring to work together and leave others
out. Crucially, it is not possible for the planner agent to model
all the aspects of human collaboration and perception which could
mean that plans may not make sense in the real world. Hence, in the
next section we develop methods for interactions with the planner
agent as well as between Silver commanders and Bronze FRs to
help them converge on an effective plan.

5.2 Interaction Design
Following the Haiti scenario, once the UAVs have identified the tar-
gets on the ground (see Section 4), FRs with specific roles have to
be allocated to these targets to further investigate, evacuate, rescue,
repair, etc., depending on the nature of the target. To exemplify
how this system would work, we assume four different types of
FR roles (medics, fire fighters, soldiers, and transporters), and four
different types of targets (injured personnel, social unrest, infras-
tructural damage, and water shortage). Mimicking real-world com-
plexity, different targets have different role requirements, e.g., to
rescue an ‘injured personnel’ target, a medic and a transporter are
required. For Silver commanders, this creates the aforementioned
task allocation problem under time pressure (due to task deadlines).
In order to support Silver commanders with their coordination work
to allocate tasks to FRs, we designed a set of interactive tools that
both integrate the agent-based task allocation and path planning al-
gorithm in the previous section, as well as situation awareness and
communication capabilities for Silver commanders and FRs.

Fundamentally, these capabilities are enabled by two applica-
tions: (a) a web-based task allocation interface to support Silver
coordination of FRs; and (b) a Mobile Responder Tool for FRs to
respond to task assignments and messages from Silver comman-
ders, to find each other, and to navigate the environment to evac-
uate targets. The following sections illustrate the ways in which
we implemented a human-in-the-loop rationale for intelligent task
allocation. Findings from earlier user studies showed that an effec-
tive interaction strategy leaves routine task assignment to the agent,
but human input is required to confirm allocations or change these
on demand, and, in particular, to deal with contingencies that may
arise in the disaster setting.

5.2.1 Task allocation UI
The web-based task allocation interface for Silver commanders is
depicted in Fig. 5. The operator uses the real-time map to locate
responders and targets ‘on the ground’, to keep track of tasks and

538



Figure 6: The Mobile Responder Tool.

their deadlines, to request assignments from the agent, and to in-
spect and confirm which of them get sent to the FRs. The task
assignments may be edited ‘manually’, for example to prioritise a
specific target due to type or deadline.

Due to relative complexity of the ‘work flow’ and the resulting
target states, we implemented interactive elements to make the UI
effective and guide the attention of the operator as follows:

• FR feedback. FRs accept or reject tasks (e.g., due to local
knowledge unavailable to the operator). Rejection leads to a
red, flashing signal, signalling to the operator that immediate
attention is required. The operator may then decide to call
upon the planner agent for a new allocation based on certain
constraints or manually create an assignment of tasks to FR.

• Hover-over alignment. Hovering the cursor over task or FR
icons in the task list or in the allocation list highlights the
corresponding icon on the map, so as to facilitate aligning
the views.

• Drag-and-drop editing. Silver commanders allocate FRs
to tasks by drag-and-drop. Once a task is dropped into the
assignment column, the responders’ required roles are visu-
alised to further guide the operator.

• Task-based comms channels. Operators have a channel for
each team allocated to a task, to provide task-specific mes-
saging (see Fig. 6).

5.2.2 Mobile Responder Tool
The mobile responder tool is depicted in Fig. 6. It provides the
Bronze FRs with the same real-time map as the Silver comman-
ders, with some convenience methods to facilitate focusing impor-
tant elements on the limited mobile screen size, such as ‘find me’
and ‘show task’. In addition, it provides task allocation information
in a separate tab (shown), which users have to accept. In case they
reject the allocation, they are first alerted to the task deadline in a
modal (‘are you sure?’ dialogue) so as to discourage rejection.

Our pilot studies of different versions of our Mixed-Initiative
Task Allocation system have demonstrated that FRs are more likely
to accept plans computed by the planner agent if the plans are first
analysed, modified, and validated by the Silver commanders [13].
Moreover, in our workshops with emergency responders from Res-
cue Global, it was particularly highlighted that such a disaster re-
sponse system is an opportunity to provide, in real-time, an up-to-
date picture of the disaster zone. Crucially, they highlighted the
fact that the information generated by FRs on the ground, UAVs,
and the CrowdScanner, needed to be tracked and analysed contin-
ually to identify potential discrepancies in decision making. Given

Planner Agent

Mobile 
Responder

UAV Bronze 
Control

UAV Silver 
Control

Provenance 
Manager

Task AllocationSilver Task 
Allocation ProvStore

UAV Controller CrowdScanner

Figure 7: Information flows between HAC-ER’s components.

this, we discuss next our approach to managing such information
and decisions within the HAC-ER system.

6. TRACKING INFORMATION AND DECI-
SIONS IN HAC-ER

As discussed earlier, HAC-ER consists of loosely-coupled com-
ponents that involve collectives of humans and agents. For an
overview, Fig. 7 presents the components and information flows
between them. Given the significant costs of making mistakes in
our domain, tracking provenance of the information fed into deci-
sion making is a critical requirement. In this section, we describe
how provenance in HAC-ER is tracked (Section 6.1) and used to
improve awareness of changes across its components (Section 6.2).

6.1 Tracking Provenance
The World Wide Web Consortium (W3C) defines provenance as “a
record that describes the people, institutions, entities, and activities
involved in producing, influencing, or delivering a piece of data or a
thing” [11]. In this system, when a piece of information is produced
by one of the components, it records which inputs were used in
the production of that piece of information and the agent(s) and/or
human(s) that were involved. Fig. 8a shows an example of such
provenance. In the example, the entity uav/target/33.1 was
generated by a “UAV Verification” activity; it was attributed to the
UAV Bronze commander, was derived from another entity called
cs/target/33.0 (which was previously created by the Crowd-
Scanner, but this is not shown in the figure), and has a property to
represent its type as an “Infrastructure Damage.” Examining this
provenance, either when the entity uav/target/33.1 is used or
in a much later audit when the operation has finished, allows us and
to track back to the origin of the information and to answer ques-
tions such as “who was responsible for the information”, “on which
other information it depended.”

In our system, the provenance of information is stored in a pur-
pose built repository for provenance, called ProvStore [7]. Individ-
ual components (i.e., the CrowdScanner, UAV Controller, and Task
Allocation) record the provenance of information and data gener-
ated in each of their activities and report the provenance to Prov-
Store once the activity completes. The provenance of any entity
can then be retrieved from ProvStore when required. Fig. 8b, for
instance, shows the result of a query for all the dependencies of
the entity comfimed_plan/178, which is a task allocation plan
that has been confirmed by a commander. As can be seen, the
result goes back all the way to the crowd reports aggregated by
the CrowdScanner (some entities omitted due to space constraints).

539

https://provenance.ecs.soton.ac.uk/atomicorchid/data/39/uav/target/33.1
https://provenance.ecs.soton.ac.uk/atomicorchid/data/39/cs/target/33.0
https://provenance.ecs.soton.ac.uk/atomicorchid/data/39/uav/target/33.1
https://provenance.ecs.soton.ac.uk/atomicorchid/data/39/comfimed_plan/178


activity/uav_verification/1411641053.306

cs/target/33.0

used
wasAssociatedWith

uav/target/33.1

wasGeneratedBy

uav_bronze_commander

wasAttributedTo

wasDerivedFrom

prov:type ao:InfrastructureDamage

(a) The provenance of a target
(uav/target/33.1).

cs/report/122

cs/report/143 cs/target/33.0

ao:latitude -72.3396
ao:longitude 18.554

cs/report/640

cs/report/444

uav/target/33.1

prov:type ao:InfrastructureDamage

InfrastructureDamage595

CrowdScanner

UAV Controller System

Task Allocation Syst
em
instructions/InfrastructureDamage595-1985

ao:accepted Solder317.9

prov:type ao:InfrastructureDamage
ao:asset_status ao:asset_idle
ao:latitude 18.554
ao:longitude -72.3396

confirmed_plans/178

prov:typeao:Plan

(b) A chain of derived information tracked across HAC-ER’s three components.

Figure 8: Provenance graphs in HAC-ER. In (a) ellipses are entities, boxes are activities, and houses are agents.

Should any information in a derivation chain as the one shown in
Fig. 8b later be discovered unreliable or incorrect, it would be pos-
sible to assess its potential impact by querying from ProvStore all
of its dependents. This is indeed what our Provenance Manager
monitors in order to ensure that the responders on the ground and
their commanders are aware of potentially adverse information in
dynamic situations typically in the area of disaster response. In the
next section, we describe how this is achieved.

6.2 Monitoring Decisions
In an ongoing operation, the available information is typically un-
certain and/or incomplete [19]. In HAC-ER, for instance, targets
identified from aggregating crowd reports are inherently uncertain
(see Section 3); new (and more trustworthy) reports from FRs, for
example, can invalidate targets that are already assigned to UAVs.
UAV operators can also make mistakes when annotating targets and
later correct them. However, the incorrect information may have al-
ready propagated to the Planner agent, resulting in assignments for
FRs. Those assignments may have subsequently confirmed by a
Silver commander before the incorrect information is discovered.
In order to be in control of such dynamic situations and to effec-
tively manage such changes, we develop a Provenance Manager
that tracks significant information changes at ProvStore that may
have impacts on decisions already made. It works as follows:

• Listening to information invalidation: ProvStore provides
an API for external services to register to be notified when an
event of interest occurs. Whenever prior information is inval-
idated, decisions and actions must be revised immediately.
Therefore, the Provenance Agent asks ProvStore to notify it
with any invalidation of existing information asserted by one
of HAC-ER’s components.

• Identifying potential impacts: Once an entity is invalidated,
ProvStore sends a notification to the Provenance Manager
which identifies all the dependents of the invalidated entity
by querying ProvStore for the transitive closure of the was-
DerivedFrom relations of the entity. If any of the dependents
are confirmed decisions, the entity confirmed_plan/178
in Fig. 8b for example, their owners will be notified next.

• Notifying affected actors: As each entity (e.g. a decision)
is attributed to a human or agent actor, when its validity may
be affected by now-invalid input(s), the actors may need to
re-evaluate their decision. Hence, the Provenance Agent will
send a notification to the affected actor, informing them of
the fact that an entity has just become invalid, the other enti-
ties potentially affected by this, and the provenance informa-
tion that has all the details for further investigation. For ex-
ample, the entity uav/target/33.1 (in Fig. 8a), may have
been mistakenly identified as an “Infrastructure Damage”.

The error was later corrected, resulting in a new version of
the target (uav/target/33.2) and the original version in-
validated. The same chain of derivations as shown in Fig. 8b
was identified by the Provenance Manager, and a notification
was generated and sent to the commander who had confirmed
the task allocation specified in confirmed_plan/178.

With the information and decision tracking provided by the Prove-
nance Manager in tandem with ProvStore, our pilot tests have demon-
strated that the system maintains situation awareness of the partic-
ipants in a timely manner whenever the information used for task
planning is invalidated. Silver commanders were notified of the
changes in less than a minute after they occurred. More impor-
tantly, the generic provenance tracking and monitoring mechanisms
implemented here are flexible and do not depend on this particular
domain. Future changes in HAC-ER’s individual components, or
even the addition of new components, will not affect the existing
operation of the Provenance Manager as long as the components
report provenance information from their operation to ProvStore as
previously described in Section 6.1.

7. CONCLUSIONS
In this paper, we presented HAC-ER, a prototype disaster manage-
ment system based on Human-Agent Collectives. The individual
components of HAC-ER demonstrate how humans and agents can
be coalesced in flexible and social relationships to manage infor-
mation and decisions, in order to address specific challenges faced
in gathering a high level of situational awareness from crowds and
UAVs, and in allocating tasks to first responders on the ground. Our
prototype has been field tested with more than 100 users so far and
validated by real-world emergency responders. Our field trials of
the HAC-ER system have so far shown that the performance of the
system is improved when greater control over autonomy is given to
users (e.g., in the multi-UAV and the planner system in particular).
Furthermore, emergency responders found that tracking the prove-
nance of information from the Crowdscanner would significantly
improve their confidence in information coming from crowds. The
reader is referred to [13] and [4] for further details. Future work
will look at deploying HAC-ER in disaster response training exer-
cises and evaluating our interaction mechanisms and agents in situ.

Acknowledgements
This work was done as part of the EPSRC-funded ORCHID project
(EP/I011587/1). We also thank RescueGlobal and BAE Systems
for their feedback on initial versions of the system.

540

https://provenance.ecs.soton.ac.uk/atomicorchid/data/39/uav/target/33.1
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#wasDerivedFrom
https://provenance.ecs.soton.ac.uk/atomicorchid/data/39/confirmed_plan/178
https://provenance.ecs.soton.ac.uk/atomicorchid/data/39/uav/target/33.1
https://provenance.ecs.soton.ac.uk/atomicorchid/data/39/uav/target/33.2
https://provenance.ecs.soton.ac.uk/atomicorchid/data/39/confirmed_plan/178


REFERENCES
[1] A. G. Barto, S. J. Bradtke, and S. P. Singh. Learning to act

using real-time dynamic programming. Artificial
Intelligence, 72(1):81–138, 1995.

[2] M. Cummings, A. Brzezinski, and J. D. Lee. The impact of
intelligent aiding for multiple unmanned aerial vehicle
schedule management. IEEE Intelligent Systems: Special
Issue on Interacting with Autonomy, 22(2):52–59, 2007.

[3] F. M. Delle Fave, A. Rogers, Z. Xu, S. Sukkarieh, and N. R.
Jennings. Deploying the max-sum algorithm for
decentralised coordination and task allocation of unmanned
aerial vehicles for live aerial imagery collection. In Robotics
and Automation (ICRA), 2012 IEEE International
Conference on, pages 469–476. IEEE, 2012.

[4] J. E. Fischer, S. Reeves, T. Rodden, S. Reece, S. D.
Ramchurn, and D. Jones. Building a bird’s eye view:
Collaborative work. In Proceedings of SIGCHI (To appear),
2015.

[5] T. Grant. Unifying planning and control using an ooda-based
architecture. In Proceedings of the 2005 annual research
conference of the South African institute of computer
scientists and information technologists on IT research in
developing countries, pages 159–170. South African Institute
for Computer Scientists and Information Technologists,
2005.

[6] T. Grant and B. Kooter. Comparing ooda & other models as
operational view c2 architecture topic: C4isr/c2 architecture.
ICCRTS2005, Jun, 2005.

[7] T. D. Huynh and L. Moreau. ProvStore: A public provenance
repository. In 5th International Provenance and Annotation
Workshop (IPAW’14), Cologne, Germany, 2014.

[8] N. R. Jennings, L. Moreau, D. Nicholson, S. D. Ramchurn,
S. Roberts, T. Rodden, and A. Rogers. On human-agent
collectives. Communications of the ACM, 57(12):33–42,
2014.

[9] H. Kitano and S. Tadokoro. Robocup rescue: A grand
challenge for multiagent and intelligent systems. AI
Magazine, 22(1):39–52, 2001.

[10] K. S. Macarthur, R. Stranders, S. D. Ramchurn, and N. R.
Jennings. A distributed anytime algorithm for dynamic task
allocation in multi-agent systems. In W. Burgard and
D. Roth, editors, AAAI. AAAI Press, 2011.

[11] L. Moreau and P. Missier. PROV-DM: The PROV data
model. Technical report, World Wide Web Consortium,
2013. W3C Recommendation.

[12] N. Morrow, N. Mock, A. Papendieck, and N. Kocmich.
Independent Evaluation of the Ushahidi Haiti Project.
Development Information Systems International, 8:2011,
2011.

[13] S. D. Ramchurn, F. Wu, W. Jiang, J. E. Fischer, S. Reece,
S. Roberts, C. Greenhalgh, T. Rodden, and N. R. Jennings.
Human-agent collaboration for disaster response.
Autonomous Agents and Multi-Agent Systems: Special Issue
on Human-Agent Interaction (to appear), 2015.

[14] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes
for Machine Learning. The MIT Press, 2006.

[15] S. Reece, S. Roberts, D. Nicholson, and C. Lloyd.
Determining intent using hard/soft data and gaussian process
classifiers. In Information Fusion (FUSION), 2011
Proceedings of the 14th International Conference on, pages
1–8. IEEE, 2011.

[16] A. Rogers, A. Farinelli, R. Stranders, and N. R. Jennings.
Bounded approximate decentralised coordination via the
max-sum algorithm. Artificial Intelligence, 175(2):730–759,
2011.

[17] E. Simpson, S. J. Roberts, A. Smith, and C. Lintott. Bayesian
combination of multiple, imperfect classifiers. In NIPS 2011,
Oxford, December 2011.

[18] P. Smith, C. McCoy, and C. Layton. Brittleness in the design
of cooperative problem-solving systems: the effects on user
performance. Systems, Man and Cybernetics, Part A:
Systems and Humans, IEEE Transactions on, 27(3):360–371,
May 1997.

[19] J. Villaveces. Disaster response 2.0. Forced Migration
Review, 38:7–9, 2011.

541


	Introduction
	Decision Making in Disaster Response
	CrowdScanner
	Mixed-initiative UAV Controller
	Flexible Decentralised Coordination
	The Max-Sum Algorithm
	Integrating Human Input

	Interaction Design
	Camera View
	Planner View
	Bronze Operator View


	Mixed-Initiative Task Allocation
	The Planner Agent
	Interaction Design
	Task allocation UI
	Mobile Responder Tool


	Tracking Information and Decisions in HAC-ER
	Tracking Provenance
	Monitoring Decisions

	Conclusions



