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ABSTRACT
To design virtual agents that simulate humans in repeated
decision making under uncertainty, we seek to quantitatively
characterize the actual human behavior in these settings.
We collect our data from 800 real human subjects through
a large-scale randomized online experiment. We evaluate
the performance of a wide range of computational models
in fitting the data by both conducting a scalable search
through the space of two-component models (i.e. inference
+ selection model) and investigating a few rules of thumb.

Our results suggest that across different decision-making
environment, an average human decision maker can be best
described by a two-component model, which is composed
of an inference model that relies heavily on more recent
information (i.e. displays recency bias) and a selection model
which assumes cost-proportional errors and reluctance to
change in subsequent trials (i.e. displays status-quo bias).
Additionally, while a large portion of individuals behave
like the average decision maker, how they differ from each
other is greatly influenced by the environment. These results
imply the possibility of constructing agents with a single
type of model that is robust against the context, and provide
insights into adjusting heterogeneity among multiple agents
based on the context.

Categories and Subject Descriptors
I.2.0 [Artificial Intelligence]: General – Cognitive simula-
tion

Keywords
Repeated Decision Making; Human-like Virtual Agents; Be-
havior Model; Cognitive Biases; Online Experiment

1. INTRODUCTION
Autonomous virtual agents that exhibit human-like be-

haviors have been widely applied in various domains, includ-
ing multi-agent based simulations, serious games, arts and
digital entertainment, education and virtual training [15,
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4, 14]. One challenging problem with virtual agent design
is how these agents should be modeled to resemble human
behavior when they face uncertainty in decision-making, and
in particular, when they have to make such decisions re-
peatedly. While most existing paradigms assume agents are
rational decision makers hence display optimal behavior [28,
9], there is a large literature in behavioral economics and
psychology showing that real humans are irrational as they
are subject to cognitive biases and limitations [25, 23].

Thus, searching for a more realistic design of virtual agents
in the setting of repeated decision making under uncertainty,
a key question that needs to be addressed first is how real hu-
man beings actually behave in these conditions. For instance,
how does a horse-racing gambler place bets on horses while
observing their fluctuating performance over time; and how
does a house owner choose her preferred electricity tariff
scheme among multiple alternatives, such as the flat rate
scheme (unit price is the same for usage in different time
intervals) and different Time of Use (ToU) schemes (unit
price is different for usage in different time intervals), while
she periodically reviews her electricity bills?

To answer this question, in this paper, we aim at find-
ing a computational model which best characterizes human
behavior in repeated decision making under uncertainty. In
particular, we focus on the following scenario which we refer
to as the environment learning problem: There areN random
variables in an environment (e.g. the amount of time for
each of the N horses to finish a race, the electricity usage
in each of the N time intervals of a day), and each random
variable follows a fixed distribution that is unknown to the
decision maker (DM). In each trial, the DM is first asked
to choose among M options. Then, the DM observes an
independent sample of each random variable for the trial.
The DM’s utility in a trial depends both on her choice and
on the realized samples of all random variables in that trial.
While the DM learns about the environment (i.e. random
variable distributions) through the noisy samples, her ob-
jective is to maximize her cumulative utility in the whole
decision period of T trials1. To the best of our knowledge,
there is no previous work on modeling human behavior in
this problem, though it generalizes real-life decision making
in various domains like financial investment and security
resource allocation.

1Note the difference with the multi-armed bandit problem
(MAB): In MAB, the DM can only observe the realized
sample of one random variable (corresponds to the chosen
option) per trial and thus faces the tradeoff between
exploration and exploitation.
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To examine a wide range of candidate human behavior
models for the environment learning problem, we define a
“model space” by decomposing a human DM’s cognitive rea-
soning process in each trial into two components, i.e the
inference component and the selection component. The in-
ference component describes how DMs aggregate historic
information and make forecast for the current trial, while
the selection component models how DMs compare different
options based on the forecasts and make decisions. Such
decomposition provides us with the possibility to conduct
a scalable search through the vast space of decision-making
models. Moreover, inference and selection models that we
evaluate in this paper vary in their assumptions on rational-
ity and thus enable us to pinpoint a few key irrationalities
that lead to suboptimal human behavior. As a complemen-
tary, we also investigate another family of models, which
instead assumes that human DMs simply follow different
rules of thumb without actively predicting future outcomes
in preparation for evaluating alternatives.

From an agent designer’s perspective, however, under-
standing a particular human DM’s behavior in a specific
decision-making environment is not the whole story. In fact,
human DMs’ behavior in real life can be influenced by char-
acteristics of the decision-making environment like the de-
gree of uncertainty in the environment [3, 1], as well as
DMs’ own characteristics. Both of these variations pose new
challenges for virtual agent design, as they may imply the
needs for creating a huge number of different agents that are
tailored to all kinds of contexts and individuals. To better
leverage our understanding on human behavior for agent
design, we further ask two questions: First, if the goal is
to design an agent which resembles an average human DM,
does a single type of model exist which is robust against dif-
ferent environment? Second, when creating multiple agents
to reproduce the behavior of a population of heterogeneous
human beings, how many agents can still be described by an
average DM’s behavior model and how should we adjust the
degree of heterogeneity in the agent population according to
the environment?

To this end, we design and conduct a large-scale random-
ized online experiment, through which we collect data on
24 sequential decisions in an environment learning prob-
lem from each of 800 unique human subjects on Amazon
Mechanical Turk (MTurk). Each subject of our experiment
is randomly assigned to one of the eight treatments with
different predefined decision-making environment character-
istics. Performance of various computational models is then
examined for the “average subject” in each treatment (by
assuming an one-size-fit-all model for all subjects in one
treatment) and for each individual subject.

Our results suggest that across different decision-making
environment, a specific type of two-component model gen-
erally outperforms other models, including different rules of
thumb, in explaining an average human DM’s behavior in
the environment learning problem. According to this model,
the average DM relies on the most recent information heavily
to update their understanding of the uncertain environment,
tends to stick with their previous choices, and is inclined to
select suboptimal options with higher forecasted utilities. On
the other hand, in characterizing each human DM’s behav-
ior, we find that while the behavior of a significant portion
of individual DMs can be described by the model for the
average DM, the degree to which individuals differ from each

other is largely affected by the environment. For example,
in a less uncertain environment where the sequence of noisy
observations implies consistent information, individual DMs
are more heterogeneous and display varying levels of ratio-
nality; while in a more uncertain environment, they tend to
be more homogeneous and behave uniformly naive.

These findings provide valuable implications for designing
human-like virtual agents in repeated decision making un-
der uncertainty. On the one hand, the existence of a single
type of robust model (against the environment contexts)
for resembling average human beings and the fact that this
model can also explain the behavior of a large number of
individuals indicates a possible decrease of computational
burdens for virtual agent design, as we may not need to use
a different model to construct an agent every time given a
new problem instance. On the other hand, our observations
on the relationship between the decision-making environ-
ment characteristics and the degree of heterogeneity among
human DMs suggest possible principles on tuning behavior
in the agent population for context adaptation.

2. RELATED WORK
Various frameworks have been adopted to create virtual

agents in uncertain environment, including Fuzzy Logic [9],
rule-based or experience-based inference [9, 14], decision net-
work [28], BDI (i.e. belief-desire-intention) and E-BDI (i.e.
Emotional BDI) models [15, 13]. In particular, to generate
more human-like behavior under uncertainty, [15] integrated
the prospect theory [10] with a BDI model and drew a
distinction between risk and ambiguity. Our work is different
from these studies in two perspectives: First, we focus on a
setting where agents have to repeatedly make decisions under
uncertainty, hence the agent’s decision in one trial can be
explicitly influenced by not only the current imperfect obser-
vation of the environment, but also historic observations and
decisions. Second, instead of providing a generic decision-
making framework with certain human behavior models em-
bedded a priori, we take a different approach by focusing
on a specific decision-making scenario (i.e. the environment
learning problem) and examining a variety of different be-
havior model alternatives in searching for the one which
actually characterizes real human behavior the best.

Decision-making under uncertainty is a field that is exten-
sively studied in economics. The first, and for a long time the
only model in this field, is the expected utility model, which
is based on the hypothesis that in an uncertain environment
individuals always choose the options that maximize their
expected utilities [26]. However, as empirical evidence that
violates this hypothesis being consistently observed (e.g. the
Allais paradox [2]), new theories have been proposed. One
of the alternatives is the random utility model [16], which
states that the utility of an option is composed by an ob-
servable part (e.g. expected utility) and an unobservable
stochastic error term. With different underlying structure in
the error terms, various discrete choice models are proposed
to account for the choices over multiple options [24]. In our
study, while we investigate two selection models that are
directly derived from the expected utility and random utility
models (i.e. the ε-Greedy and the Logit model), given the
nature of repeated decision-making in our scenario, we also
propose two new selection models (i.e. the Single Hurdle
and the Double Hurdle model), with the assumption that
subsequent decisions are not independent with each other.
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There is an important distinction between these classical
decision making under uncertainty settings in economics and
the environment learning problem, however. That is, in the
environment learning problem, the utility of each option is
unknown at the decision time2. Thus, a decision maker has
to predict how “good” each option is by inferring from her
previous experiences, or equivalently, by forecasting the ran-
dom variable values based on historic observations. A large
number of approaches can be found in statistical inference
literatures along this direction, including time-series analysis
techniques [7], reinforcement learning methods [22] and the
Bayesian inference framework [8]. While most existing vir-
tual agent systems apply the Bayesian inference framework
to reason about uncertainty [15, 28], we also consider the
other two possibilities and investigate three inference models
in this paper (i.e. the Last-K, the TDRL and the Bayesian
updating model).

Finally, it has been suggested by behavioral economists
and psychologists that people often make decisions based on
approximate rules of thumb rather than rational thoughts [25,
23]. In the context of repeated decision-making under uncer-
tainty, a number of rules of thumb have also been specified
for other scenarios (e.g. the multi-arm bandit problem) in
previous studies [21, 29]. By adapting them into our sce-
nario, we are able to compare the performance of two fami-
lies of models: two-component models and rules of thumb.

3. EXPERIMENTAL DESIGN
We first introduce our experimental design. Our study is

based on the human subjects’ choice data that we collect in
this experiment on an environment learning problem.

To begin with, we now formally define the environment
learning problem: Each of the N random variables in the
environment is denoted as Xi, which follows a stationary dis-
tribution. The initial observation on Xi is x0i . In each trial t
(t ≥ 1), the DM chooses among M options. When the chosen
option is Yt = j, the DM’s utility in trial t is Ut = fj(x

t
1:N )3,

where fj(·) is the payoff function of option j, and xti is the
value of Xi in trial t which will be realized after the DM’s
choice. Both the initial observation and the realized values
of Xi in each trial are generated by drawing random samples
from its distribution independently. The DM’s objective is
to maximize her cumulative utility

∑T
t=1 Ut in all T trials.

3.1 Task
Since our goal is to understand the actual human behavior,
in our experiment, we are interested in creating a realistic
setting of repeated decision making under uncertainty for
the subjects. Thus, we frame the environment learning prob-
lem as a game on periodically reviewing the electricity bills
and choosing the preferred tariff scheme, which is a common

2In classical settings, an option is often presented as a
“prospect” (o1, p1; ...; on, pn), for which the outcome oi is
yielded with probability pi and

∑n
i=1 pi = 1. While the value

for pi may be either known (risk) or unknown (uncertainty),
a decision maker is usually aware of the utility of each
possible outcome, u(oi).
3The colon notation is used to refer to a range of elements,
e.g. xt1:N = xt1, ..., x

t
i, ..., x

t
N . In addition, the assumption of

a DM’s utility being linearly correlated with option payoffs
implies that DMs are risk-neutral. Concave/convex utility
functions are also tested to account for other risk preferences
and results are similar.

practice in daily life. Specifically, each subject is told that
the energy company of her community begins to provide
three (i.e. M = 3) different electricity tariff schemes:

• Flat-rate scheme: Unit price is $0.25/kWh for electricity
usage at any time in a day.

• Cheaper in the day scheme: Unit price is $0.20/kWh
during the daytime (7am–7pm) and $0.30/kWh during
the nighttime (7pm–7am).

• Cheaper in the night scheme: Unit price is $0.30/kWh
during the daytime and $0.20/kWh during the nighttime.

One trial in the game corresponds to one “month”. In each
trial, the subject can review the “electricity bill” of the last
month, which includes information on the daytime (night-
time) usage and costs, and choose her preferred tariff scheme
for the current month. The game lasts for T = 24 trials (i.e.
2 “years”). Figure 1 shows the interface of one trial.

Figure 1: Interface of one trial in the game.

3.2 Treatments
Two random variables (i.e. N = 2) are used to represent the
daytime (X1) and nighttime (X2) electricity usage in each
month. We further assume that the electricity usage follows
a normal distribution, that is, Xi ∼ N(µi, σ

2
i ), i ∈ {1, 2}.

To simulate a rich variety of decision-making environment,
we control 3 “environment characteristics” to create eight
treatments. These characteristics include:

• Mean usage difference: the difference between the ex-
pected daytime and nighttime electricity usage in a month
(i.e. ∆µ = |µ2 − µ1|) can be either small or large.

• Usage variance: the variance of daytime and nighttime
electricity usage (i.e. σ2

i ) can be either small or large.

• Default option: when making decisions in each trial, there
may or may not exist a default option.

The first two characteristics give us the flexibility to vary
the easiness for people to distinguish the underlying dis-
tributions of the daytime and nighttime electricity usage,
which further influence people’s perception on the degree
of uncertainty in the environment. The concept of discrim-

inability, defined as d = |µ2−µ1|√
σ2
1+σ

2
2

, formally captures this

idea [1]: With a larger value of ∆µ or a smaller value of
σ2
i (hence larger d), the sequence of noisy samples are more

likely to be consistent (e.g. xt1 > xt2 in most trials or vice
versa) and it’s easier for the subjects to figure out their
electricity usage is generally higher in one time interval than
that in another interval, thus the subjects may perceive the
environment to be less uncertain. Different values of these
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two characteristics lead to 4 electricity usage conditions and
parameter values in each condition are specified in Table 1.
Note that within one condition, whether a subject’s daytime
usage is generally higher (i.e. whether µ1 > µ2) is randomly
decided.

Moreover, we include the third characteristic to exam-
ine whether human subjects’ decisions are affected by the
explicit existence of the default (or status-quo) option. A
prevalent observation in previous studies is that individuals
disproportionately stick with the status-quo option when it
exists, which is referred to as the status-quo bias [20]. In
our experiment, we test 2 default option conditions: In the
“no default” condition, pre-selected option doesn’t exist and
an active choice is required for each trial; in the “default”
condition, starting from the second trial, the chosen option
in the last trial will be pre-selected as the default, yet the
subject can choose to switch to other options.

Finally, the combination of an electricity usage condition
and a default option condition creates one treatment. Thus,
there are 8 treatments in our experiment.

Table 1: Parameter values for the 4 electricity usage
conditions.

Conditions Distributions of Xi d

Small difference, small variance
N(70, 102);
N(90, 102)

1.41

Small difference, large variance
N(70, 202);
N(90, 202)

0.71

Large difference, small variance
N(60, 102);
N(100, 102)

2.83

Large difference, large variance
N(60, 302);
N(100, 302)

0.94

3.3 Experimental Control
Upon arrival, a subject is randomly assigned to one treat-
ment. While the subject understands there may exist some
regularities for her electricity usage, she is unaware of the
exact forms of the electricity usage distributions in the as-
signed treatment. In the game, the subject decides only her
monthly tariff scheme but not the amount of daytime (night-
time) electricity usage shown on the bills, which is actually
generated by drawing random samples from the distribu-
tions of X1 (X2) independently, and the subject has been
trained to read the bills. To simulate the real world in which
people can benefit from smartly-chosen tariff schemes due
to the electricity cost savings, we introduce performance-
contingent bonuses in our game. Specifically, Each subject
is initially endowed with 1000 dollars of game money and she
can observe her account balance in each trial. At the end of
the game, besides a fixed payment of $0.15, the subject may
earn a bonus up to $0.70 by converting the final balance (if
positive) with a 100:1 rate. We recommend subjects to keep
close track of their monthly bills so as to find out possible
regularities hence minimize the costs.

3.4 Data
In total, 800 unique U.S. subjects are recruited from MTurk
and 100 subjects are assigned to each treatment, with half
of the subjects generally using more electricity in the day
(i.e. µ1 > µ2) and the other half consuming more at night
(i.e. µ1 < µ2). For each subject, we record the history of
daytime (nighttime) electricity usage that she observes (i.e.
x0:Ti ) and her decisions in each trial (i.e. Y1:T ).

4. MODELS
We now list the formal definitions of all computational

models that we examine. In all models, the payoff function
of an option j is fj(x

t
1:N ) = −

∑N
i=1 w

j
ix
t
i, where wji is the

unit price of daytime or nighttime usage stated in option j4.

4.1 Two-Component Models: Inference + Se-
lection

When a DM makes decision in trial t, she has observed the
realized values of each Xi for all previous trials (i.e. x0:t−1

i ),
yet her utility in the current trial depends on the unknown
value of xti which will be revealed in the future. We hence
define our first family of models in a“model space” such that
each model consists of two separate components to enable a
scalable search over all kinds of decision-making models: the
inference component is represented by a function that maps
the DM’s previous observations to forecasts on the random
variable values in the current trial, i.e. x̂ti = h(x0:t−1

i ), where
x̂ti is the predicted value of Xi in trial t; the selection com-
ponent refers to the DM calculating the forecasted utility
of each option ûtj = fj(x̂

t
1:N ) and stochastically making a

choice, i.e. rtj = g(ût1:M ), rtj is the probability of choosing

option j in trial t and
∑M
j=1 r

t
j = 1.

4.1.1 Inference Models
For the inference component, we consider 3 models:

Definition 1 (Last-K). The predicted value of ran-
dom variable Xi in trial t is the average of its realized val-
ues in a sliding window of (at most) last K trials: x̂ti =
1
t−s

∑t−1
k=s x

k
i , where s = max(0, t−K). �

The Last-K model is commonly used in time series analysis
(typically referred to as moving average). In addition, an
important cognitive foundation of the Last-K model is that
humans have limited memory. The widely-known finding of
“the magical number 7” suggests that the working memory
capacity of an average human is 7±2 [17]. In the limits, when
K = 1, we have a “recency model” in which a DM can only
remember the most recent observation; and when K = t, we
get an “average model” that a DM recalls everything from
the very beginning.

Definition 2 (TDRL). The temporal difference rein-
forcement learning (TDRL) model suggests that a DM pre-
dicts the value of a random variable Xi in trial t according
to x̂ti = x̂t−1

i + α(xt−1
i − x̂t−1

i ), where α is a learning rate
parameter. �

TDRL is a prediction method mostly used for solving rein-
forcement learning problems [22, 6]. The core idea is that
in each trial, the prediction is adjusted to better match the
most recent observation, with a larger α indicating a higher
discount on the old information.

Both the Last-K and the TDRL model imply that DMs
may have bounded rationality so they apply heuristics like
trimming and weighting when aggregating information and
making inference. On the contrary, Bayesian inference, which
is the framework frequently used in existing virtual agent
systems, presents a idealistic inference mechanism by as-
suming that DMs have sufficient prior knowledge (e.g. the

4The negative sign converts a cost minimizing problem into
a utility maximizing problem.
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models that generate the observations) and rationally make
inferences by applying the Bayesian updating scheme given
the sequential observations.

Definition 3 (Bayesian updating). In each trial, a
DM updates her posterior belief on parameter values for the
distribution of Xi by integrating the realized value of Xi with
the prior belief using the Bayes rule, and her prediction x̂ti
for trial t is the expected value of Xi conditioned on its
posterior parameter distribution in trial t− 1. �

For our case, a DM’s initial belief on the two parameters for
the distribution of Xi (i.e. µi and the precision parameter
λi = 1/σ2

i ) is assumed to be a Normal-Gamma distribution
as the conjugate prior5.

4.1.2 Selection Models
For the selection component, we study 4 different models:

Definition 4 (ε-Greedy). A DM chooses the (set of)
optimal option(s) with probability ε:

rtj =

{
ε
|J∗| j ∈ J∗

1−ε
M−|J∗| j /∈ J∗

where J∗ is the set of options with the maximal forecasted
utility ûtj in trial t. �

The ε-Greedy model corresponds to a stochastic version of
the expected utility model by stating that DMs will choose
the option with maximal utility, yet there is a constant
chance of making errors (i.e. 1− ε).

Definition 5 (Logit). The probability for a DM to choose

option j is given by rtj =
exp(βût

j)∑M

j
′
=1

exp(βût

j
′ )

, where β is a

precision parameter. �

The Logit model is a prominent type of discrete choice model
in economics [24], which is based on a random utility model
assuming that the stochastic error term in utility follows a
Gumbel distribution (i.e. type I generalized extreme value
distribution). It uses a softmax function to convert option
utility into choice probability. The parameter β indicates a
DM’s sensitivity to utilities: when β → 0, the DM chooses
randomly; when β → ∞, the DM almost always chooses
the forecasted optimal option. On the cognitive level, the
Logit model implies a property called cost-proportional er-
rors, that is, human DMs can be more likely to err when the
error costs are lower (i.e. choose suboptimal options more
often when they have larger utilities), and this property has
also been modeled as the quantal best response in behavior
theory [27].

Both the ε-Greedy and the Logit model assume that hu-
man DMs evaluate options in each trial independently. How-
ever, when a DM makes decisions repeatedly, her choice in
a specific trial may be affected by her previous decisions, for
example, she may be inclined to keep her previous choice.
Inspired by the hurdle and zero-inflated model in statistics,
which are developed to characterize count data with extra
zero-valued observations [18, 11], we propose the following
two models to take such limitation into account:
5That is, NG(µ, λ|µ0, κ0, α0, β0) = N(µ|µ0, (κ0λ)−1) ·
Ga(λ|α0, β0), where N(·) and Ga(·) are the probability
density functions of Normal and Gamma distributions,
respectively.

Definition 6 (Single Hurdle). When t = 1, the Sin-
gle Hurdle model is the same as the Logit model. Otherwise,
the probability for a DM to choose option j is given by:

rtj =

 π j = Yt−1

(1−π)exp(βût
j)∑

j
′ 6=Yt−1

exp(βût

j
′ )

j 6= Yt−1

where β is a precision parameter and Yt−1 is the DM’s choice
in trial t− 1. �

Definition 7 (Double Hurdle). When t = 1, the Dou-
ble Hurdle model is the same as the Logit model. Otherwise,
the probability for a DM to choose option j is given by:

rtj =


π +

(1−π)exp(βût
j)∑M

j
′
=1

exp(βût

j
′ )

j = Yt−1

(1−π)exp(βût
j)∑M

j
′
=1

exp(βût

j
′ )

j 6= Yt−1

where β is a precision parameter and Yt−1 is the DM’s choice
in trial t− 1. �

These two models implicitly assume 2 steps in selecting
options. In Step 1, the DM decides whether to stick with her
choice in the last trial regardless of its forecasted utility, and
this is governed by a binomial distribution with parameter π.
In Step 2, the DM makes further evaluations if the previous
choice is not preserved in Step 1: For the Double Hurdle
model, all options are evaluated; yet for the Single Hurdle
model, the previous choice is excluded from the evaluation.
The conditional probability of selecting an option in Step 2
follows the Logit model.

4.2 Rules of Thumb
The second family of models is a few rules of thumb,

assuming that human DMs don’t explicitly predict future
outcomes and make decisions based on the forecasted utility
of each option. Four rules are examined in this study:

Rule 1 (Random). A DM chooses an option uniformly
randomly in each trial. That is, option j is selected in trial
t with probability 1

M
. �

The random rule suggests a naive way of making decisions
in regardless of utilities. Thus, it is a baseline rule of thumb.

Rule 2 (Probability matching). A DM initially as-
signs a “success count” n0

j to each option j. Upon the ob-

servation of xt−1
1:N before trial t, if fj(x

t−1
1:N ) ≥ fj′ (x

t−1
1:N ) for

any j
′
, the DM updates the success count of option j as

ntj = nt−1
j +1; otherwise ntj = nt−1

j . Option j is then selected

in trial t with probability
nt
j∑M

j
′
=1

nt

j
′

. �

Probability matching suggests a suboptimal decision strat-
egy that has been widely observed among humans: Instead of
consistently choosing the maximizing option, the DM assigns
a probability to each option by matching its likelihood of
being optimal [21].

Rule 3 (Good-Stay-Bad-Shift). Upon the observa-
tion of xt−1

1:N before trial t, if the DM’s previous choice Yt−1

turns out to be “good”, the DM will keep that choice with
probability p; otherwise, the DM will shift to the (set of) op-
timal option(s) (according to xt−1

1:N ) with probability p. Other
options are selected uniformly randomly in both cases. �

585



-450

-400

-350

-300

ε-Greedy Logit Single
Hurdle

Double
Hurdle

Av
g.

 L
og

 L
ik

el
ih

oo
d 

Last-K TDRL Bayes

(a) T1: Small difference,
small variance, no default

-470

-420

-370

-320

ε-Greedy Logit Single
Hurdle

Double
Hurdle

Av
g.

 L
og

 L
ik

el
ih

oo
d 

Last-K TDRL Bayes

(b) T2: Small difference, large
variance, no default

-300

-280

-260

-240

-220

ε-Greedy Logit Single
Hurdle

Double
Hurdle

Av
g.

 L
og

 L
ik

el
ih

oo
d 

Last-K TDRL Bayes

(c) T3: Large difference,
small variance, no default

-450

-400

-350

-300

ε-Greedy Logit Single
Hurdle

Double
Hurdle

Av
g.

 L
og

 L
ik

el
ih

oo
d 

Last-K TDRL Bayes

(d) T4: Large difference,
large variance, no default

-420

-380

-340

-300

-260

ε-Greedy Logit Single
Hurdle

Double
Hurdle

Av
g.

 L
og

 L
ik

el
ih

oo
d 

Last-K TDRL Bayes

(e) T5: Small difference,
small variance, default

-470

-420

-370

-320

ε-Greedy Logit Single
Hurdle

Double
Hurdle

Av
g.

 L
og

 L
ik

el
ih

oo
d 

Last-K TDRL Bayes

(f) T6: Small difference, large
variance, default

-300

-260

-220

-180

ε-Greedy Logit Single
Hurdle

Double
Hurdle

Av
g.

 L
og

 L
ik

el
ih

oo
d 

Last-K TDRL Bayes

(g) T7: Large difference,
small variance, default

-450

-400

-350

-300

ε-Greedy Logit Single
Hurdle

Double
Hurdle

Av
g.

 L
og

 L
ik

el
ih

oo
d 

Last-K TDRL Bayes

(h) T8: Large difference,
large variance, default

Figure 2: Mean log likelihood in 5-fold cross validation when modeling an average DM using two-component
models.

We test two ways to define a “good” option: an aggressive
DM requires Yt−1 to have the highest utility among all op-
tions given xt−1

1:N , yet a conservative DM considers Yt−1 to
be good as long as its utility is not the lowest. This rule is
adapted from the “win-stay-lose-shift” heuristics in previous
studies for the two-armed bandit problem [29].

Finally, we consider a fourth rule which describes the DM
as constantly choosing a “safe choice” unless another option
can be significantly better.

Rule 4 (Safe Choice). A DM has a safe choice js in
mind. Upon the observation of xt−1

1:N , the DM will only switch
to the optimal option j∗ (according to xt−1

1:N ) in trial t with

probability q if
fj∗ (x

t−1
1:N

)−fjs (x
t−1
1:N

)

|max(fj∗ (x
t−1
1:N

),fjs (x
t−1
1:N

))|
> θ; otherwise, the

DM will stay with her safe choice with probability q. Other
options are selected uniformly randomly in both cases. �

A natural safe choice in our setting is the “flat-rate scheme”
as it can’t be the worst option at any time. Such preference
for the flat-rate scheme is also observed empirically, which
may because humans tend to avoid variations [12].

5. RESULTS
In this section, we present the performance of each com-

putational model in explaining human DMs’ behavior, both
for an average DM and for each individual DM.

5.1 Modeling for an Average DM
Our first research question is how to design an agent to

resemble an average human DM in repeated decision making
under uncertainty. Therefore, we start with the evaluation
on the performance of different models (including both two-
component models and rules of thumb) in terms of explain-
ing the average human DM’s behavior in various decision-
making environment.

To evaluate the performance of a specific type of model in
a particular decision-making environment (i.e. treatment),
we conduct a 5-fold cross validation, and an one-size-fit-all
model of the given type is used to account for the average
human DM’s behavior. That is, given the dataset for one
treatment (i.e. all choice data for all subjects in that treat-
ment), we first create 5 folds by randomly partitioning the
subjects into 5 groups and collecting all data for a subject
to her group. Next, we retain one fold of the dataset as the

validation dataset while the other 4 folds are used as training
data, and the cross-validation process is repeated 5 times by
using each fold as the validation dataset once. Within one
round of cross validation, given a model type (e.g. Last-K +
ε-Greedy), we first train an average DM’s model of this type
using maximum likelihood estimation, with the assumption
that all subjects in the training dataset share the same
model parameters and thus search for the optimal parameter
values which give us the largest probability of observing the
training data. Then, we calculate the log likelihood value
of the validation data given the obtained model. The mean
log likelihood value of all 5 folds is used to represent how
well this type of model fits an average DM’s behavior in this
treatment, with a larger value indicating a better model.
Hence, by comparing the mean log likelihood values of differ-
ent models within each treatment, we can understand what
is the best model to characterize the average DM’s behavior
in each decision-making environment.

5.1.1 The Best Two-Component Model
We first examine the performance of different two-component

models in various environment, and the results are shown in
Figure 2(a)-2(h). When the Last-K model is used for the in-
ference component, we test on a number of differentK values
(i.e. K = 1, 2, 3, 6, 12, t) and the largest log likelihood value
for the corresponding two-component model is reported. As
the figures suggest, in all eight decision-making environment,
the combination of the TDRL (or the best Last-K) inference
model and the Double Hurdle selection model consistently
has a better performance than other two-component models
in capturing an average DM’s behavior.

Particularly, for the inference component, it is interesting
to see that the widely-used model for virtual agents, that is,
the Bayesian updating model, actually describes an average
real human DM’s behavior relatively poor. This can be possi-
bly attributed to human DMs’ limited prior information and
rationality. Indeed, a closer look at the other two inference
models suggest that the average DM is irrational in the rea-
soning process: While the TDRL model consistently reports
very high learning rates (e.g. estimated α values are in the
range of 0.86-0.99), we also find that the recency model (i.e.
K = 1) almost always provides the highest log likelihood
among all Last-K models when combined with a selection
model (except in T3). These observations indicate that the
average human DM is subject to the recency bias severely
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when she predicts the future based on the history, that is,
she reacts strongly to the new information and discounts old
information heavily [5, 6].

On the other hand, when we focus on the selection com-
ponent, one of the models that we propose, i.e. the Double
Hurdle model, clearly outperforms other models. The impli-
cations are two-folds: First, instead of being a strict utility
maximizer, the average DM makes cost-proportional errors
(e.g. estimated β values are in the range of 0.72-1.52); Sec-
ond, when the average DM makes decisions repeatedly, she
doesn’t take each of them independently. In fact, the average
DM is affected by the status-quo bias and is reluctant to
change decisions in subsequent trials, even if the previous
choice is not explicitly set as the default (e.g. estimated
π values suggests a 25%-50% chance of sticking with the
previous choice). The average DM’s bias towards the status-
quo option also serves as an add-on to her analysis on the
forecasted utility of each option, which leads to the advan-
tage of the Double Hurdle model over the Single Hurdle
model.
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Figure 3: Comparison between the best two-
component model and different rules of thumb.

5.1.2 Inference+Selection vs. Rules of Thumb
Figure 3 presents the comparison between the two families

of models in fitting an average DM’s behavior, where T1-
T4 are treatments without the default option and T5-T8
are treatments with the default option. When variations
exist for a model (e.g. different combinations of inference
and selection component for the two-component model, the
aggressive and conservative way to define a “good” option in
a Good-Stay-Bad-Shift rule, etc.), the one with the highest
log likelihood value is reported.

Clearly, the best two-component model fits the data rea-
sonably well for all 8 treatments, which essentially suggests
the combination of a TDRL inference model and a Double
Hurdle selection model can be generally recommended for
designing a virtual agent to simulate an average DM in the
environment learning problem, no matter what the specific
decision-making environment is. In contrast, different rules
of thumb may capture the average human DM’s behavior
accurately in some specific environment, for example, the
Safe Choice rule performs well in treatments with the default
option. However, none of these rules provides robustly good
fitting performance across all treatments, indicating that for
the average DM, the activation of rules of thumb, if any, is
highly context-dependent, which is also consistent with the
literatures [19].

5.2 Modeling for Individual DMs
Our second research question is when designing an agent

population to reproduce the behavior of a group of heteroge-
neous human DMs, how many agents in the population can

still adopt the best-performing model for the average DM
and how should we adjust the degree of heterogeneity within
the population based on the decision-making environment.
We hence proceed on to characterize individual DM’s behav-
ior using various two-component models. That is, we treat
each individual DM as a unique entity and explore a “per-
sonalized”behavior model for every one of them. As subjects
don’t exhibit significantly different behavior in the 2 default
option conditions, in this subsection, we combine subjects
together for each of the 4 electricity usage conditions.

5.2.1 Validity of the Average DM’s Model on the In-
dividual Level

To answer the question of to what degree the best-performing
average DM’s behavior model can be used if we aim at
creating a population of heterogeneous agents, we seek to
find out the fittest inference model and the fittest selection
model among individual DMs, respectively.

For the fittest inference model, we first set each DM’s
selection model to be the Double Hurdle model and com-
pare the fitness of different inference models (i.e. the log
likelihood value) in explaining the individual DM’s decisions.
Figure 4(a) reports the percentage of subjects in each elec-
tricity usage condition that the best inference model is Last-
K, TDRL and Bayesian updating, respectively. As shown in
the figure, across all four different environment, the fittest
inference model is the TDRL model for the majority of
individual DMs, which is consistent with the inference com-
ponent choice in the best-performing model for the average
DM.

Moreover, for the fittest selection model among individu-
als, we fix a DM’s inference model to be the TDRL model
and compare the performance of different selection models
for each individual. Results are presented in Figure 4(b).
While we observe more diversity in DM’s choice on the
selection model, we still find the Double Hurdle model to
be the fittest selection model for the largest percentage of
individual DMs. That is, the selection model in the best-
performing model for the average DM can also be used for
a large portion of individual DMs.

In sum, through the examination on the fittest inference
and selection model for each individual DM, we validate
the feasibility of the best-performing average DM’s behavior
model on the individual level by showing that it can actually
be used to characterize the behavior of a large number of
individual DMs.

5.2.2 Heterogeneity and the Environment
The existence of individual differences in a heterogeneous

population indicates that there are always some individuals
who “deviate” from the average. For example, as Figure 4(a)
shows, depending on the decision-making environment, 11%-
35% of individual DMs actually display consistency with the
Bayesian inference framework, suggesting a subgroup of in-
dividuals with possibly higher levels of rationality. We hence
ask how is the degree of heterogeneity among individual
DMs affected by the decision-making environment.

Take the heterogeneity among individuals on making in-
ferences about the uncertain environment as an example.
Figure 4(a) seem to indicate that DMs are more heteroge-
neous in the “Large difference, small variance” condition, as
more individuals are able to avoid the recency bias hence
behave more rationally. More formally, the degree of het-
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Figure 4: Individual DM’s behavior in the environment learning problem.

erogeneity within a population can be measured by Shan-
non’s entropy. In particular, given a population of L types
of individuals, if the probability of an individual belonging
to type l is pl, the heterogenous degree of this population
can be defined as H = −

∑L
l=1 pllog(pl), with a larger value

representing a higher degree of heterogeneity. The heteroge-
nous degree for each population in the four decision-making
environment in Figure 4(a) is reported in the Hinf column
of Table 2. As we expect, the values differ a lot across vari-
ous environment, while individuals in the “Large difference,
small variance” environment have the highest degree of het-
erogeneity.

Recall from Table 1 that the “Large difference, small vari-
ance” environment has the highest discriminability in all 4
conditions, implying that the sequence of observations are
likely to provide consistent information and DMs may per-
ceive this environment to be less uncertain. Thus, we make a
conjecture on the relationship between the decision-making
environment and the degree of heterogeneity among human
DMs: In an environment of high discriminability (i.e. less
perceived uncertainty), individuals are capable of leveraging
their varying levels of rationality hence are more heteroge-
neous; however, in an environment of low discriminability
(i.e. more perceived uncertainty), individuals uniformly dis-
play their irrationality hence are more homogeneous.

As another supporting evidence, we set each DM’s in-
ference and selection model to be the Last-K and Double
Hurdle model, respectively. We then test different K values
(i.e. K = 1, 3, 6, t) and rank the fitness of each model for
each DM. Figure 4(c) shows the percentage of subjects for
whom the best K value is 1, 3, 6, t, respectively, when the
Last-K model is used as the inference component, and the
heterogenous degree of each population in this figure is also
reported in the HLast−K column of Table 2. Again, we find
that in a less uncertain environment, DMs are more hetero-
geneous and more individuals consider a longer sequence of
previous observations, or even the entire observation history,
to predict the future. Yet, in a more uncertain environment,
most of DMs display recency bias and as a result, the pop-
ulation is more homogeneous.

Table 2: The degree of heterogeneity among
individual DMs on making inferences for the 4
electricity usage conditions.

Conditions Hinf HLast−K

Small difference, small variance 0.6558 0.8586
Small difference, large variance 0.5925 0.8246
Large difference, small variance 0.9378 1.2282
Large difference, large variance 0.4269 0.7453

6. DISCUSSIONS AND CONCLUSIONS
In this paper, we evaluate and compare the performance of

a variety of computational models in fitting the data of real

human behavior in an environment learning problem. Based
on our evaluation results, we list two guidelines for designing
human-like virtual agents in repeated decision making under
uncertainty:

1. To resemble an average person, the agent should be
designed with a few human irrationalities, like the re-
cency and status-quo bias and tendency to make cost-
proportional errors.

2. While the same behavior model can be used across
different decision-making environment for agents that
resemble average human beings, when designing an
agent population to simulate a group of heterogenous
people, we should adjust the degree of heterogeneity
within the population (i.e. the use of different models
for each individual agent) according to the decision-
making environment.

The first guideline advocates for deeper considerations of
the cognitive limitations and biases of human beings for the
design of human-like virtual agents. Essentially, the question
is whether a fully rational agent is really “human-like”, and
we think the answer is “No”.

The second guideline is based on our findings that the
combination of the TDRL inference model and the Double
Hurdle selection model provides accurate description of an
average DM’s behavior across all decision-making environ-
ment, yet the specific environment characteristics largely
influence how much individual DMs differ from each other.
Particularly, we observe that people seem to be more het-
erogeneous in a less uncertain environment while more ho-
mogeneous in a more uncertain environment.

There are many interesting work that can be done in the
future. For example, in this paper, we provide a methodology
to conduct scalable search through the vast space of human
behavior models in repeated decision making under uncer-
tainty by decomposing the decision-making process into two
components. While we strive to cover a wide range of both
inference and selection models in the study, our search may
not be comprehensive. More sophisticated models, such as
various complicated time-series and discrete choice models,
can be integrated into the space and be evaluated in the fu-
ture. Furthermore, designing virtual agents which have these
human behavior models in mind and target to interactively
train or “nudge” real people towards better decisions would
be another very exciting future direction.
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