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ABSTRACT

We investigate the potential of using ordinal peer grading for
the evaluation of students in massive online open courses
(MOOCs). According to such grading schemes, each stu-
dent receives a few assignments (by other students) which
she has to rank. Then, a global ranking (possibly trans-
lated into numerical scores) is produced by combining the
individual ones. This is a novel application area for social
choice concepts and methods where the important problem
to be solved is as follows: how should the assignments be
distributed so that the collected individual rankings can be
easily merged into a global one that is as close as possible
to the ranking that represents the relative performance of
the students in the assignment? Our main theoretical result
suggests that using very simple ways to distribute the as-
signments so that each student has to rank only k£ of them,
a Borda-like aggregation method can recover a 1 — O(1/k)
fraction of the true ranking when each student correctly
ranks the assignments she receives. Experimental results
strengthen our analysis further and also demonstrate that
the same method is extremely robust even when students
have imperfect capabilities as graders. Our results provide
strong evidence that ordinal peer grading can be a highly
effective and scalable solution for evaluation in MOOC:s.

Categories and Subject Descriptors

F.2 [Theory of Computation]: Analysis of Algoriths and
Problem Complexity; 1.2.11 [Distributed Artificial In-
telligence]: Multiagent Systems; J.4 [Computer Appli-
cations|: Social and Behavioral Sciences—Economics
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1. INTRODUCTION

Massive online open courses (MOOCSs) such as Coursera
and EdX have emerged as a trend and have attracted signifi-
cant funding from VCs and support from leading academics.
Their vision is to use the Internet and provide (to huge num-
bers of students) an educational experience that is typical in
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courses targeted to small audiences in top-class universities.
Whether MOOCs will become the next big business over the
Internet strongly depends on whether they will satisfy the
fundamental need for easy and cheap access to high quality
education without restrictions. An apparent bottleneck for
their full deployment and success is the fact that assessment
and grading with the classical means is extremely costly. A
typical approach is to use closed type questions in exams or
assignments so that grading can be done automatically. This
is highly unsatisfactory when, as part of a course, one would
like to evaluate the students’ ability of proving a mathe-
matical statement, or expressing their critical thinking over
an issue, or even demonstrating their creative writing skills.
Evaluating this ability is inherently a human computation
task [18].

An approach that has been proposed is to outsource the
grading task to the students participating in the exam or
assignent themselves; for example, they can be required to
grade (a small number of) their peers’ assignments as part
of their own assignment [9, 17, 27]. Of course, allowing the
students to grade using cardinal scores is risky; they are not
experienced in assessing their peers’ performance in abso-
lute terms and they may have strong incentives to assign low
scores to everybody in order to increase their own relative
success. An alternative that sounds feasible is to ask each
student to provide a ranking of a small number of her peers’
assignments and then compute a global ranking by merg-
ing the partial ones; this is known as ordinal peer grading
(e.g., see [28, 29]). Can this global ranking be in accordance
to the objective comparison of students in terms of their
performance in the assignment? Which are the necessary
methods for this computation? And how accurate can this
global ranking be? In this paper, we address these questions
and provide both conceptual and technical answers.

Merging individual rankings into a global one is the main
goal of voting rules from social choice theory, where a set of
voters provide full rankings over the available alternatives
and a voting rule has to transform this input into a winning
alternative or an aggregate ranking of the alternatives. At
first glance, ordinal peer grading seems to be a natural ap-
plication area for classical voting theory. Interestingly, its
particular characteristics deviate from those usually studied
in the voting literature. First, each voter is also an alterna-
tive. This is a rare assumption in social choice in works that
focus mostly on incentives issues (e.g., see [2, 15]). Second,
the input consists of partial rankings over small subsets of
alternatives. The closest such approach in social choice is
known as preference elicitation [8] where simple queries are



asked to each voter about their preferences; for example, in
top-k elicitation [12], each voter provides the partial ranking
of the k alternatives she likes the most. The (complexity)
effects of using only partial rankings in voting have been
studied under the possible and necessary winner problems
(e.g., see [16, 31]). An important characteristic of ordinal
peer grading is that the partial rankings have the same size
and that each assignment is given to the same number of
graders. And finally, there is an objective way to assess the
ordinal peer grading outcome by comparing it to the objec-
tive comparison of the students in terms of performance in
the assignment. This is close in spirit to recent approaches
that use voting in order to learn a ground truth [6, 7], such
as a winning alternative or an underlying true ranking. In
our work, we deviate from these studies as well since we aim
to learn the ground truth only approximately. So, ordinal
peer grading is a setting where ideas and analysis techniques
from human computation, voting, and learning are blended
together in novel ways.

In particular, our model uses a grading scheme that asks
each student to rank the assignments of k other students.
For fairness reasons, we restrict ourselves to grading schemes
that distribute each assignment to exactly k£ students. Un-
like recent studies [28, 29], we investigate the potential of
applying ordinal peer grading exclusively, i.e., without in-
volving any professionals in grading. We assume that there
is an underlying true (strict) ranking of the assignments (the
ground truth) and we would like to recover correctly an as
high as possible fraction of it using input from the students.
We have two scenarios that determine the input. In the first
one, we assume that, after the students have submitted their
assignments, the instructor announces indicative solutions
and grading instructions. Here, we make the simplifying as-
sumption that each student grades the assignments in her
bundle consistently to the ground truth (perfect grading).
In a second scenario that is also assumed in [28], we assume
that grading is performed without any guidance by the in-
structor. Here, the natural assumption is that the quality
of a student determines both her performance in the assign-
ment and her grading ability. We have mostly focused on
simple rank aggregation rules such as the adaptation of the
classical Borda count [5], where the partial ranking provided
by each grader is interpreted as follows: k points are given
to the assignment ranked first, £ —1 points to the one ranked
second, and so on. The global ranking is then computed by
ordering the assignments in decreasing order of these Borda
scores. We have also considered more aggregation rules (de-
scribed in detail in Sections 2 and 4).

Our technical contributions can be summarized as follows.
In Section 3, we present a theoretical analysis of Borda
when the partial rankings on input are consistent to the
ground truth. We prove that using any way to distribute
k assignments per student, Borda recovers correctly an ex-
pected fraction of 1 — O(1/Vk) of the pairwise relations in
the ground truth. If the distribution of the assignments has
some particularly desired simple structure, an even better
guarantee of 1 — O(1/k) is obtained. The independence of
these results from the number of students is rather surpris-
ing. Our proofs exploit the beautiful theory of martingales in
order to cope with dependencies between random variables
that are involved in the analysis. To the best of our knowl-
edge, this is the first application of martingales in social
choice. We also present extensive experiments with Borda
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and other aggregation rules (in Section 4). Our findings fur-
ther justify the robustness of Borda, even in the scenario
of imperfect grading. For example, Borda is shown to re-
cover more than 83% of the ground truth by distributing 8
assignments per student (with students having highly vary-
ing grading capabilities). Here, we borrow ideas from re-
cent studies on voting and learning (e.g., [6]) and use noise
models for the generation of random partial rankings whose
distance from the ground truth depends probabilistically on
the quality of the graders. En route, we provide some intu-
ition about the problem (in Section 2). We conclude with a
discussion of possible extensions of our work in Section 5.

2. PROBLEM STATEMENT, TERMINOL-
OGY AND NOTATION

Let A denote a universe of n elements. A collection B
of subsets of A is called a grading scheme with parameters
n and k < n (or (n,k)-grading scheme) if B consists of n
subsets of A called bundles, each bundle has size k, and
each element of A belongs to exactly k subsets of B. To
see the relation to peer grading, we can view the elements
of the universe A as the n papers of students participating
in an assignment. Each bundle contains k£ papers that will
be graded by a distinct student. Of course, we require that
no student will grade her own paper. This can be easily
achieved by a matching computation.®

Alternatively, we can represent the (n, k)-grading scheme
with a bipartite graph G = (U,V, E) which we will call
(n, k)-bundle graph. The set of nodes U has size n and con-
tains a distinct node for each element of A. The set of nodes
V has size n too and contains a node for each bundle of B.
The set of edges E contains an edge (u,v) connecting node
u € U with node v € V if and only if the element corre-
sponding to node u belongs to the bundle corresponding to
node v. Clearly, an (n, k)-bundle graph is k-regular. Actu-
ally, every k-regular bipartite graph has the same number
n of nodes in both bipartition sides and can bu used as an
(n, k)-bundle graph.

A partial ranking > associated with a bundle b € B is sim-
ply a ranking of the elements b contains. We remark that
> is undefined for elements not belonging to B. A profile
is simply the collection that contains the partial ranking >
for each bundle b of B. An aggregation rule takes as input
a profile of partial rankings and computes a complete rank-
ing of all elements. A typical example is the following rule
that extends Borda count from classical voting theory. Each
element gets a score from each appearance in a partial rank-
ing. The Borda score of an element is then the sum of the
scores from all partial rankings. Within each partial rank-
ing, a score of k is given to the element that is ranked first,
a score of k — 1 to the element that is ranked second, and so
on. The final complete ranking is computed by sorting the
elements in decreasing order in terms of their Borda scores.
We will use the term Borda to refer to this aggregation rule.?

Indeed, for every student ¢, there are n — k bundles that
do not contain her paper. Then, the bipartite graph that
represents the information about the bundles that a student
is allowed to grade is regular and, by Hall’s matching theo-
rem, has a perfect matching. This matching can be used to
assign bundles of papers to students.

2 A similar rule (see [22]) has been recently used by NSF for
evaluating research proposals.



Even though one can think of several different ways to re-
solve ties, we simply ignore ties in our theoretical analysis
and use uniformly random tie-breaking in our experiments.

We have also considered another aggregation rule which
we call Random Serial Dictatorship (RSD). The term is in-
spired by the well-known mechanism for house allocation
markets [1]. A complete ranking is computed gradually
starting from an initially empty one. In a first serial phase,
the partial rankings are considered in a random order. When
considering a partial ranking, we copy to the global one all
the pairwise relations that do not contradict (i.e., do not
form cycles with) relations copied earlier. When all partial
rankings have been considered, the global partial ranking is
augmented by the pairwise relations implied due to transi-
tivity (e.g., the pairwise relations = > y and y > z copied
from two partial rankings imply that = > z as well). Then,
we use a second random completion phase to complete the
global ranking as follows. In each step, we pick a random
pair of elements whose relation has not been decided so far.
We make this decision randomly and update all pairwise re-
lations that this decision and the existing ones imply due to
transitivity. We continue this way until all pairwise relations
have been decided.

We are now ready to give the statement of the problem
that we consider more formally. In general, we would like
to use the grading schemes and aggregation rules in order
to learn an unknown ground truth, i.e., a ranking of the ele-
ments representing their relative quality. A first question is
whether the ground truth can be learnt with certainty when
the partial rankings are consistent to it. In other words, we
ask for an order-revealing grading scheme (and a correspond-
ing order-revealing bundle graph) which defines the bundles
in such a way that the partial rankings contain enough infor-
mation so that all pairwise relations in the ground truth can
be recovered with certainty. Unfortunately, order-revealing
grading schemes have severe limitations. In particular, they
should have the following too demanding property: for every
pair of elements, there should be some bundle that contains
both of them.? Indeed, let B be an order-revealing grading
scheme over a universe A of n elements and assume that
there are two elements x and y so that no bundle contains
both « and y. Now, consider a ranking > that has « and
y in the first two positions and let =’ be the ranking that
differs from > only in the order of x and y. Clearly, the par-
tial rankings within the bundles are identical in both cases
and, as a result, there is no way to identify whether the
ground truth is the ranking >~ or the ranking =’. Notice
that the above property implies that RSD combined with
order-revealing grading schemes recovers the ground truth
with certainty (and does not have to run the random com-
pletion phase). This is not the case for Borda unless any
two elements co-exist in the same number of bundles (like
in the bundle graphs constructed below).

Clearly, since the overall number of pairs is n(n — 1)/2
and each bundle of size k includes k(k — 1) pairs, we need to
choose k large enough so that nk(k—1)/2 > n(n—1)/2. This
implies that order-revealing grading schemes should have
bundles of size (y/n). In sharp contrast to this disappoint-

3This property essentially asks for a k-regular bipartite
graph of diameter at most 3. The order-revealing bundle
graphs we present later in this section are the largest bipar-
tite graphs with the desired property; see [23] for a detailed
survey on the degree-diameter problem.
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ing observation, we will see that the goal of approximate
order-revealing grading schemes is a very feasible one and
leads to effective and scalable grading solutions in theory
and practice. Interestingly, many of our findings make use
of bundle graphs that are order-revealing; this is why we
have included the following explicit construction of order-
revealing grading schemes for particular values of the pa-
rameters n and k here.

Let p > 1 be a prime and let A be a universe with n =
p? +p+1 elements. We will construct the grading scheme B
in which each bundle has size exactly & = p+1. Observe that
these values for n and k satisfy the lower-bound condition
mentioned above with equality. Rename the elements of A
as A={u}U{vi|i =0,...,p—1} U{w; ;i =0,...,p—1,j =
0,...,p — 1} and define the bundles of B as follows:

o F = {u,v0,v1,...,;0p—1};
e Fori=0,...,p—1, R ={u} U{w;;|j =0,...0— 1}

e Fori=0,..,p—land s=0,..,p—1, Cis = {vs} U
{wj,(i+j-s) mod p‘] = Oa P 1}

Using basic facts from number theory, we can show that
the above construction yields an order-revealing grading
scheme. An order-revealing (7, 3)-bundle graph, constructed
using the above procedure (for p = 2), is depicted in Fig-
ure 1; it represents the following grading scheme B. The
underlying universe is A = {1,2,3,4,5,6,7} and B has the
following seven 3-sized bundles: {1,2,3}, {1,4,5}, {1,6,7},
{2,4,6}, {2,5,7}, {3,4,7}, and {3,5,6}. The numbering of
nodes in set V indicates an assignment of bundles to stu-
dents for grading and, hence, nodes with the same number
are not adjacent.

Figure 1: An order-revealing (7, 3)-bundle graph.

We now relax our requirements and seek an approximate
order-revealing grading scheme. Our aim is to use a bundle
graph of simple structure and of very low (i.e., independent
of n) degree and still be able to correctly recover a large
fraction of the (g) pairwise relations in the ground truth.
Our grading schemes will be randomized in the sense that
we will always randomly permute the elements before as-
sociating them to nodes of set U of the bundle graph; let
m : U — A denote this bijection (or permutation). Some-
times, in our experiments, the bundle graphs we use are
themselves random. Much of our work (i.e., our theoretical
analysis in Section 3 as well as the first among the two sets
of experiments reported in Section 4) has focused on the sce-
nario where the partial rankings are consistent to the ground
truth. Our second set of experiments in Section 4 uses par-
tial rankings that deviate from the ground truth according
to a noise model.



3. ANALYSIS OF BORDA

In this section, we present our theoretical results. We
assume that the (n, k)-bundle graph G = (U, V, E) has k > 3
and n > 3k(k—1)+2. These are technical assumptions that
do not affect the applicability of our results; recall that, in
practice, we would like n and k to be huge and very small,
respectively. Surprisingly, Borda correctly recovers a very
large fraction of the ground truth as the next statement
suggests.

THEOREM 1. When Borda is applied on partial rankings
that are consistent to the ground truth, the expected fraction
of correctly recovered pairwise relations is at least 1—O (1/k)
when the (n,k)-bundle graph has girth® at least 6, and at

least 1 — O (1/\/%) in general.

We prove this theorem by relating the performance of
Borda only to the degree k and on a quantity 7n(G) that
characterizes the structure of the bundle graph. For the
definition of (&), we need some notation; this will be heav-
ily used throughout this section. Given two nodes u, v of U,
we use Ay, to denote their common neighbourhood in V,
Le, Aduw = [N(u) N N(v)|. Observe that 3°, i\ 1) Auw =
k(k — 1) since G is k-regular. Also, we define the quantity
Ouw 88 Ou =43 (N (o) (o) Pz + Auz)”. Then,

1
“ o 2 Vo

u,veU

n(G)

where the sum runs over all ordered pairs of u,v in U.

Intuitively, the quantity n(G) is small when, on average,
the common neighbourhood between pairs of nodes is small.
The extreme case is when the common neighbourhood con-
sists of a single node; in this case, the graph has girth at
least 6. The next lemma (proof omitted) provides upper
bounds on n(G) that will be useful later.

LEMMA 2. For every k-regular bipartite graph G, n(G) <
k —1)(4k — 3). FEvery k-regular bipartite graph G of
girth at least 6 has n(G) < 4y/k(k —1).

The important step in the proof of Theorem 1 is to focus
on two elements a, and aq with ranks (positions) r < ¢ in the
ground truth and to bound from above the probability that
the difference in their Borda scores is inconsistent to their
rank difference. This will require to take care of several sub-
tle dependencies among the random variables involved. We
will do so by exploiting the beautiful theory of martingales
and a well-known tail inequality about them. The necessary
background from martingale theory is presented below; the
interested reader can refer to the textbooks [24] and [25] for
an introduction to martingales and their applications.

DEFINITION 1. A  sequence of random  variables
20,21, ..., Zm 1S a martingale with respect to a second
sequence of random wvariables X1, Xo, ..., Xy, if for every
= 1, e, it holds that E[ZZ|X1, ,Xl] = Zi—1~

The next definition provides a general way to define mar-
tingales associated with any random variable and was first
used by Doob [10].

4The girth of a graph is the length of its smallest cycle.
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DEFINITION 2. Consider a random variable W and a se-
quence of random variables X1, ..., X;mn. Then, the sequence
of random wvariables Zo, ..., Zy such that Zg = E[W] and
Z; = E[W|Xu,..., X;] for every i = 1,...,m is a martingale,
called a Doob martingale.

We can now present a powerful tail inequality for mar-
tingales that is known as Azuma-Hoeffding inequality (see
Azuma [4] and Hoeffding [14]).

LEMMA 3 (AZUMA-HOEFFDING INEQUALITY). Let
20,21, .... Zm be a martingale with |Z; — Zi—1| < ¢ for
i=1,....,m. Then, for all t > 0, it holds that

2
Pr[Zm — Zo < —t] < exp ( 35 cf) .

We are now ready to show that the probability that the
Borda score of a high-rank element is larger than the Borda
score of a low-rank element is small. Importantly, it turns
out that this probability decreases exponentially in terms
of the rank difference. We will first study such phenomena
under particular conditions on our bijection .

LEMMA 4. Let u,v € U, and consider the two elements
ar,aq € A with ranks v < q in the ground truth. Let Wy 4
be the random variable denoting the difference of the Borda
score of ar minus the Borda score of aq and let I'y%, be the
event that w(u) = a, and w(v) = aq. Then,

g—r—1

(k(k - 1) - )\u,v) + )\u,v

E [WrqT0%] —

and

E [W, | T7]?
Pr[W,,q <0|T3%] < exp <["|]> -

20,0

PROOF. We begin the proof by computing the expecta-
tion of the Borda scores. Element a, gets one point for each
bundle it belongs to plus one additional point for each ap-
pearance of an element with rank higher than r in the bun-
dles a, belongs to. Assuming that w(u) = a, and 7(v) = aq,
there are A, , appearances of a4 in the bundles of a, and
k(k — 1) — Au,» appearances of elements different than a,
and ag; each of them has probability ";731 to have higher
rank than r. Hence, the expected Borda score of element
ar is k+ (k(k — 1) = Auw) 2251 + Auo. Similarly, element
aq gets one point for each bundle it belongs to plus one
additional point for each appearance of an element with
rank higher than q. There are k(k — 1) — Ay, appear-
ances of elements different than a, and a4 in bundles of
aq and each of them has rank higher than ¢ with probabil-

n

ity 2=Z. Hence, the expected Borda score of element a, is
kE+ (k(k—1) — Auw) 2=4, and the expectation of the differ-

ence W, 4 is indeed

g—r—1
n—2

Given I'%, define S = N(N(u,v)) \ {u,v} to be the set
of nodes in G that are at distance exactly 2 from w or
v (not including w and v); notice that |S| < 2k(k — 1).
Now, consider an arbitrary ordering o : [|S|] — S of the
nodes of S and let X; be the random variable denoting the
rank of the element m(o(7)). Using the random variables X;
and the random variable W, 4, we define the Doob martin-
gale Zo, Z1, ..., Z|s) such that Zo = E [qu FZ”Z,} and Z; =

E [WT,Q\FZ:‘H (k(k—1) — Auw) + Ao




E [Wr7q|I’Z”Z,,X1, s Xi} (hence, given I'y%, Wi g = Zjg)).
The next technical lemma bounds the difference |Z; — Z;_1|
fori=1,...,15|

LEMMA 5. For every i =
Zi—1] <2 (Ausoi) + Avyo()) -

1,...,]S|, it holds that |Z; —

ProoF. Throughout this proof, all random variables and
probabilities are conditioned on the event I';;%, even if, in
order to simplify notation, we do not explicitly write so.

For every node w € S, denote by fu,v,w = |[N(u)NN(v)N
N (w)| the number of common neighbours between u, v, and
w. We can now express W, , using the following observa-
tions: the Borda score difference

e increases for each appearance of element a4 in the same
bundle with a.;

e increases for each appearance of element 7(0o(j)) in a
bundle containing a, but not a4 provided that the rank
of (o(7)) is higher than r;

e increases for each appearance of an element 7w(o(j)) in
a bundle containing both a, and a4 provided that the
rank of w(o(j)) is between r and g;

e decreases for each appearance of element 7(o(5)) in a
bundle containing a4 but not a, provided that the rank
of (o(7)) is higher than q.

Using our notation Ay,» and piy v,0(5), we have

IS|
W’r',q = )\u,v + Z ()\u,o(j) - ,u/u,v,o(j)) ]I{X] > T}
j=1
IS|
)t I{r < X; < ¢}
j=1
15|
=D (Mvro() = Huwoy) T{X; > g}
j=1
IS|
= )\u,v + Z ()\u,o(j)H{Xj > 7"} — )\v,o(j)H{Xj > q})
j=1

Denoting by X; the sequence X, ...,
difference |Z; — Z;—1] is

X, we have that the

Zi — Zi—a
|S]
= D o (Pr[X; > r|X] = Pr(X; > r[Xi1))
Jj=1
|S]
—> Moot (Pr[X; > X, = Pr(X; > X)) (1)
Jj=t

Once the values of X1, ..., X;_1 are determined, let x and y
be the number of available ranks from [n]\{r, ¢, X1, ..., Xi—1}
that are between r and ¢ and higher than ¢, respectively.
Hence, for j =1i,...,|S|, we have

T +y
Pr[X; X, q]=—"2
r[X; > 7| 1] m—i—1
Pr[X; > q|X; 1] = — 24—
J n—i—1’
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and for j =i+ 1,...,|S|, we have

z+y—I{X; >7“}

Pr[X; X,
X, > rix) = TR
I{x; >
Pr[X; > ¢|X,] = u
n—1i—2
Now, (1) yields
Tty
Zi — Zi—1 = Auoiy | I{X -
1 /\7()<{ >7‘} n_1_1>
_)\vo(') H{X1>q}_¢
oY n—1—1
15|
r+y-H{X;>r} x4y
A
+ Z "O(J)( n—1i—2 n—i—1
Jj=1i+1
+§/\ (y-I{Xi>q} oy
SN i n—i—1

r+y

) (]I{Xi >r}— m)

YL Ao

- (’\“"’(“ n—i—2

S Aot y
)\voi =i _H Xz
+< 0() — <n7i71 { >q}>

n—1i—2

The second and fourth parenthesis in the above expres-
sion are obviously between —1 and 1. Recall that
ZJ Zit1 Mo < k(k—1) and Z] —it1 o) < k(k—1).
Also, by the definition of S, Ay o(:) +Av,0) > 1, for every i =

.,|S|. Combined with our assumption that n > 3k(k —
1)+ 2, these properties imply that the first parenthesis is be-
tween —max{Ay o), 1} and max{\, (), 1}, and the third
one is between —max{\y o(:),1} and max{A, @), 1}. The
lemma follows since |max{A, o¢), 1} + max{A, oz, 1} <
2()\u,o(i) + A'u,o(i))- |

Lemma 4 then follows by applying the Azuma-Hoeffding
inequality (Lemma 3) with ¢ = E [W,4|I'%] and using
Lemma 5 to bound the difference |Z; — Z;_1|.

The proof of Theorem 1 can now be completed using Lem-
mas 2 and 4.

Proor OF THEOREM 1. Consider the pair of elements
with true ranks r and ¢ so that » < gq. The correct pairwise
relation between the two elements will be recovered when
the Borda score of the low-rank element is higher than the
Borda score of the high-rank one (there is the additional
case where the two elements are tied and the tie is resolve
in favour of the low-rank element but we will ignore this
case; this will only make our result stronger). Again, W, 4
will be the random variable denoting the difference between
the Borda scores of the low- and high-rank elements. Then,
by Lemma 4 the probability that the relation between the
elements with ranks r and ¢ is correctly recovered is

Pr(W, >0l =1— > (Pr[W,q < 0T34 PrT}])

w,velU
E [W, 474
21771 Zexp - [ al ]
n(n - 1) u,velU 29u,v
1oL 3T et

n(n B 1) u,velU



E(k—1)—Au o Auw

V26,0 V20u,0’
%. Now, denoting the expected number of correctly re-
covered pairwise relations by C, we have

n—1 n
C=>" > Pr[W,,>0

where S(u,v) , 0(u,v) = and y(t) =

r=1g=r+1
- —(B(u,v)y(g—r)+8(u,v))?
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We estimate the (Gaussian) integral with the inequality

Sy (@ =y)e= P’y < B2 /7 for B> 0 and § > 0
(its detailed proof is omitted), and use the facts B(u,v) =
k<k\;2} Auv < \/kg 2 and §(u,v) = \/)‘% to obtain
CZ ZBuv—!—(Su,v)\/;r
28(u,v)
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n(n —1) k-1
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Now, the theorem follows by Lemma 2. Recall that n(G)
is at most k — 1)(4k — 3) for every k-regular bipartite

graph G and at most 41/k(k — 1) when G has girth at least
6. Using the assumption that £ > 3, we obtain that the

rightmost parenthesis in the above expression becomes at

leastlfmandlf% O

TE , respectively.

4. EXPERIMENTAL EVALUATION

We now describe two sets of experiments that we have
conducted.® In the first one, we have studied perfect grad-
ing with Borda and RSD. We have considered three different
types of bundle graphs. The first type is that of random k-
regular bipartite graphs. We build these graphs by picking
k perfect matchings in the complete bipartite graph K, as
follows. For each node of K, ,, in —say— the upper node side,
we select one edge among its incident ones uniformly at ran-
dom. We remove this edge from Ky, and continue for the
remaining nodes; this defines a random perfect matching.
We repeat the above procedure k times. If a node at the up-
per side becomes isolated before the completion of the above
procedure, we repeat from scratch. Otherwise, the set of
edges that have been removed constitutes the bundle graph.
The second type of graphs consists of many components of
small girth-6 graphs. For k = p + 1, where p is a prime, we
use the k-regular bipartite graph with k% — k + 1 nodes per

SAll experiments have been conducted in an Intel 12-core
i7 machine with 32Gb of RAM running Windows 7. Our
methods have been implemented in Matlab R2013a.
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side whose construction is described in Section 2 and cor-
responds to an order-revealing grading scheme. The bundle
graph consists of multiple disconnected copies of this graph.
Similarly, the third type of bundle graphs contains copies
of the complete bipartite graph Ky, (possibly, containing
one small non-complete k-regular bipartite graph if k does
not divide n). The selection of highly disconnected bundle
graphs is intentional; these graphs are in a sense extreme
(within their category) and can challenge our methods.

Table 1 depicts the data (percentage of correctly recovered
pairwise relations) from the execution of Borda and RSD on
18 distinct triplets of graph type and values® for the param-
eters n and k. The data in the column labelled “random
k-regular” show the average performance of Borda and RSD
using 50 random bundle graphs. A different random per-
mutation is used each time in order to assign elements to
nodes. For graphs of the second and third type, one graph
is used for each pair of values for n and k. For example,
the data entries in the columns labeled “girth-6” and “copies
of Ki,1” in the line with £ = 3 and n = 1001 correspond
to the performance of Borda and RSD on a girth-6 bundle
graph which consists of 143 copies of the (7, 3)-bundle graph
of Figure 1, and on a third-type graph that consists of 332
copies of K33 and one more 3-regular graph with 5 nodes
per side. Again, the data are average performance values
from 50 executions; in each execution, a different random
assignment of the elements to the nodes of the bundle graph
is used.

The results for Borda complement our theoretical analy-
sis from Section 3. Indeed, the Borda-columns with bundle
graphs of the second and third type indicate that the fraction
of correctly recovered pairwise relations follows patterns of
1—O(1/k) and 1 —O(1/v'k), respectively. Interestingly, the
constants hidden in the O notation are significantly smaller
than the theoretical constants 16v/37 and 48\/%, respec-
tively. The results from the execution of Borda on random
bundle graphs shows a pattern of 1 — O(1/k) as well, albeit
with a slightly higher constant hidden in the O notation.
We believe that this can be proved by extending our anal-
ysis in Section 3. Even though we have not managed to
prove that the quantity 7(G) is O(k?) for these graphs, we
strongly believe that this is the case.

RSD has poor performance on bundle graphs of the sec-
ond and third type. This can be easily explained by recalling
that these bundle graphs consist of small connected compo-
nents. Even though all pairwise relations between elements
assigned to nodes of the same component are correctly re-
covered, the vast majority of the pairwise relations are be-
tween elements that are assigned to different components.
The probability that such a relation will be recovered cor-
rectly is only 1/2. This explains the small percentages in
the second and third RSD-columns.

In contrast, the first RSD-column (for random bundle
graphs) shows a very interesting pattern. RSD is clearly
worse than Borda for values of k up to 4 and becomes better
as k increases further. Actually, this is more apparent in Fig-
ure 2 where Borda and RSD are compared in (n, k)-bundle
graphs for all values of k from 2 up to 25 (and n = 1000).

5Tn all experiments reported here, n equals or is very close
to 1000. This is because the results are essentially identical
when significantly higher values of n are used (up to 10, 000)
and since the value of 1000 has allowed us to complete our
experiments in a reasonable time frame.



graph random k-regular girth-6 copies of Kj i
k n Borda RSD Borda RSD | Borda RSD
2 1002 | 73.3 62.7 73.5  60.3 | 66.8 56.8
3 1001 83.0 77.2 83.2 66.0 73.1 60.2
4 1001 | 875 86.8 87.7 68.7 | T7.1 62.2
6 1023 92.0 94.6 92.1 72.7 81.6 65.2
8 1026 94.2 97.2 94.1 72.8 84.3 66.5
12 1064 96.3 98.9 96.6 76.0 87.3 68.5

Table 1: Performance of Borda and RSD with perfect grading on different bundle graphs of similar size.

Each data point in Figure 2 corresponds to the average per-
formance among 50 executions. Here, we can again recog-
nize the 1 — O(1/k) pattern for Borda that was observed in
Table 1 and we further conjecture an even better pattern
of 1 — O(1/k?) for RSD. Proving such a statement formally
seems to be a challenging task.

fraction of correct pairwise relations

0.654 —O— Borda ||
—*— RSD

0.6 -
10 15 20 25
bundle size

Figure 2: Borda vs. RSD with perfect grading and bundle
size ranging from 2 to 25.

In a second set of experiments, we have studied imperfect
grading. Now, we do not assume that the partial rankings
are consistent to the ground truth any more. Instead, we
have implemented generators of noisy rankings that may
differ from the ground truth. In particular, we assume that
each student has a quality that affects her position in the
ground truth but also her ability to grade. First, the ground
truth is the ranking of the elements in decreasing order of
quality. Then, the ability of a student to rank the elements
in a bundle depends on her quality ¢ and is modelled by
the following process. For every pair of elements a and b
in the bundle that is ranked as a > b in the ground truth,
decide the correct pairwise relation with probability ¢ and
the opposite relation with probability 1 — ¢. If this process
creates a circular pairwise relation, we repeat the whole pro-
cess from scratch. Otherwise, the output induces a ranking
in the obvious way; this ranking is the one computed by the
student. Clearly, a student of quality 1 will always produce
a ranking that is consistent to the ground truth while a stu-
dent of quality 1/2 will produce a totally random ranking.
This model was proposed by Condorcet in the 18th century;
today, it is known as the Mallows model [21].

In our experiments, we use different noise levels that in-
dicate the range of student qualities. For example, a noise
level of 30% means that the qualities of the students are
drawn uniformly at random from the interval [0.7,1]. We
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use random bundle graphs for different values of k£ and be-
sides Borda and RSD, we have also consider Markov chain-
based aggregation methods. Dwork et al. [11] have studied
a series of such methods; we describe the most powerful
among them (even though we have experimented with a lot
of variations of all the methods presented in [11]), which is
known as MC4. MC4 defines a Markov chain (or random
walk) over the elements and ranks them in decreasing order
of their probabilities in the stationary distribution of this
chain. The transition matrix of the Markov chain is defined
as follows: when at an element a, pick an element b uni-
formly at random; if the number of partial rankings where
b is ranked above a is higher than the number of partial
rankings where a is ranked above b, we have a transition to
element b, otherwise we stay with element a.

Table 2 presents experimental data from the execution of
Borda, RSD, and MC4 with random bundles for different
values of the bundle size parameter and noise levels ranging
from 50% to perfect grading. RSD has poor performance for
high noise levels and small values of k. For non-zero noise
levels, Borda has the best performance. MC4 and RSD are
good choices only in the case of perfect grading, with RSD
outperforming MC4 for the high values of kK = 8 and 12.
Overall, our experiments suggest that Borda is extremely
robust. Note that there are some values missing from Table
2; this is due to the (exponential-time) implementation of
Mallows generator which “takes forever” to come up with a
set of non-circular pairwise relations that induces a ranking,
when both k and the noise level are high.

We conclude by examining how sharply concentrated
around the expectations the outcomes of the above experi-
ments are. In Figure 3, we have plotted the fractions of cor-
rectly recovered pairwise relations obtained by Borda and
RSD in the two extreme cases of perfect grading and noise
level of 50%. Each figure contains data from 500 executions
(a random bundle graph and a random element-to-node as-
signment defines each execution) with n = 1000 and k = 8.
The spread of fractions of correctly recovered pairwise rela-
tions achieved by Borda is almost the same in both cases. In
contrast, RSD has a very high spread when the noise level
is high (observe the long and narrow form of the left plot in
Figure 3) while it is only marginally better than Borda in
the perfect grading case. In conclusion, Borda appears to
be robust with respect to this metric as well.

5. DISCUSSION

Let us conclude by discussing possible future directions.
Even though our analysis of Borda is targeted to the perfect
grading case, we believe that our martingale-based argu-
ments could be extended to handle imperfect grading under



k=5 k=28 k=12

noise level | Borda RSD MC4 | Borda RSD MC4 | Borda  RSD MC4
50 81.6 70.2 784 88.3 74.0 843 | #H#.H HH#H  HH&tHA
10 819 751 812 | 9.1 80.1 865 | #H.# HHEH# HH#
30 87.1 80.0 83.7 92.6 85.4  88.3 | HH.H HHH# HHtH
20 88.6 84.2  86.0 93.5 89.6 89.8 95.5 92.2 92.6
10 89.6 88.4  88.8 93.9 93.2 91.2 96.1 95.7 93.6
0 90.4 92.0 92.7 94.2 97.2 96.4 96.2 98.9 97.8

Table 2: Performance of Borda, RSD, and MC4 with random bundle graphs of size 1000 and noise levels ranging from 50%

to perfect grading.

(a) noise level of 50%

91

g

Borda

871

86

85 I I I I I I )
72

Borda

(b) perfect grading
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94,6
9451
94.4f
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94t

93.9r
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Figure 3: A comparison of Borda and RSD in 500 executions for two different noise levels (n = 1000, k = 8).

the Mallows noise model that we use in our experiments.
This requires taking care of even more dependencies but we
are confident that martingale theory will be useful here as
well. We plan to extend our analysis in this direction in
follow-up work.

Besides Borda, we have attempted a theoretical analysis of
RSD as well. Here, our starting point has been to exploit the
developments in the degree/diameter problem [23] and use
a diameter-5 low-degree bipartite graph as a bundle graph.
The important property this graph has is that for every pair
of nodes u and v of the node set U, these nodes either have
a common neighbour in V or there is another (intermedi-
ate) node z in U that has a common neighbour with u and
another common neighbour with v. Hence, in the perfect
grading case, the pairwise relation between the elements a
and b that are assigned to nodes u and v can be indirectly
learnt during the serial phase through the pairwise relations
of a and b with the element c that is assigned to node z, pro-
vided that c is ranked between a and b in the true ranking.
Furthermore, if the bundle graph had more than one disjoint
paths between any pair of nodes in U (and more than one
intermediates for any pair of nodes), the probability that the
relation between two elements can be learnt correctly would
be very high, provided that these elements have a relatively
large rank difference in the true ranking. Unfortunately,
even though some theoretical guarantees can indeed be for-
mally proved in this way, the bundle graphs required have
degree that strongly depends on the number of elements.
So, this approach fails to explain the performance of RSD
that we observed experimentally. Instead, one should rea-
son about pairwise relations that can be learnt indirectly
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through long chains of intermediate elements.
such arguments seems elusive at this point.

In our experimental work, we have implemented and
tested many more aggregation rules than the ones presented
in Section 4. These include rules that put more weight on
the partial rankings of low-rank (i.e., good) students. Such
rules are usually defined using Markov chains that are vari-
ations of PageRank [26] (such as the PeerRank method in
[30]), where the idea is that the confidence about the quality
of a student depends on the performance of her graders (and
this is reflected in the definition of the transition matrix of
the Markov chain). Unfortunately, we have not observed
any significant improvement compared to the rules consid-
ered in Section 4. We believe that this can be explained by
the fact that k is a small constant.

In future work, we would also like to consider more re-
alistic noise models that generalize Mallows (see, e.g., [13,
20, 28]) and ranking models that are inherently associated
with cardinal utilities such as the generalized random utility
model of Azari Soufiani et al. [3] (see also the book of [19]).
Of course, it is important to perform real-world experiments
(with students in the classroom or with participants in real
MOOCs, if possible) in order to justify our methods and
determine the noise model that is closest to practice.

Exploiting
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