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ABSTRACT
In Boolean games, agents uniquely control a set of propositional
variables, and aim at achieving a goal formula whose realisation
might depend on the choices the other agents make with respect to
the variables they control. We consider the case in which assigning
a value to propositional variables incurs a cost, and moreover, we
assume agents to be restricted in their choice of assignments by
an initial endowment: they can only make choices with a lower
cost than this endowment. We then consider the possibility that
endowments can be redistributed among agents. Different redistri-
butions may lead to Nash equilibrium outcomes with very different
properties, and so certain redistributions may be considered more
attractive than others. In this context we study centralised redistri-
bution schemes, where a system designer is allowed to redistribute
the initial energy endowment among the agents in order to achieve
desirable systemic properties. We also show how to extend this
basic model to a dynamic variant in which an electric Boolean game
takes place over a series of rounds.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems;
J.4 [Computer Applications]: Social and Behavioral Sciences -
Economics

General Terms
Economics; Theory

1. INTRODUCTION
Resource bounded agency is a core concern in artificial intelli-

gence [7]. Every automated system directed to the realisation of
some task must ultimately reckon with the usage of resources needed
to accomplish it. In the multi-agent systems community special at-
tention has been given to agents that are bounded-reasoners, in the
sense that they are limited in processing higher-order beliefs [3],
memory [2] or temporal horizon [11]. Somewhat less attention has
been devoted to energy consumption affecting strategic ability, no-
table exceptions being [4, 23], which model how groups of agents
can perform joint strategies depending on initial available resources.
Also, in the computer-aided verification community, techniques have
been developed that incorporate the idea of energy compliance, i.e.,
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what a system can achieve under some limited resources [8]. These
latter approaches focus however on general strategic ability, i.e.,
what a group of agents can achieve together, but do not address the
issue of strategic self-interested behaviour. In brief, our aim in the
present paper is to address this issue, studying systemic properties
that can be achieved or avoided in equilibrium. Thus, our work is in
a similar spirit to [24] and [16].

Our work is based on the framework of Boolean games [15, 5],
a rich and natural model of interactive decision-making among
goal-directed agents. In conventional Boolean games, each agent
exercises unique control over a set of atomic propositions, in the
sense that they can choose the values for these variables, and agents
each seek the satisfaction of a goal, specified as formula of propo-
sitional logic. The model that we use in the present paper extends
this basic setup by assuming that each choice has an associated cost
(cf., [9, 16]). We intuitively understand the cost of a choice as being
the energy requirement of the choice (hence electric Boolean game).
Such an energy requirement affects the initial energy allocation each
agent is endowed with, and actions can only be taken if they are
consistent with the endowment.

The class of equilibrium outcomes that can be obtained in electric
Boolean games is largely restricted by energy compliance issues.
Therefore, we consider centralised redistribution schemes, in which
an external authority or a system designer is allowed, before the
game starts, to redistribute the initial energy endowment among the
agents. The questions we ask concern the outcomes that can be
rationally achieved or eliminated by making use of such schemes.
It has to be noted that, due to the potentially infinite number of
possible redistributions, the external authority is confronted with
a computationally challenging task, and we therefore study useful
algorithmic procedures to solve several related decision problems.
We also show how to extend this basic model to iterated electric
Boolean games, a dynamic variant of electric Boolean games based
on iterated Boolean games as proposed by [13]. Iterated electric
Boolean games take place over a series of rounds and agents, while
bound by dynamically changing endowment constraints, iteratively
choose an action and strive to achieve long term objectives expressed
by LTL formulas.

The remainder of the paper is structured as follows. Section 2
introduces Boolean games, which we extend with a cost function
and an energy endowment for each agent, giving what we call an
electric Boolean game. In Section 3 we introduce the notion of
an endowment redistribution as a centralised scheme to manipulate
energy endowments. We show various algorithmic properties of
decision problems that an external authority faces in one-shot games.
In Section 4 we show how to extend the basic model to iterated
electric Boolean games, the dynamic variant of electric Boolean
games. In Section 5 we hint at possible directions for future work.
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2. ELECTRIC BOOLEAN GAMES
A Boolean game is populated by a finite set of agents, each of

which is given control over a finite set of propositional variables and
assigned a formula of propositional logic: his goal. The game is
played by agents independently and concurrently assigning a truth
value to each propositional variable they control. The resulting set
of choices for each agent will define a valuation for the overall set
of propositional variables, which will either satisfy or fail to satisfy
each agent’s goal formula. Clearly, agents will want to make choices
that result in their goal being satisfied, but whether or not an agent’s
goal is satisfied will depend on the choices made by other agents.

Formally, a Boolean game [15, 14, 6] is defined on a finite set Φ
of propositional variables as a tuple

B = (N,Φ1, . . . ,Φn, γ1, . . . , γn).

Here, N = {1, . . . , n} is a finite set of agents, with typical ele-
ment i and Φ1, . . . ,Φn is a partition of the propositional variables Φ
overN , that is Φ =

⋃
i∈N Φi, and Φi∩Φj = ∅ for distinct agents i

and j. For each agent i the set Φi collects the propositions under
her unique control. Moreover, each γi is a propositional formula
over the set Φ representing the goal of agent i.

A Boolean game is played by all agents choosing a truth-value
assignment to the propositional variables they control. A choice for
an agent i is a function vi : Φi → {⊥,>}. By Vi we denote the
set of choices available to agent i. A choice profile or outcome is
a tuple ~v = (v1, . . . , vn) of choices, one for each agent. By ~V =
V1 × · · · × Vn we refer to the set of all choice profiles or outcomes.
Each outcome straightforwardly determines a valuation over all
propositional variables. For ~v = (v1, . . . , vn) being a choice profile
and p ∈ Φi for some (unique) i ∈ N , ~v(p) is the value assigned
by vi to atom p. We let ~v−i abbreviate (vi, . . . , vi−1, vi+1,...,vn), a
collection of choices of all agents but i. We will use ~vpq̄r̄ to denote
the outcome in which variable p is set to true and variables q and r
to false, and similarly for other outcomes.

Each choice function and, in particular, each choice profile, sat-
isfies a set of formulas of propositional logic. We use |= to denote
the satisfaction relation. For all valuations ~v and ~v′ and each agent i
with goal γi, we say that i weakly prefers choice profile v to choice
profile v′, whenever

~v′ |= γi implies ~v |= γi.

Thus, the agents’ preferences are dichotomous, in the sense that
they prefer outcomes satisfying their goals to outcomes that do not,
otherwise they are indifferent.

Electric Boolean Games.
In a Boolean game agents can set variables to true or false as they

see fit in pursuit of their goal. In many realistic settings, though,
the execution of programs operating on value assignments comes
with a cost, in terms of time or energy. Moreover, some actions
may have such a high cost that they cannot be executed given the
resources at an agent’s disposal. Therefore, we consider Boolean
games in which setting a propositional variable p to true or to false
has a cost and in which each agent has only limited resources.
Formally, a cost function c has the signature c : Φ× {>,⊥} → Z.
Intuitively, c(p, b) is the cost that comes with setting propositional
variable p to the Boolean value b. By c0 we denote the zero-cost
function, which assigns zero cost to each action. In Section 3, we
will make the technical assumption that costs are non-negative, to
avoid notational complications in the proofs. In a Boolean game,
propositional variables are controlled by agents, and the cost of
setting variable p to the value b falls to the agent i controlling p.

Accordingly, with each choice vi of agent i in a Boolean game, we
associate the aggregate cost ci(vi) resulting from this choice, i.e.,

ci(vi) =
∑
p∈Φi

ci(p, vi(p)).

The total cost of a choice profile ~v = (v1, . . . , vn) we define as,

c(~v) =
∑
i∈N

ci(vi).

For an agent i to be able to make a choice vi, she has to have
sufficient resources at her disposal. Informally, we think of each
agent having a battery and that she can only perform a particular
action if that action does not consume more battery power than is
available in the agent’s battery.

The resources or battery power available to each agent are given
by an endowment function e which associates with each agent i
a value ei in R+

0 . We denote the total (aggregate) endowment
of e by e =

∑
i∈N ei. Further, let e0 denote the zero-endowment

function, which allots an endowment of 0 to each agent. We will
assume that e ∈ N0. The integer assumptions with respect to the
cost functions and the total endowment are to avoid unnecessary
representational issues and are thus purely for technical convenience.
Recapping, while costs are modelled as integers, the endowments
to agents can take real values. This, notice, means that there are
infinitely many ways of allocating an initial amount of battery power
among the agents.

The endowment that each agent is assigned indicates the level
of energy they can consume. The idea is that agents can only take
an action if the amount of energy consumed by that action does
not exceed the level of battery power they have. Once an action is
taken, the level of battery power of the agent taking it is updated
accordingly. So, if Ann has an initial endowment of 10 units of
energy then she can perform all actions that cost her no more than 10
units, but she will not be able to perform any action with a cost
greater than 10, unless some additional resource is redistributed to
her. If actions have negative cost, they should be understood as
recharging actions, i.e., actions that have the effect of increasing the
overall battery power by the agent taking them.

Formally, we define an electric Boolean game as a tuple (B, c, e),
consisting of a Boolean game B = (N,Φ1, . . . ,Φn, γ1, . . . , γ), a
cost function c, and an endowment function e. We usually denote
the Boolean game (B, c, e) by Bc,e. The electric Boolean game
consisting of Boolean game B, the zero-cost function c0 and the
zero-endowment function e0, we also denote by B0. As we will see
later, in B0 no restrictions are imposed on which choices the agents
can make. It is important to note that the costs and endowments
in an electric Boolean game do not affect the agents’ preferences
over the outcomes—these are the same as in the underlying Boolean
game—but only which choices the agents can make.

Because of insufficient battery power, some choices might turn
out to be prohibitively expensive for an agent. Thus, given an electric
Boolean game Bc,e, we say that a choice vi of agent i is feasible
for i if ci(vi) ≤ ei. The set of feasible choices available to agent i
in electric Boolean game Bc,e we denote by feasiblei(B

c,e), so
feasiblei(B

c,e) ⊆ Vi. Observe that in a Boolean game B0 with the
zero-cost function c0 and zero-endowment function e0 every choice
for every agent is feasible. We say a choice profile ~v = (v1, . . . , vn)
is feasible if for each agent i the choice vi is feasible for i. We have
feasible(Bc,e) denote the set of feasible choice profiles in Bc,e,
which we also refer to as the feasible region of Bc,e. Thus,

feasible(Bc,e) = feasible1(Bc,e)× · · · × feasiblen(Bc,e).
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r r̄
q q̄ q q̄

p 0, 0, 0 0, 1, 1 1, 0, 1 1, 1, 0 0

p̄ 1, 1, 0 1, 0, 1 0, 1, 1 1, 1, 1 2

0 2 0 2

0 2 e1 = e2 = e3 = 1

Figure 1: Feasibility, equilibria, and redistribution

Feasible Nash equilibria.
In electric Boolean games, we assume that agents can only make

feasible choices. Electric Boolean games restricted to their feasi-
ble regions can be analysed as strategic games, to which standard
game-theoretic solution concepts may be applied [20]. When con-
sidering individual deviations from a feasible outcome, we only
consider deviations to feasible choices. So we define a (pure) Nash
equilibrium of an electric Boolean game Bc,e as a feasible out-
come ~v = (v1, . . . , vn) such that for all agents i and all feasible
choices v′i ∈ feasiblei(B

c,e),

(~v−i, v
′
i) |= γi implies ~v |= γi.

The set of Nash equilibria of an electric Boolean game Bc,e we
denote by NE(Bc,e), and like in regular Boolean games, may be
empty.

There are electric Boolean games with equilibria that might have
undesirable social properties, e.g., inefficiency, and could lead to
more desirable ones if endowments could be redistributed among
agents. Consider, e.g., the three-agent electric Boolean game in
Figure 1 with a total endowment e = 3 and three propositional
variables p, q, and r. There, the row agent controls variable p,
the column agent variable q, and the matrix agent variable r. The
entries associated with agents individual actions represent their
cost, i.e., the row agent has cost 2 for setting p to false, while the
entries in the cells encode whether agents satisfy their goal or not
at that outcome. For instance, if p and q are set to true, but r to
false then, the first (row) and the third (matrix) agents realise their
goal, but the second (column) agent does not. This is represented
by 1, 0, 1 in the respective cell. For endowment function e such
that e1 = e2 = e3 = 1, only outcome ~vpqr is feasible, whereas for
redistribution e′ with e′1 = 3 and e′2 = e′3 = 0 both ~vpqr and ~vp̄qr
are. In fact, there are only four outcomes that are feasible under some
redistribution, namely ~vpqr , ~vp̄qr , ~vpq̄r , and ~vpqr̄; all other outcomes
will never be feasible. Under starting endowment e, outcome ~vpqr
is the only Nash equilibrium, with no agent realising its goal. But
now suppose an external authority redistributes e among the agents
according to e′. This not only alters the set of feasible outcomes but
also the set of equilibria. Under e′, outcome ~vp̄qr would be the only
Nash equilibrium, where two agents are realising their goal. Again,
no possible redistribution can turn ~vp̄q̄r̄ , the outcome maximising
social welfare, into a Nash equilibrium.

3. REDISTRIBUTION SCHEMES
Different endowment distributions may significantly affect the

reachability of potentially desirable properties in equilibrium. A key
concept in this study of electric Boolean games is therefore that of
redistribution of endowments or battery power. Intuitively, we give
the external authority the power of an upfront reallocation of the

q q̄

p 1, 1 1, 0 2

p̄ 0, 1 0, 0 0

2 0

e1 = e2 = 1

Figure 2: Feasibility and equilibria: no commutativity

initial battery power so as to steer the game towards more desirable
outcomes. Formally, we say that an endowment function e′ is a
redistribution of an endowment function e, whenever e′ assigns
the same total endowment to the agents as e does, i.e., if∑

i∈N

ei =
∑
i∈N

e′i.

When attempting to manipulate a game using redistributions it
is important to notice that the set of Nash equilibria of an electric
Boolean game is not simply given by the intersection of the feasible
outcomes and the Nash equilibria of the underlying Boolean game.
Although every Nash equilibrium of a Boolean game remains an
equilibrium in the electric Boolean game no matter what costs on
the actions are imposed or what endowment distribution is chosen
(provided they are not rendered infeasible), the opposite inclusion
does not hold.

PROPOSITION 1. For every electric Boolean game Bc,e,

NE(B0) ∩ feasible(Bc,e) ⊆ NE(Bc,e) ∩ feasible(B0).

The inclusion in the opposite direction, however, does not hold.

Proof: Consider an outcome ~v ∈ NE(B0) ∩ feasible(Bc,e). As
obviously ~v ∈ feasible(B0), assume for contradiction that ~v /∈
NE(Bc,e). Then, there is an agent i and some feasible choice
v′ ∈ feasiblei(B

c,e) with ~v 6|= γi and (~v−i, v
′
i) |= γi. As trivially

v′i ∈ feasiblei(B
0), it follows that ~v /∈ NE(B0), a contradiction.

For the second part, consider the electric Boolean game depicted
in Figure 2. There, ~vp̄q̄ = NE(Bc,e) ∩ feasible(B0), whereas
NE(B0) ∩ feasible(Bc,e) = ∅.

This observation could be of significance for a mediator who has
the authority to (re-)distribute endowments over the agents. For
instance, she may want to distribute resources over the agents in
such a way so as to render particular outcomes feasible and other
outcomes infeasible. In this way she can indirectly steer the agents’
incentives and force some (desirable) outcomes to become Nash
equilibria or other undesirable ones to cease to be in equilibrium.
In this section, we therefore study the respective formal conditions
under which, given an electric Boolean game Bc,e and outcome ~v,

(i) a redistribution e′ of e exists such that ~v ∈ NE(Bc,e′), and

(ii) a redistribution e′ of e exists such that ~v 6∈ NE(Bc,e′).

The power of the central authority, however, may be bounded in
the sense that she cannot render every outcome feasible or infeasible
and a fortiori cannot manipulate the Nash equilibria entirely at will.
In this section we restrict our attention to games with non-negative
cost functions.
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Taming the Number of Redistributions.
Despite their apparent simplicity, endowment redistributions in

electric Boolean games introduce great complexity. Clearly, each
redistribution yields its own feasible region, but not every feasible
region can only be achieved by one redistribution. Still, the number
of feasible regions that can be achieved by some redistribution in
an electric Boolean game can be large. To give an indication, the
number of integer redistributions of an integer endowment e over n
agents is given by (

e + n− 1

n− 1

)
.

This is the number of ways one can partition a sum of integers
into ordered non-negative integer summands. Many redistributions,
however, yield the same set of feasible outcomes. Below, we show
that there is a (representation) bound on the redistributions that we
need to consider so as to be able to distinguish all feasible regions
of an electric Boolean game.

Recall we are assuming that cost functions as well as the total
endowment are both non-negative and integer-valued. As a conse-
quence of this fact, we find that in electric Boolean games with n
agents we can restrict attention to redistributions e for which the
endowment ei of each agent can be written as a fraction with n as
denominator. The crucial point used in the proof is that, even if
there is an infinite number of redistributions, we can, without loss
of generality, restrict attention to a special subset of redistributions
which can be represented polynomially but still can distinguish all
feasible regions.

We say that choice vi is adjacent to v′i for an agent i if

(i) ci(vi) < ci(v
′
i), and

(ii) there is no choice v′′i such that ci(vi) < ci(v
′′
i ) < ci(v

′
i).

(One can think of the different choices of an agent being ordered by
ascending cost.) We then obtain the following fact.

LEMMA 2. Let Bc,e be an electric Boolean game with n agents
and a non-negative and integer-valued cost function c and endow-
ment function e such that e ∈ N0. Then, there is a redistribution e′

of e such that,

(i) e′i · n ∈ N0, for each agent i, and

(ii) feasible(Bc,e) = feasible(Bc,e′).

Sketch of proof: Consider a most expensive feasible outcome ~v∗

in Bc,e, i.e., ~v∗ ∈ arg max~v∈feasible(Bc,e) c(~v). Then, c(~v∗) ≤ e.
If for some agent i there is no choice adjacent to v∗i , then v∗i is a
most expensive choice for i among all his choices in Vi. Then, let,
for each agent j,

e′j =

{
e−

∑
k 6=j ck(v∗k) if j = i,

cj(v
∗
j ) otherwise.

It is then easy to see that e′ satisfies both (i) and (ii).
So for the remainder of the proof, we may assume that for every

agent i there is a choice v′i adjacent to v∗i and let ~v′ = (v′1, . . . , v
′
n).

As c(~v′) ∈ N0, we know that for some integer k ∈ N0,

e + k = c(~v′).

If k = 1, define e′ such that e′i = ci(v
′
i) − 1

n
for each agent i.

Thus, e′ is a redistribution of e. Moreover, some reflection reveals
that e′ satisfies both (i) and (ii). The case for k > 1 is slightly more
complicated than space allows, but runs along similar lines.

As an immediate consequence of Lemma 2, we find that the total
number of feasible regions in an electric Boolean game with n
agents and total endowment e is upper bounded by(

ne + n− 1

n− 1

)
.

Elimination.
Some equilibria might have properties we do not find desirable

and a central authority may want to deploy redistributions to elimi-
nate them. Thus, we say that an outcome ~v is eliminable in electric
Boolean gameBc,e if ~v is feasible and there exists a redistribution e′

such that ~v /∈ NE(Bc,e′). We also say that a feasible outcome ~v
is feasibly eliminable in Bc,e if ~v is feasible and there exists a
redistribution e′ such that ~v ∈ feasible(Bc,e′) \ NE(Bc,e′). Fi-
nally, we say that an outcome ~v is rationally eliminable if ~v is an
equilibrium in Bc,e and there exists a redistribution e′ such that
~v ∈ feasible(Bc,e′) \NE(Bc,e′).

Despite the large number of possible redistributions, the external
authority may find herself confronted with, we find that for the
elimination of outcomes or equilibria, she may restrict her attention
to significantly smaller set of redistributions.

Define for each electric Boolean game Bc,e and each agent i a
redistribution ei that assigns the total endowment e to i and 0 to all
other agents, i.e., all agents j,

eij =

{
e j = i,

0 otherwise.

Now we have the following proposition and corollary, which say
that to establish whether an outcome is a Nash equilibrium under
every redistribution one only needs to check |N | redistributions.

PROPOSITION 3. Let ~v be an outcome of an electric Boolean
game Bc,e. Then, ~v ∈ NE(Bc,e′) for all redistributions e′ of e if
and only if ~v ∈ NE(Bc,ei) for all agents i.

Proof: The “if”-direction is immediate. Observe that, for every
agent i, ei is a redistribution of e. For the opposite direction, assume
~v /∈ NE(Bc,e′) for some redistribution e′. Then, either

(i) ~v /∈ feasible(Bc,e′), or

(ii) ~v 6|= γi and (~v−i, v
′
i) |= γi for some v′i ∈ feasiblei(B

c,e′).

If (i) there is some agent i with ci(vi) > e′i. If i is the only
agent, immediately ~v /∈ feasible(Bc,ei). Otherwise, consider the
redistribution ej for some agent j distinct from i. As ci(vi) >
e′i ≥ 0, also ci(vi) > eji = 0. Hence, ~v /∈ feasible(Bc,ej ) and
~v /∈ NE(Bc,ej ). If (ii), we also have that v′i ∈ feasiblei(B

c,ei)

and it follows that ~v /∈ NE(Bc,ei).

COROLLARY 4. Let ~v be an outcome of an electric Boolean
game Bc,e. Then, ~v is eliminable if and only if ~v /∈ NE(Bc,ei) for
some agent i.

To see if, given an electric Boolean game, an outcome ~v is a
Nash equilibrium for every redistribution under which ~v is feasible,
a similar argument applies. In this case, however, define for each
agent i the redistribution e~v,i such that, for all agents j,

e~v,ij =

{
max(e−

∑
k 6=j ck(vk), 0) if j = i,

cj(vj) otherwise.
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Roughly speaking, e~v,i gives agent i the maximal endowment
without rendering ~v infeasible. A proof along analogous lines as
the one for Proposition 3 then yields the following result. Recall
that we have assumed cost functions to be non-negative. Under this
assumption, for each agent i, an outcome ~v is infeasible inBc,e~v,i

if
and only if ~v is infeasible under every redistribution of e. Again we
find that we only need to consider |N | redistributions to establish
whether an outcome is feasibly eliminable.

PROPOSITION 5. Let ~v be an outcome of an electric Boolean
game Bc,e with non-negative cost function c. Then, ~v ∈ NE(Bc,e′)

for all redistributions e′ of e such that ~v ∈ feasible(Bc,e′) if and
only if ~v ∈ NE(Bc,e~v,i

) for all agents i.

COROLLARY 6. Let ~v be an outcome of an electric Boolean
game Bc,e. Then, ~v is feasibly eliminable if and only if ~v /∈
NE(Bc,e~v,i

) for some agent i.

We define the following three decision problems.

ELIMINATION
Given: Electric Boolean game Bc,e and feasible choice pro-

file ~v ∈ feasible(Bc,e)

Problem: Is v eliminable in Bc,e?

FEASIBLE ELIMINATION
Given: Electric Boolean game Bc,e and feasible choice pro-

file ~v ∈ feasible(Bc,e)

Problem: Is v feasibly eliminable in Bc,e?

RATIONAL ELIMINATION
Given: Electric Boolean game Bc,e and feasible choice pro-

file ~v ∈ NE(Bc,e)

Problem: Is v rationally eliminable in Bc,e?

Surprisingly, checking whether an equilibrium is (feasibly) elim-
inable is no harder than checking that an outcome is not a Nash
equilibrium:

PROPOSITION 7. ELIMINATION and FEASIBLE ELIMINATION
are both NP-complete.

Proof: For both ELIMINATION and FEASIBLE ELIMINATION NP-
hardness follows by reducing the problem of deciding whether a
given profile ~v is a Nash equilibrium in a regular Boolean game—
which is known to be coNP-complete1—to the complementary prob-
lem. Given a Boolean game B = (N,Φ1, . . . ,Φn, γ1, . . . , γn)
construct electric Boolean game B0 with the zero-cost function c0

and the zero-endowment function e0. Observe that in B0 all out-
comes are feasible and e0 is the only redistribution of e0 itself. It is
then easy to see that ~v is a pure Nash equilibrium in B if and only
if ~v is not (feasibly) eliminable in B0.

For membership in NP of either ELIMINATION or FEASIBLE
ELIMINATION, let Bc,e be a given electric Boolean game and ~v a
given outcome. We can guess a redistribution e′ of e, an agent i,
and a choice v′i. Observe that, by virtue of Lemma 2, this can be
achieved in polynomial time. For ELIMINATION, we can then verify
whether either cj(vj) > e′j for some j ∈ N or ci(v′i) ≤ e′i, ~v 6|= γi
and (~vi, v

′
i) |= γi. For FEASIBLE ELIMINATION verify whether

ci(v
′
i) > e~v,ii and wether both ~v 6|= γi and (~vi, v

′
i) |= γi. As all

this can be performed in polynomial time, we are done.
1See [6] for a complexity analysis of Boolean games.

For RATIONAL ELIMINATION we have a similar result.

PROPOSITION 8. RATIONAL ELIMINATION is NP-complete.

Proof: As in the proof of Proposition 7 hardness is proved by re-
ducing problem of deciding whether a given profile ~v is a Nash
equilibrium in a regular Boolean game. Given a Boolean game B =
(N,Φ1, . . . ,Φn, γ1, . . . , γn) and a outcome ~v = (v1, . . . , vn),
construct the electric Boolean game

Dc,e = (N ∪ {0},Φ0,Φ1, . . . ,Φn, γ0, . . . , γn, c, e),

where 0 is a dummy agent with Φ0 = ∅ (thus, 0 has one choice v0,
namely, v0 = ∅) and γ0 = >. Set cost function c such that for every
agents i ∈ N and every choice v′i,

ci(v
′
i) =

{
0 if v′i = vi,
1 otherwise.

for every agent i ∈ N and observe that c0(∅) =
∑
∅ = 0 by

common convention. Let the endowment function e be such that,
for all agents i ∈ N ∪ {0} and all choices v′i,

ei =

{
|N | if i = 0,
0 otherwise.

Then, ~v is the only feasible outcome in Dc,e and ~v ∈ NE(Dc,e).
Let, furthermore, e′ be the endowment function such that

e∗i =

{
0 if i = 0,
1 otherwise.

Obviously, e∗ is a redistribution of e and every outcome is feasible
in Dc,e∗ . This holds, in particular, for ~v. Moreover, as can easily be
appreciated, ~v /∈ NE(Dc,e′) for some redistribution e′ of e if and
only if ~v /∈ NE(Dc,e∗). Hence,

~v is a Nash equilibrium in B

iff ~v ∈ NE(Dc,e∗)

iff ~v ∈ NE(Dc,e′) for all redistributions e′ with ~v ∈ feasible(Dc,e′)

iff ~v is not rationally eliminable.

Membership in NP can be established as in the proof of NP-
membership of FEASIBLE ELIMINATION (see Proposition 7).

Construction.
Rather than eliminating outcomes and equilibria with presumably

undesirable properties, a central authority might want to see if she
can introduce some desirable equilibria by choosing an appropri-
ate redistribution. Thus, we come to consider the construction
problem, i.e., the problem of deciding whether an endowment redis-
tribution exists under which a given outcome is a Nash equilibrium
in a given electric Boolean game. To facilitate the discussion, we
say that choice v′i is a beneficial deviation from an outcome ~v for
agent i if both ~v 6|= γi and (~vi, v

′
i) |= γi.

For a given electric Boolean game Bc,e and a given outcome ~v,
we distinguish four cases, in the first three of which the construction
problem has an immediate solution.

Case 1 e < c(~v),

Case 2 e ≥ c(~v) and some agent i has a beneficial deviation v′i
from ~v such that ci(v′i) ≤ ci(vi).
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Case 3 Neither Case 1 nor Case 2 applies, and some agent i has no
beneficial deviation v′i from ~v.

Case 4 Neither Case 1, Case 2, nor Case 3 applies, i.e., e ≥ c(~v)
and all agents i have a beneficial deviation v′i from ~v. More-
over, for all agents i and for all beneficial deviations v′i, we
have ci(v′i) > ci(vi).

If Case 1 obtains, there is no redistribution e′ of e under which ~v
is feasible and, hence, there is no redistribution under which ~v is a
Nash equilibrium either. Neither in Case 2 can ~v be made into a Nash
equilibrium through redistributing the total endowment. Observe
that in this case, if agent i has sufficient endowment to choose vi,
she has also sufficient endowment to choose v′i. Hence, no matter
which endowment assigned to her, agent i can always profitably
deviate to v′i, whenever vi is feasible.

By contrast, if Case 3 applies, for every agent i without a benefi-
cial deviation from ~v, outcome ~v will be a Nash equilibrium under
redistribution e~v,i. Recall that e~v,i is the redistribution that assigns
all agents j other than i their cost at ~v, with agent i getting whatever
remains. As in this case c(~v) ≤ e, outcome ~v is feasible in Bc,e~v,i

.
Moreover, as Case 2 does not apply, in Bc,e~v,i

no agent distinct
from i can profitably deviate to a feasible choice and i cannot prof-
itably deviate at all. Observe that Case 3 already applies if there is
one agent who has her goal satisfied at ~v.

This leaves us with Case 4. Now we may assume that all agents i
have a beneficial deviation from ~v to some choice vi. We find that in
this case the constructibility of a Nash equilibrium ~v in an electric
Boolean game Bc,e can be reduced to a making a comparison of the
total endowment e~v of one particular endowment function e~v with
the total endowment e of e. Before we give this characterisation,
we first introduce some more terminology and notation.

Define, for each agent i, the set V ~v
i of beneficial deviations v′i

from ~v that agent i has. Under the assumptions of Case 4, clearly,
V ~v
i 6= ∅ for all agents i. Moreover, we may also assume that
ci(vi) < ci(v

′
i) for all v′i ∈ V ~v

i . Now, define the endowment
function e~v , such that, for every agent i,

e~vi = min{ci(v′i) : v′i ∈ V ~v
i }.

Thus, e~v assigns to every agent the minimum cost for a beneficial
deviation from ~v. Observe that e~v need not be a redistribution of e.
We now obtain the following characterisation.

PROPOSITION 9. Let ~v be an outcome in an electric Boolean
game Bc,e with non-negative costs and for which Case 4 holds.
Then, there is some redistribution e′ of e such that ~v ∈ NE(Bc,e′)
if and only if

c(~v) ≤ e < e~v .

Proof: For the “only if”-direction, first assume for contraposition
that c(~v) > e and consider an arbitrary redistribution e′ of e.
Then, e′ = e and therefore ~v 6∈ feasible(Bc,e′). It follows that
there is no redistribution e′ of e with ~v ∈ NE(Bc,e′). Now assume
for contraposition that e ≥ e~v and again consider an arbitrary redis-
tribution e′ of e. Observe that there is an agent i with e′i ≥ e~vi .
If ~v /∈ feasible(Bc,e′), then also ~v /∈ NE(Bc,e′). If, on the
other hand, ~v ∈ feasible(Bc,e′), then agent i can profitably deviate
from ~v to some v′i ∈ V ~v

i . Thus, also in this case, ~v /∈ NE(Bc,e′).
For the “if”-direction, assume that c(~v) ≤ e < e~v . Then, there

is some redistribution e′ of e with ci(vi) ≤ e′i < e~vi for all agents i.
Accordingly, ~v ∈ feasible(Bc,e′). Moreover, for every agent i,
every beneficial deviation v′i from ~v by i is infeasible in Bc,e′ , that
is, e′i < ci(v

′
i). It follows that ~v ∈ NE(Bc,e′), as desired.

Our analysis of the construction problem can be leveraged to
obtain a complexity result for the corresponding decision problem.

RATIONAL CONSTRUCTION
Given: Electric Boolean game Bc,e and outcome ~v

Problem: Is there a redistribution e′ of e with ~v ∈ NE(Bc,e′)?

We find that RATIONAL CONSTRUCTION is coNP-hard, but cannot
be computationally more complex than PNP.2

PROPOSITION 10. RATIONAL CONSTRUCTION coNP-hard and
included in PNP.

Proof: We prove coNP-hardness by reducing the problem of de-
ciding whether a given profile ~v is a Nash equilibrium in a regular
Boolean game. Given a Boolean gameB, construct electric Boolean
game B0 with the zero-cost function c0 and zero-endowment func-
tion e0. Then, all outcomes are feasible and there is only one redis-
tribution of e0, namely, e0 itself. Hence, trivially, ~v is a pure Nash
equilibrium in B if and only if ~v is a Nash equilibrium in Bc0,e′ for
some redistribution e′ of e0.

To see that RATIONAL CONSTRUCTION is in PNP, we first show
that, for a given n-agent electric Boolean game Bc,e with endow-
ment function e and outcome ~v, each of the following can achieved
in coNP.

D1 Check whether e ≥ c(~v), i.e., check whether Case 1 applies.

D2 Decide whether, for some agent i no deviation v′i from ~v is
beneficial, i.e., check whether Case 3 applies.

D3 Decide whether for all agents i and all beneficial deviations v′i
from ~v of i it is the case that ci(vi) < ci(v

′
i), i.e., check

whether Case 4 applies.

D4 Decide, for a given agent i and a given integer x ∈ N0,
whether e~vi = x.

D5 Given an endowment e′, check whether e < e′.

Clearly, both D1 and D5 can be achieved in polynomial time. For D2,
we can guess for each agent i a choice v′i, and check whether for
all of these n guesses of v′i both ~v 6|= γi and (~v−i, v

′
i) |= γi.

Also this can be performed in polynomial time. For D3, we can
guess an agent i along with a choice v′i ∈ Vi and check whether
~v 6|= γi, (~v−i, v

′
i) |= γi, and ci(v′i) ≤ ci(vi). Again, this can be

done in polynomial time. Finally, for D4, being given agent i and
integer x, guess a choice v′i ∈ Vi and check whether both ~v 6|= γi
and (~v−i, v

′
i) |= γi as well as whether ci(v′i) < x.

Given answers for D1 through D5, we can proceed as follows.
If D1 yields “no”, return “no”, i.e., Case 1 applies and there is no
redistribution making ~v into a Nash equilibrium. If D1 yields “no”
and D2 “yes”, Case 3 applies and we can return “yes”. Finally,
if D1, D2, and D3 all yield “no”, Case 2 applies and return “no”.
Otherwise, Case 4 applies. Then, for each agent i, define e′i such
that e′i = x if and only if the oracle for D4 yields “yes” on i and x,
by going through all integers x ∈ {0, . . . , ci(v∗i )}, where v∗i is
agent i’s costliest choice. Thus, e~v = (e′1, . . . , e

′
n). Then, we query

the oracle for D5 and output “yes” if and only if e < e′. The
soundness of this last step follows from Proposition 9. We conclude
that CONSTRUCTION is in PNP.

2Recall that PNP is the class of languages recognised by a determin-
istic Turing machine in polynomial time with a polynomial number
of queries of an NP-oracle.
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q q̄

p 1

p̄ −3

6 −3

e1 = 1 e2 = 2

Figure 3: An iterated electric Boolean game.

What we have shown is that, despite the prohibitive number of
redistributions, an external authority does not have to check all of
them to establish whether she can find one that eliminates an un-
desirable or creates a desirable equilibrium. By doing so, however,
also other equilibria may be affected. An interesting issue for future
research would therefore be to investigate the conditions and com-
plexity of the problem to find a redistribution so as to eliminate all
equilibria with a particular property ϕ without introducing any that
do not satisfy ϕ.

4. THE DYNAMIC SETTING
In the previous section, agents were involved one-shot interac-

tions, trying to achieve propositional goals by performing feasible
choice profiles. In this section, we explore a dynamic setting, where
agents repeatedly choose an assignment to the propositional vari-
ables they control. However, the cost an agent incurs with the
choices she makes at each point of time has direct effect on her level
of battery power, and thus on the choices she can make, in the next.

Consider the game in Figure 3, in which, over a prolonged period
of time, two agents, Row and Col, have to make choices for p
and q, respectively. As Row has an initial endowment of only 1,
he can set p to true only once before his endowment sinks to 0.
Then, he has to set p to false, an action with negative costs that
‘recharges’ his endowment by 3. With an initial endowment of 2,
Col has to start setting q to false at least twice. Thus, under the
initial endowment function e, it is inevitable that p and q will both
be simultaneously set to false before the second round. If, however,
an external authority wants to make sure that p ∨ q always holds,
she could redistribute e and assign an initial endowment of 2 to
Row and one of 0 to Col. Then, the sequence (~vpq̄, ~vpq̄, ~vp̄q)ω =
~vpq̄, ~vpq̄, ~vp̄q, ~vpq̄, ~vpq̄, ~vp̄q, . . . would become feasible under the
resource constraints imposed by this redistribution. Clearly, under
any redistribution of the total endowment e, at any given time in
any run Col will have set q to false at least twice as often as he has
set q to true. Observe, however, that this would no longer be the
case if, rather than merely redistributing the initial endowment, the
external authority could redistribute the available total endowment
available at any point of time. By then invariably assigning the
total available endowment at each time to Col also the sequence
(~vp̄q̄, ~vp̄q)ω = ~vp̄q̄, ~vp̄q, ~vp̄q̄, ~vp̄q, ~vp̄q̄, ~vp̄q, . . . would be feasible.

To formally reason about such settings, we extend the model
of iterated Boolean games as proposed by Gutierrez et al. [13] by
adding cost functions and endowment functions.

Linear-Time Temporal Logic (LTL).
When agents make choices iteratively, this leads to (infinite)

sequences of valuations, which properties can be described using
linear-time temporal logic (LTL) [10, 17, 18]. Besides the usual
Boolean connectives, LTL also has temporal operators X (“next”),

F (“eventually”), G (“always”), and the binary modal operator U
(“until”). Formally, the syntax of LTL is defined with respect to a
finite set Φ of propositional variables as follows, where p ∈ Φ.

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ

The remaining classical and LTL connectives are then defined in the
standard way. In particular, Fϕ = >Uϕ, and Gϕ = ¬F¬ϕ.

Formulas of LTL are interpreted on runs and times. Formally, a
run ρ is an infinite sequence of valuations in ~V ω . We use t ∈ N0 as
a temporal index into ρ and write ~v[t] = (v1[t], . . . , vn[t]) for the
valuation at time t in ρ. Then, for p ∈ Φ, run ρ = ~v[0], ~v[1], . . . ,
and t ≥ 0, the semantics for LTL is as follows.

ρ, t |= p iff ~v[t](p) = >
ρ, t |= ¬ϕ iff it is not the case that ρ, t |= ϕ

ρ, t |= ϕ ∨ ψ iff ρ, t |= ϕ or ρ, t |= ψ

ρ, t |= Xϕ iff ρ, t+ 1 |= ϕ

ρ, t |= ϕUψ iff for some t′ ≥ t : ρ, t′ |= ψ and
for all t ≤ t′′ < t′ : ρ, t′′ |= ϕ

We write ρ |= ϕ for ρ, 0 |= ϕ and say that ϕ satisfied by ρ.

Iterated Electric Boolean Games.
An iterated Boolean Game B = (N,Φ1, . . . ,Φn, γ1, . . . , γn)

is exactly like a Boolean game, except that each agent i’ (longterm)
goal is given by an LTL formula γi [13]. An iterated electric
Boolean game we define a tuple (B, c, e), where B an iterated
Boolean game and c and e a cost function and an endowment
function as before. Again, we write Bc,e for (B, c, e). We assume
that for each agent i there is a choice ci with cost at most zero.

An iterated electric Boolean game is played in an infinite series
of rounds, in each of which each agent i assigns values to the
variables in Φi she controls giving rise to an infinite sequence of
valuations. Each agent i tries to set her variables in each round
in such a way so as to eventually get her goal γi achieved. Here,
an agent can condition here choice on the choices of the other
agents in previous rounds. Thus, a strategy for agent i is a function
σi : ~V ∗ → Vi, which associates with each history—i.e., a finite
and possibly empty sequence % = ~v[0], . . . , ~v[t] of valuations—a
choice σi(%) in Vi. For t < 0, we stipulate that ~v[0], . . . , ~v[t] is the
empty sequence ε. A profile ~σ = (σ1, . . . , σn) of strategies then
induces a run ρ(~σ) = ~v[0], ~v[1], ~v[2], . . . such that, for t ≥ 0,

~v[0] = (σ1(ε), . . . , σn(ε)),
~v[t+ 1] = (σ1(~v[0], . . . , ~v[t]), . . . , σn(~v[0], . . . , ~v[t])).

The choices an agent makes at time t may affect her endowment
at t+ 1: it may go down or up depending on whether her choice
at t brings with it a positive or a negative cost. Formally, we define
an endowment scheme as a function ε that associates with each
agent i and each history % in ~V ∗ a value εi(%) in R. Thus, the initial
endowment function e of an iterated electric Boolean game Bc,e

can naturally be extended to an endowment scheme, which we will
here also denote by e, such that for each agent i and time t ≥ 0,

ei(ε) = ei,
ei(~v[0], . . . , ~v[t]) = ei(~v[0], . . . , ~v[t− 1])− ci(vi[t]).

The total endowment may also vary over time and depend on a
history; for t ≥ 0,its formal definition is given by,

e(ε) = e,

e(~v[0], . . . , ~v[t]) = e−
∑

0≤t′<t

c(~v[t′]).
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q q̄

p 1

p̄ 0

−1 0

e1 = e2 = 0

Figure 4: An iterated electric Boolean game whose feasible
runs under dynamic redistribution are precisely those in which,
at every point of time where p is set to true, q was set to true at
least once more often than p in the past.

At any point of time, agents can only choose actions that their
current endowment allows them to play. Formally, ~v[0], ~v[1], . . .
is a feasible run of an iterated electric Boolean game Bc,e, if for
every agent i and every t ≥ 0,

ci(vi[0]) ≤ ei(ε),
ci(vi[t+ 1]) ≤ ei(~v[0], . . . , ~v[t]).

Notice that at a feasible run no agent’s endowment will be negative
at any point of time. The set of feasible runs of an iterated electric
Boolean game Bc,e we denote by feasible(Bc,e). Having assumed
that all agents have an action with cost zero, the set of feasible runs
in an iterated electric Boolean game is always non-empty.

Dynamic Redistribution Schemes.
When playing an iterated electric Boolean game, the individual

endowments to the agents may fluctuate. Thus, it may occur that
at some point one agent’s endowment is low and cannot play a
particular action, whereas another agent has surplus of endowment.
If this happens, some runs will be prevented from being feasible. If
such a run is desirable, however, an external authority might want
to allocate some of the surplus endowment available at the time
to the one agent to the other agent. Thus, the setting of iterated
electric Boolean games we come to consider redistribution schemes
in which a central planner can redistribute over time. Formally, we
define a dynamic redistribution scheme for Bc,e as an endowment
scheme ε such that, for every history ~v[0], . . . , ~v[t], both

(i) e(~v[0], . . . , ~v[t]) =
∑

i∈N εi(v[0], . . . , ~v[t]), and

(ii) e(~v[0], . . . , ~v[t]) ≥ 0 implies εi(v[0], . . . , ~v[t]) ≥ 0 for all i ∈ N .

Condition (i) requires that the total endowment available at a certain
point in time is fully redistributed over all agents. Condition (ii)
ensures that every agent gets a non-negative endowment if the total
available endowment is non-negative.

Feasibility of a run in an iterated electric Boolean game extends
naturally to feasibility in an iterated electric Boolean game under an
redistribution scheme ε. Run ρ = ~v[0], ~v[1], . . . is feasible under ε
if, for every agent i and t ≥ 0,

ci(vi[0]) ≤ εi(ε),
ci(vi[t+ 1]) ≤ εi(~v[0], . . . , ~v[t]).

The runs of an electric Boolean game Bc,e under dynamic redistribu-
tion scheme ε we denote by feasible(Bc,ε). The game in Figure 3
shows that the sets feasible(Bc,e) and feasible(Bc,ε) may be quite
different properties. It might also be worth observing that, in con-
trast to the sets of runs of an iterated Boolean game, the set feasible

runs of an iterated electric Boolean game, under a dynamic redis-
tribution scheme, need not be an ω-regular language over ~V , i.e., a
language recognisable by a Büchi automaton. For an example, see
Figure 4. The key insight behind this phenomenon is that the level
of endowment behaves as the stack of a pushdown automaton.

An external authority may be interested whether a given iterated
electric Boolean game allows for feasible runs that satisfy a certain
LTL-expressible property, and if there are none, whether she can
design a dynamic redistribution scheme so that runs satisfying the
property become feasible. Thus, we come to consider the following
decision problem.

RATIONAL CONSTRUCTION
Given: Iterated electric Boolean game Bc,e and LTL for-

mula ϕ
Problem: Does a dynamic redistribution scheme ε for Bc,e

exist such that ρ |= ϕ for some ρ ∈ feasible(Bc,ε)?

This problem is closely related to the satisfiability problem for
LTL, which is known to be PSPACE-complete (see, Sistla and
Clarke [22]). We obtain the following results by a non-trivial adap-
tation of Sistla and Clarke’s original proof. The proof itself is here
omitted for reasons of space.

PROPOSITION 11. FEASIBLE DYNAMIC REDISTRIBUTION is
PSPACE-complete.

5. CONCLUSION AND FUTURE WORK
We have looked at Boolean games where agents can only perform

actions provided they meet given resource requirements. In this
context, we considered the possibilities a central planner authorised
to redistribute the agents’ endowments in order to steer the game
to more desirable outcomes. In spite of the prohibitive number of
possible redistributions, we found that well-behaved procedures
exist to verify whether a given outcome is eliminable, feasibly
eliminable or rationally eliminable. We have also been able to
obtain similar results for procedures introducing new equilibria, i.e.,
for the construction problem. We have studied what can be achieved
in the static, one-shot setting and given details of how things work
out in the iterated setting.

The most natural direction of future research is to investigate the
formal properties of decentralised redistribution schemes, in which
groups of agents can get together and decide to redistribute resources
among themselves. To handle this case, solution concepts of a
more cooperative nature—e.g., stability notions based on feasible
group deviations, or, even more generally, on effectivity functions
(see, e.g., [19, 1])—are called for. As feasibility introduces some
extra structure in Boolean games, an interesting issue would be
to characterise the conditions under which an effectivity function
corresponds to some electric Boolean game (cf., e.g., [21, 12]).

Finally, appropriate stability concepts could also be defined for
and applied to the dynamic setting. Thus, one could investigate how
the behaviour of decentralised redistribution over time and how it
relates to centralised redistribution.
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