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ABSTRACT
We study multiple referenda and committee elections, when the
ballot of each voter is simply a set of approved binary issues (or
candidates). Two well-known rules under this model are the com-
monly used candidate-wise majority, also called the minisum rule,
as well as the minimax rule. In the former, the elected committee
consists of the candidates approved by a majority of voters, whereas
the latter picks a committee minimizing the maximum Hamming
distance to all ballots.

As these rules are in some ways extreme points in the whole
spectrum of solutions, we consider a general family of rules, using
the Ordered Weighted Averaging (OWA) operators. Each rule is
parameterized by a weight vector, showing the importance of the
i-th highest Hamming distance of the outcome to the voters. The
objective then is to minimize the weighted sum of the (ordered)
distances. We study mostly computational, but also manipulability
properties for this family. We first exhibit that for many rules, it is
NP-hard to find a winning committee. We then proceed to identify
cases where the problem is either efficiently solvable, or approx-
imable with a small approximation factor. Finally, we investigate
the issue of manipulating such rules and provide conditions that
make this possible.
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1. INTRODUCTION
Multiple referenda (making a collective decision over several bi-

nary propositions) and committee elections (electing several win-
ners out of a set of candidates) are two similar problems, though
they are generally studied apart. In both cases, the voters have to
decide about a common truth value for each proposition (accept or
reject), or for each candidate (elect or do not elect). Both cases
may also present some constraints on the set of feasible combined
decisions. For example, the number of persons elected in a com-
mittee may be subject to cardinality constraints (e.g., the committee
should be of size exactly 6 or between 6 and 10).

Let us start with a detailed example. Five coauthors of a paper
have to decide about whether they should use Dropbox (d or d),
whether they should have a physical meeting (m or m), whether
they should work more and prove more results before submission
(w or w) and whether they should tick the “possibly accept as short
paper” box (a or ā). Here are their votes (where, for instance, the 1
in the cell (A1, d) means that A1 votes in favor of using Dropbox).

d m w a
A1 1 1 0 0
A2 0 1 0 0
A3 1 0 0 1
A4 1 1 1 0
A5 0 0 1 1

A proposition-wise majority vote would give 1100 as the col-
lective decision. Is this a fair decision? Arguably not: A5 will
complain that everything was decided against her will, which can
be considered unfair for such a small set of voters. A more fair
solution, proposed in the context of committee elections by [5], is
minimax approval voting: the winning committee is the one mini-
mizing the maximum Hamming distance to all votes (after possibly
applying a tie-breaking rule). Applying this to our example would
rule out 1100 (with a distance of 4 to A5), and the winning deci-
sion would be one among the committees 1111, 1110, 1101, 0111,
1010, 1001, 0101, 1000, 0100 and 0010.

Minimax approval voting does make decisions that are more fair
in the Rawlsian sense, assuming that the utility an agent draws from
a decision decreases linearly with the Hamming distance from her
optimal decision. However, there are some objections to this rule,
which we review below.

The first objection is computational complexity: finding an op-
timal subset is NP-hard [10]. These bad news are tempered by
the fact that there are efficient approximation algorithms (a PTAS
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in [21], and more recently, for the cardinality constrained case, a
factor of 3 in [20], 2 in [7] and a PTAS in [6]).

The second and most important objection has to do with the ex-
treme nature of the rule. The agent with the worst utility (the largest
distance) may have a huge influence, even if everyone else agrees.
Assume that instead of 5 voters we now have 21 voters: twenty
unanimously vote 1100, and the twenty-first is A5, who again votes
0011. Minimax approval voting will output one of 1010, 0110,
1001, 1010, 0000 or 1111, with everyone at Hamming distance 2
from the outcome; A5, preventing the otherwise unanimous deci-
sion 1100 to be taken, can be seen as having too much influence.
In a large population of voters, it is to be expected that there will be
voters with opposite preferences. This perhaps means that minimax
approval voting is tailored only for very small electorates, where
this phenomenon is less likely to occur (at least not in such a dras-
tic way). Related to this objection, it is well-known that minimax
approval voting is not strategyproof [20]; we do not view this as an
objection, since unless we impose strong domain restrictions, find-
ing strategyproof ways of making collective decisions is hopeless.
But what is specific to minimax approval voting is that the tremen-
dous influence of the least happy voter may give to his potential
manipulative votes a huge impact.

Our last objection has to do with the decisive power of the rule.
As we have seen in our two examples, these decisions may be fair,
but the set of winning committees (before applying a tie-breaking
rule) can be very large, and indeed, a drawback of minimax ap-
proval voting applied to a small number of voters and propositions
is its indecisiveness. We would like to have rules where it is more
likely to have a unique outcome without the need for tie-breaking.
Contribution: The aim of this paper is to show that we can rem-
edy the second objection without making things worse in terms of
computational complexity. We believe the last objection is also
less likely to occur under the proposed framework. To achieve this,
we consider a family of voting rules which generalizes the mini-
max rule, as well as the standard commonly used rule, referred to
as minisum, that outputs all candidates approved by a majority of
voters. Our general setting makes use of Ordered Weighted Aver-
aging operators (in short, OWA) [30]. Each such operator weighs
appropriately the distances of a decision to the votes according to
the rank they have if we order them from largest to smallest. Here
we take the Hamming distance as our distance function. As an
example, minimax approval voting would correspond to the weight
vector (1, 0, . . . , 0), since we only care for the maximum Hamming
distance and all other distances have weight 0. In minisum approval
voting, all distances have equal weights, and this would correspond
to (1/n, . . . , 1/n) for a population of n voters. Between minimax
and minisum, we have a continuum of rules which are parameter-
ized by the vector of weights, and that can be fine-tuned according
to the application domain.

Given this framework, our study mainly focuses on the complex-
ity of computing a winning committee, given a weight vector of an
OWA operator. We first establish various NP-completeness results,
showing that even for vectors that may slightly differ from minisum
(for which a winning committee can be computed efficiently) the
problem is NP-complete. We next identify some families of vec-
tors where we can have polynomial time exact algorithms and then
moving on, we design approximation algorithms based on Linear
Programming for some of the NP-complete families. We also in-
vestigate the performance of the minisum algorithm with regard to
its approximation quality for an OWA operator. We show that this
achieves a constant approximation factor in most interesting cases,
degrading smoothly for vectors that move away from minisum. Fi-
nally, we consider the issue of manipulating such elections. It is

already known that the minimax rule is manipulable and we extend
this result to other OWA operators as well.
Related Work: Two recent works use OWA operators in a voting
context, namely [12] and [28]. The work of [12] generalizes posi-
tional scoring rules by weighing scores according to their rank in
the ordered list of scores obtained by the candidate from the votes.
The work of [28] generalizes Chamberlin and Courant’s propor-
tional representation rule, with the score of a committee being the
sum of the individual scores it obtains from different voters. The
individual score obtained by a committee from a vote is computed
by weighing the scores of the members of the committee by their
rank in the list of scores given to them by the voter. The latter work
is the most closely related work to ours, since they also deal with
multiwinner elections; where our models strongly depart is that in
their model, the weights bear on the scores obtained by various can-
didates (or items) and not (like in our model and also in [12]) on
the scores obtained for different voters.

Another related series of works is [15, 8], who study the prop-
erties of propositionwise majority (or minisum) under the assump-
tion that agents have Hamming-induced preferences: for instance,
under this assumption, they show that the outcome of proposition-
wise majority cannot be Pareto-dominated and that it belongs to the
top cycle (a fortiori, propositionwise majority voting is Condorcet-
consistent). Finally, the computational aspects of minimax approval
voting have been studied in [20, 7, 6], and the computational as-
pects of other multiwinner voting rules based on approval ballots
in [25, 24, 2].

Minimax approval voting has also been proposed independently
(and earlier) in [14], under the name “egalitarian merging”. Fur-
thermore, it has been used (much more recently) in judgment ag-
gregation [16]. We believe that although minimax approval voting
was defined in the context of committee elections, it also makes
sense (and perhaps even more so) in the context of multiple refer-
enda. It can be further applicable in “budgeted social choice” where
the goal is to choose a collective set of items subject to budget con-
straints [22], as it offers a more egalitarian way of making choices
than existing methods.
Outline: In the rest of the paper we consider two versions of ap-
proval voting elections: one where there is a constraint on the
size of the committee (or equivalently, on the number of proposi-
tions accepted), and one without any constraints. Cardinality con-
straints clearly make sense in committee elections, in budgeted so-
cial choice, and also in multiple referenda when accepted proposi-
tions imply a cost (such as the decision of building or not each of
a set of common facilities); The outline of the paper is as follows.
In Section 2 we formally define our general framework. Then we
address computational issues for various choices of OWA opera-
tors. We show in Section 3 that NP-hardness holds in most cases.
In Section 4 we give positive results; specifically, we identify cases
where the problem is either efficiently solvable or approximable
with a small approximation factor. Finally, in Section 5, we show
that, unsurprisingly, our rules are manipulable in most interesting
cases; in fact, we do not know of any strategyproof rule in our fam-
ily, other than minisum. Finally, we give several research directions
in Section 6.

2. DEFINITIONS AND NOTATION
In the setting we consider, each voter casts a ballot consisting

of a subset of candidates or issues. The two main applications we
have in mind are approval-based committee elections and multiple
referenda. In approval-based committee elections, a voter’s ballot
expresses his approval for a subset of the candidates under consid-
eration. In multiple referenda, it expresses the binary issues which
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the voter wishes to see adopted. Our setting applies to yet other
domains too, such as the selection of a common set of objects. To
avoid repetitions, we define all the relevant notions using the ter-
minology of approval-based committee elections, but everything
transfers to multiple referenda by replacing “candidates” by issues,
and “committees” by “bundles of issues”. A uniform view of mul-
tiple referenda and multiwinner elections (and a review of existing
approaches), under the general umbrella of voting over combinato-
rial domains, can be found in [17].

We use n to denote the number of voters and m to denote the
number of candidates. We denote the set of voters by N , and the
set of candidates by A. An approval ballot simply specifies a subset
of A, i.e., the subset of candidates that a voter approves. A voting
profile P is a tuple P = (P1, ..., Pn), where Pi ⊆ A denotes the
preference of voter i. Note that we can also represent the prefer-
ences of voters as binary vectors in {0, 1}m, where the 1s indicate
approvals. We will mostly stick to the set representation, but when
convenient, we will also switch to the binary vector representation
(as in Section 5). Under this notation, an election is specified by a
tuple (N,A, P ).

There are several ways of using approval voting for committee
elections; see [13] for a review. Arguably the most commonly
used method (referred to as minisum) consists of electing the k
candidates approved most often or, if we have no cardinality con-
straint, the candidates that are approved by a majority of voters.
Another interesting method that has attracted some attention is min-
imax approval voting. To describe this, we first define the Ham-
ming distance between two ballots Q and T , as their symmetric
difference, i.e., the total number of candidates in which they dif-
fer: dH(Q,T ) = |Q \ T | + |T \ Q| = |Q| + |T | − 2|Q ∩ T |.
Minimax approval voting [5] selects a committee S that minimizes
maxi∈N dH(S, Pi). Note that replacing max by sum in this quan-
tity leads back to the standard multi-winner approval rule (hence
the name “minisum” – see [5]).

We now introduce a family of voting rules that generalize the
minisum and the minimax rules. For this, we use Ordered Weighted
Averaging Operators (OWA) [30]. Each rule in this family is spec-
ified by a weight vector and selects the outcome that minimizes the
weighted sum of Hamming distances, after ordering them in non-
ascending order. To be more precise, given a preference profile for
n voters, P = (P1, ..., Pn), and a subset of candidates S, we let
H(P, S) be the n-dimensional vector that contains the Hamming
distances of the Pis from S in nonascending order. Let now w =
{wn}n∈N, be a collection of weight vectors such that for every
number of voters n ∈ N, wn = (wn(1),wn(2), . . . ,wn(n)) ∈
[0, 1]n and the coordinates of wn sum up to 1. Here wn(i) is the
weight attached to the i-th largest Hamming distance of the selected
outcome to the n voters. The voting rule then, which we refer to as
w-Approval Voting, or in short w-AV, is as follows:
w-AV: Given an election (N,A, P ) with n voters, select a subset

of candidates S, so as to minimize the dot product wn·H(P, S).
In some settings, such as committee elections, the subset of can-

didates to be elected has to be of a certain size. In that case, we are
interested in the following variant:
(k,w)-AV: Given an election (N,A, P ) with n voters, and an

integer k, select a subset of candidates S, with |S| = k, so as to
minimize the dot product wn·H(P, S).

For the decision version of the above problems, we are also given
a parameter α ∈ Q, and we ask whether there exists a set of candi-
dates S, such that wn·H(P, S) ≤ α.

Notice that w-AV is a generalization of both the minisum and
the minimax rules in approval voting (resp. k-minisum and k-
minimax when the committee size is restricted). Indeed, let MIN-

ISUM (resp. k-MINISUM) denote the problem of finding the com-
mittee that minimizes the sum of the Hamming distances. Then,
this is equivalent to w-AV (resp. (k,w)-AV) for wn = (1/n, 1/n,
. . . , 1/n). Similarly, let MINIMAX and k-MINIMAX denote the
problems of minimizing the maximum Hamming distance. For
wn = (1, 0, . . . , 0), these are equivalent to w-AV and (k,w)-AV.

EXAMPLE 1. Consider again our introductory example. Recall
that minisum selects 1100 and that minimax selects a committee
such that maxi=1...5 dH(S, Pi) = 3. Consider the vector w =
( 6
16
, 4
16
, 3
16
, 2
16
, 1
16
), which can be seen as a hybrid of minisum

and minimax. w-AV winning committees are 1000 and 1101, with
H(P, 1000) = H(P, 1101) = (3, 2, 2, 2, 1) and w·H(P, 1000) =
w5·H(P, 1101) = ( 6

16
·3)+( 4

16
·2)+( 3

16
·2)+( 2

16
·2)+( 1

16
·1) =

35
16

. Now, if we add the constraint that the winning committee(s)
should have cardinality 2, then the (2,w)-AV winning committee
is 1001, with w·H(P, 1001) = 36

16
.

In most of the paper we focus on OWA vectors that are nonin-
creasing. This nonincreasingness condition is classical in the study
of OWAs, because it corresponds to a fairness criterion: the higher
a voter in the ordered list (across all voters) of Hamming distances
between her preferred committee Pi and a possible output commit-
tee S, the more she counts for evaluating the quality of S. Among
the family of nonincreasing OWA vectors, we find, at two extrem-
ities, (1, 0, . . . , 0) corresponding to MINIMAX , and (1, 1, . . . , 1)
corresponding to MINISUM. Arguably, MINIMAX is the fairest,
and MINISUM the less fair, in this family of rules corresponding to
nonincreasing vectors, with a continuum inbetween.

3. HARDNESS RESULTS
We already know that the decision versions of w-AV and (k,w)-

AV are NP-complete, since they are generalizations of MINIMAX
and k-MINIMAX, which correspond to wn = (1, 0, · · · , 0). The
interesting and intriguing question is to understand for what choices
of w we would still have NP-hardness. We know for example that
for wn = (1/n, 1/n, · · · , 1/n), the problem is efficiently solv-
able. We investigate this question further in this section.

3.1 Hardness of w-AV
An interesting family of vectors is the family f i defined by f in =

( 1
n−i

, . . . , 1
n−i

, 0, . . . , 0), where i is the number of 0’s, for i =
0, . . . , n − 1; this family ranges from minisum approval voting
(corresponding to f0) to minimax approval voting (corresponding
to fn−1). It is a subfamily of nonincreasing (and thus, fair) vectors.
In the sequel, i can sometimes be a function of the number of voters
in the instance at hand.

We will prove that finding a winning committee for f i-AV is
NP-hard, for a large range of values for i. This shows that NP-
hardness remains as we slowly move away from MINIMAX and
is still present even if we come relatively close to MINISUM. To
prove it, we will study the decision version of f i-AV and show that
it is NP-complete. Our hardness result holds even for the special
case of balanced elections, where all the candidates are approved
by exactly half of the voters.

We first start with MINIMAX, i.e., with fn−1-AV, which we know
already that it is NP-hard [10]. We prove that MINIMAX remains
NP-hard, even when restricted to balanced elections. The proof
(which we omit due to space restrictions) is based on a reduc-
tion from a balanced variant of 3-SAT, which is known to be NP-
complete [4].

THEOREM 1. The decision version of MINIMAX is NP-complete,
even when restricted to balanced elections.
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Before we continue, we remark that in general the parameter i
in f i-AV can be a function of the number of voters, n, i.e., i :=
i(n) : N → N. For the sake of readability we will write simply
i instead of i(n) in the statements of results. We can now show
the following hardness result, using a reduction from MINIMAX on
balanced elections.

THEOREM 2. For any constant c, and any 1 ≤ i ≤ n1−1/c, the
decision version for fn−i-AV is NP-complete, even when restricted
to balanced elections.

Finally, we also show that even when we come close to MIN-
ISUM, f i-AV is intractable.

THEOREM 3. For any constant c, and any i, with 1 ≤ i ≤
n1−1/c, the decision version for f i-AV is NP-complete, even when
restricted to balanced elections.

PROOF. First, the problem is clearly in NP. The hardness proof
is based on a reduction from the decision version of fn−i-AV to
the decision version of f i-AV, for any 1 ≤ i ≤ n − 1. Consider a
balanced election E for fn−i-AV, E = (N,A, P ), and a constant
α. We construct a balanced election E′ for f i-AV with N ′ = N ,
A′ = A, P ′ = P̄ = (P̄1, . . . , P̄n) and α′ = m(n−2i)

2(n−i)
+ i

n−i
α;

here P̄i denotes A \Pi. Let n = |N | = |N ′| and m = |A| = |A′|.
It is easy to see that E′ remains balanced since P ′ is the comple-
mentary profile of P , i.e. the profile composed of the complemen-
tary ballots of P . We claim that the election E is a yes instance for
fn−i-AV if and only if E′ is a yes instance for f i-AV. To prove it,
we will study the fn−i-AV score of a committee C for E, which is
fn−i
n ·H(P,C), in comparison to its f i-AV score for E′, which is
f in·H(P̄ , C). Consider a committee C ⊆ A. Since E is a balanced
election, each candidate (belonging to C or not) increases the min-
isum score of C by n

2
. Thus, the minisum score of any committee

C has the same value and is equal to mn
2

. The minisum score can
be expressed as follows:

minisum(C,P ) =

n∑
k=1

H(P,C)k =

i∑
k=1

H(P,C)k +

n∑
k=i+1

H(P,C)k

where H(P,C)k is the k-th largest Hamming distance of a voter
from C. This is equivalent to:

mn

2
= i · fn−i

n ·H(P,C) +
n∑

k=i+1

H(P,C)k. (1)

In addition, given an approval ballot Pk of a voter k ∈ N , we
know that

dH(C,Pk) = m− dH(C, P̄k),

since P̄k is the complement of preference Pk. This implies:

n∑
k=i+1

H(P,C)k =

n−i∑
k=1

(m−H(P̄ , C)k),

because voters corresponding to the first coordinates of H(P,C)
will correspond to the last coordinates of H(P̄ , C). Thus, we have:

n∑
k=i+1

H(P,C)k = (n− i)m− (n− i) · f in·H(P̄ , C), (2)

Then, from Equations (1) and (2), we obtain:
mn

2
= i · fn−i

n ·H(P,C) + (n− i)m− (n− i) · f in·H(P̄ , C) ,

which is equivalent to:

f in·H(P̄ , C) =
m(n− 2i)

2(n− i)
+

i

n− i
fn−i
n ·H(P,C) .

Hence, the fn−i-AV instance has a solution with score at most α if
and only if the f i-AV has a solution with score at most α′.

A related question is the complexity of outputting all winning
committees for f i-AV. We remark that clearly, for minisum with an
even number of voters, the number of such committees can be ex-
ponential in the number of candidates (consider an election where
all the candidates are approved by half of the voters; then all the
committees are winning committees). On the other hand, with an
odd number of voters, there are no candidates approved by exactly
half of the voters, hence there is exactly one winning committee.
Interestingly, this observation does not extend to f i-AV for i ≥ 1.

PROPOSITION 4. For any i ≥ 1, and under f i-AV, there exists a
collection of elections such that the number of winning committees
is exponential in the number of candidates, even when n is odd.

We conclude this subsection with another interesting family of
vectors. Namely, we denote by mi-AV the rule defined by mi

n =
(0, . . . , 0, 1, 0 . . . , 0), where the 1 is at position i, for i = 1, . . . , n;
this family corresponds to the median operators, and ranges from
the minimax solution (corresponding to m1) to the minimin so-
lution (corresponding to mn). The problem of finding a winning
committee for mn-AV is polynomial, since it is sufficient to choose
any one of the Pis to obtain a winning committee. But the decision
version of mi-AV is NP-complete for a wide range of values:

THEOREM 5. For any constant c, and any i, with 1 ≤ i ≤
n1−1/c, the decision version for mi-AV is NP-complete.

Furthermore, we have a hardness result when i is equal to n/2.

THEOREM 6. The decision version of mn/2-AV is NP-complete.

3.2 Hardness of (k,w)-AV
We now move to the version where the size of the committee is

restricted to be of a certain size. Note that an NP-hardness result
for w-AV only implies a Turing reduction for (k,w)-AV. We are
not aware of any way in which hardness results for w-AV can yield
immediately NP-hardness (i.e., a Karp reduction) for (k,w)-AV.
In fact, the hard constraint on the size of the committee requires a
different approach for creating a Karp reduction. As a result, the
reductions we present in this subsection are based on completely
different ideas than in Section 3.1.

As we will show, the decision version of (k,w)-AV is NP-com-
plete, for a wide range of families of vectors. We first introduce the
following notion, for which our hardness results apply.

DEFINITION 1. Let β ≥ 2 be an integer. We say that the family
of vectors w is β-restricted if for any n ∈ N:

i. wn =
(
a1(n), a2(n), . . . , an(n)

)
∈ [0, 1]n with

∑n
i=1 ai(n) = 1

ii. a1(n) >
∑n

i=ℓ+1 ai(n) where ℓ = ⌈n+ 4− 2n
1
β ⌉

This is a family of vectors where the first coordinate, i.e., the
weight on the maximum distance is relatively large; in particular,
larger compared to the sum of weights given to the lower distances.
For instance, for β = 2, the weight on the last 2

√
n coordinates

should be small. β-restrictedness corresponds to a fairness crite-
rion (even if it does not imply nonincreasingness, nor is implied
by it). Also, it obviously generalizes the minimax objective, since
(1, 0, ..., 0) belongs to the family. By (k,w)-AVβ we denote the
decision version of (k,w)-AV on β-restricted families of vectors.

THEOREM 7. For any integer β ≥ 2 and any β-restricted fam-
ily of vectors w, (k,w)-AVβ is NP-complete.
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PROOF. For the sake of readability we are going to drop the ar-
gument n in the vectors, e.g., we will write wn = (a1, a2, . . . , an)
instead of wn =

(
a1(n), a2(n), . . . , an(n)

)
.

Clearly, (k,w)-AVβ is in NP. To prove hardness, we will provide
a reduction from a certain variant of the Vertex Cover problem. In
particular, let VC△-free(k) be the problem of deciding whether there
exists a vertex cover of size k in a simple planar triangle-free graph.
This problem is known to be NP-complete [23].

Here we consider a variant with restricted values for k that we
call VCβ

△-free(k), and we define as follows:
VCβ

△-free(k): Fix a positive integer β ≥ 2. Given a simple planar
triangle-free graph G = (V,E), and a positive integer k, with k <

|E|
1
β , is there a vertex cover of G of size k?

LEMMA 8. For any constant integer β ≥ 2, VCβ
△-free(k) is NP-

complete.

We are now going to give a reduction from VCβ
△-free(k). The re-

duction exploits ideas from the reduction obtained for k-minimax
approval voting in [19]. Let G = (V,E) be a simple planar triangle-
free graph, and k be an integer such that k < |E|

1
β . We will con-

struct a voting profile P = (P1, . . . , Pn) with n voters and m
candidates, as well as integers k′ and α, so that:

G has a vertex cover of size k ⇐⇒
there is a set S of size k′, such that wn·H(P, S) ≤ α .

For each vi ∈ V , we consider a candidate ci and for each ej ∈ E a
voter j. The profile P = (P1, ..., P|E|) is then defined by Pj = ej
for all j. Hence, each voter j only approves 2 candidates, the two
endpoints of edge ej . Let k′ = k and α = k. The construction is
polynomial, and notice that m = |V |, n = |E|.

Suppose that G has a vertex cover of size k. The corresponding
set S of candidates will have a Hamming distance of k or k −
2 from any voter (depending on whether S contains one or both
preferences of the voter; it contains at least one). Therefore, any
element of H(P, S) is at most k, which yields:

wn·H(P, S) ≤
n∑

i=1

aik = k = α .

For the other direction, suppose that G has no vertex cover of
size k. Then, any k-subset S of candidates will have a Hamming
distance of k + 2 from at least one voter. Next, we are going to
bound the number of voters that have distance k−2 from S. Notice
that since G is planar and triangle-free, it is well known that k
vertices can induce at most 2k − 4 edges. It follows that at most
2k − 4 edges can have both their endpoints covered by any set of
k vertices. Equivalently, any k-subset S of candidates will have
Hamming distance k − 2 from at most 2k − 4 voters. Notice that

2k − 4 < 2|E|
1
β − 4 = 2n

1
β − 4 .

Therefore, at least the first ℓ = ⌈n+4−2n
1
β ⌉ distances in H(P, S)

are at least k each, and the very first element is definitely k+2. And
the last ⌊2n

1
β −4⌋ elements, may be k−2 or higher by the previous

arguments. This gives:

wn·H(P, S) ≥ a1(k + 2) +

ℓ∑
i=2

aik +

n∑
i=ℓ+1

ai(k − 2)

= 2a1 +

n∑
i=1

aik −
n∑

i=ℓ+1

2ai =

= k + 2

(
a1 −

n∑
i=ℓ+1

ai

)
> k ,

which concludes the proof.

Note that the above proof implies that the NP-completeness holds
when k is a polynomially small fraction of the number of can-
didates. Actually, this is not necessary; we could have chosen
k′ = k + ρ, where ρ is polynomially bounded by n,m and add
ρ candidates approved by all the voters. The proof would still go
through.

Moreover, now it is relatively easy to generalize the NP-com-
pleteness to families of vectors w that have anything in their first
coordinates. Actually, in the next theorem we generalize to families
of vectors where a restriction applies only on the last coordinates
of a subfamily of vectors indexed by some polynomially bounded
function. The restriction in that case is very similar to the one in
Theorem 7. Before we state the theorem, we give one more defini-
tion, which again corresponds to a fairness criterion.

DEFINITION 2. Let β ≥ 2 be an integer and h(n) : N → N be
a polynomial-time computable function, such that ∀n ∈ N, n ≤
h(n) ≤ p(n), where p(n) is a polynomial. We say that a family of
vectors w is (h, β)-restricted if for any n ∈ N:

i. wn =
(
a1(n), a2(n), . . . , an(n)

)
∈ [0, 1]n with

∑n
i=1 ai(n) = 1

ii. If n = h(n′), n′ ∈ N, then an−n′+1 >
∑n

i=ℓ+1 ai, where

ℓ = ⌈n+ 4− 2(n′)
1
β ⌉

By (k,w)-AVh,β we denote the decision version of (k,w)-AV
on (h, β)-restricted families of vectors.

THEOREM 9. For any β, h(n) as in the above definition, and
for any (h, β)-restricted family of vectors w, (k,w)-AVh,β is NP-
complete.

Finally, we prove NP-completeness for two families of vectors
that are not entirely covered by the above results. Recall from Sub-
section 3.1 that by f i we denote the family of vectors defined by
f in =

(
1

n−i
, . . . , 1

n−i
, 0, . . . , 0

)
.

THEOREM 10. Let c : N → N with 1 ≤ c(n) ≤ n − 1. Then,
the decision version of (k, f c(n))-AV is NP-complete, even when
restricted to balanced elections.

The next family highlights that even slight deviations from MIN-
ISUM make the problem hard. We will revisit this family at the end
of the next section too.

THEOREM 11. Fix some integer β ≥ 2. Let wn = 1
n−

∑
εi(

1, . . . , 1, 1− ε1, 1− ε2, . . . , 1− εc(n)

)
, where every εi ∈ (0, 1],

and c : N → N with c(n) ≤ n
2
− 2

(
n
2

) 1
β . Then, the decision ver-

sion of (k,w)-AV is NP-complete, even when restricted to balanced
elections.

4. POSITIVE RESULTS: EXACT AND AP-
PROXIMATION ALGORITHMS

In this section we present families of vectors where we can com-
pute an optimal solution, either exactly or approximately, in poly-
nomial time.

4.1 Exact Algorithms
Recall that for wn = (1/n, 1/n, . . . , 1/n), w-AV becomes

MINISUM, and (k,w)-AV becomes k-MINISUM. It is known that
computing an optimal minisum (resp. k-minisum) solution can be
done in polynomial time [5]. Given the negative results of the previ-
ous section, we cannot hope to have polynomial time algorithms for
rules that assign a relatively high score on the maximum Hamming
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distance. It is meaningful however to consider families of rules,
where the maximum distance does not play a significant role. For
example, in a large population of voters, it is anticipated that there
will always be some voters whose preferences will be completely
disjoint from the selected committee. In such cases it would make
sense to disregard the first few (constant) largest distances and as-
sign positive weight to the remaining coordinates of the weight vec-
tor. This is true for case (i) in Theorem 12 below. On top of case
(i), we also present an additional family of vectors for which we
can still have polynomial time algorithms.

THEOREM 12. Let c, a1, a2, . . . , ac ∈ N be fixed constants.
Then, for the following families of vectors an optimal solution for
both w-AV and (k,w)-AV can be computed in polynomial time:

i. wn =
(
0, 0, . . . , 0, 1

n−c
, 1
n−c

, . . . , 1
n−c

)
,

ii. wn = 1
α
(0, 0, . . . , 0, a1, a2, . . . , ac), where α =

∑n
i=1 ai.

PROOF. Due to limited space, we only prove (i.). The proof of
(ii.) differs in the way we choose the committee S. Instead of uti-
lizing the minisum solution on subsets of voters, one would need to
solve several Integer Linear Programs, each with a constant num-
ber of constraints. We state the proof in terms of (k,w)-AV, but it
is essentially identical for the case of w-AV.

Assume that we have an instance of (k,w)-AV, with wn =(
0, . . . , 0, 1

n−c
, . . . , 1

n−c

)
. Let P = (P1, P2, . . . , Pn) be the vot-

ers’ profile. There are
(
n
c

)
subsets of voters of size n − c. For

each one of them we find a corresponding k-MINISUM optimal so-
lution. Among these solutions, let S be the one of minimum cost
(for the corresponding k-MINISUM instance). Clearly, this can be
done in polynomial time. We claim that S is an optimal solution
for (k,w)-AV.

Suppose that the voters x1, . . . , xn−c defined the instance that
produced S, and let Px = (Px1 , . . . , Pxn−c) be their preferences.
Suppose, also, that S is not optimal for the initial problem, and let
S′ be a k-subset of the candidates, such that wn·H(P, S′) is min-
imum. Assume that voters v1, . . . , vn−c have the n− c smallest
distances from S′ among all the voters. We then have:

wn·H(P, S′) < wn·H(P, S) ≤ f0n−c·H(Px, S) . (3)

The first inequality follows from S’s suboptimality. For the second
inequality, note that if we add new voters, while keeping S fixed,
we can only reduce the weighted sum of the n − c smallest Ham-
ming distances (recall that f0n−c = 1

n−c
(1, ..., 1)).

Moreover, if S′′ is any optimal solution for the profile Pv =
(Pv1 , . . . , Pvn−c) under f0n−c, we have

f0n−c·H(Pv, S
′′) ≤ f0n−c·H(Pv, S

′) = wn·H(P, S′) , (4)

where the inequality follows from S′′’s optimality and the equality
follows from the choice of v1, . . . , vn−c.

Combining (3) and (4) leads to

f0n−c·H(Pv, S
′′) < f0n−c·H(Px, S) .

However, this contradicts the choice of S. Both S and S′′ are
among the

(
n
c

)
k-MINISUM optimal solutions defined above. More-

over, S was the one with minimum cost (attained for the profile
Px), which yields a contradiction with the inequality above. We
conclude that S is indeed optimal.

4.2 LP-Based Approximation Algorithms
Next, we present two algorithms based on linear programming,

for approximating fn−c(n)-AV and (k, fn−c(n))-AV, with c : N →

N and 1 ≤ c(n) ≤ n−1. This is the special case where we care for
the c(n) largest distances, since fn−c(n)

n = 1
c(n)

(1, . . . , 1, 0, . . . , 0).
By Theorems 7 and 10, we know that the decision versions of these
problems are NP-complete.

First we present the LP approximation for (k, fn−c(n))-AV. Our
approach follows closely the work of [7]. Given a profile P and
a function c(n), the algorithm uses the following Integer Linear
Program (ILP).

minimize: q

subject to: q +
2

c(n)

c(n)∑
ℓ=1

∑
a∈Piℓ

xa ≥ k +
1

c(n)

c(n)∑
ℓ=1

|Piℓ | ,

∀ i1 < i2 < . . . < ic(n) ∈ N∑
a∈A

xa = k

xa ∈ {0, 1} , ∀a ∈ A

The variable xa denotes whether candidate a is included in the so-
lution (xa = 1) or not (xa = 0). The first constraint essentially
lower-bounds the value of q by the average of the c(n) largest dis-
tances of the voters from the k candidates included in the solution.
This is easier to see if we write the constraint as

q ≥ 1

c(n)

c(n)∑
ℓ=1

(
k + |Piℓ | − 2

∑
a∈Piℓ

xa

)
.

The LP-based algorithm solves the LP relaxation in which the in-
tegrality constraint has been relaxed to 0 ≤ xa ≤ 1. In this way,
a fractional solution is obtained with the x-variables having values
in [0, 1]. Then, the algorithm includes the candidates with the k
largest x-variables in the final solution (by breaking ties arbitrar-
ily).

Here, we should note that the relaxed LP may have a superpoly-
nomial number of constraints. So, in order to solve it in poly-
nomial time, a separation oracle is needed [27]. It is not hard,
though, to identify fast a violated constraint given an infeasible
solution (q, x⃗). First, we can easily check whether

∑
a∈A xa ̸=

k. If
∑

a∈A xa = k, then for each voter i we compute di =
k + |Pi| − 2

∑
a∈Pi

xa in linear time, and then we sort the dis.
Let i1, i2, . . . , ic(n) be the voters with the largest dis. If q ≥

1
c(n)

∑c(n)
ℓ=1

(
k + |Piℓ | − 2

∑
a∈Piℓ

xa

)
then the solution (q, x⃗) is

feasible, otherwise, we can see that q < 1
c(n)

∑c(n)
ℓ=1

(
k + |Piℓ |

− 2
∑

a∈Piℓ
xa

)
is a separating hyperplane.

THEOREM 13. The LP-based algorithm above, has approxima-
tion ratio at most 2 for (k, fn−c(n))-AV, for any c : N → N with
1 ≤ c(n) ≤ n.

It is not hard to see that the particular LP relaxation has an in-
tegrality gap of almost 2 and thus we cannot hope to do any better
using this LP formulation.

FACT 14. The LP relaxation used in Theorem 13 has integrality
gap at least 2− 2

k
.

We continue with the LP approximation for fn−c(n)-AV. The no-
tation as well as the actual algorithm are exactly the same as before,
but we use a slightly different ILP:
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minimize: q

subject to: q +
2

c(n)

c(n)∑
ℓ=1

∑
a∈Piℓ

xa −
∑
a∈A

xa ≥ 1

c(n)

c(n)∑
ℓ=1

|Piℓ | ,

∀ i1 < i2 < . . . < ic(n) ∈ N

xa ∈ {0, 1} , ∀a ∈ A

As before, the first constraint lower-bounds the value of q by the
average of the c(n) largest distances of the voters from the set of
candidates included in the solution. Again, the algorithm proceeds
by solving the LP relaxation to get a fractional solution. Then, a
candidate a is included in our solution if and only if xa ≥ 1/2. The
relaxed LP may have a superpolynomial number of constraints, but
we can construct a separation oracle using the same ideas as before.

THEOREM 15. The LP-based algorithm above, has approxima-
tion ratio at most 2 for fn−c(n)-AV, for any c : N → N with
1 ≤ c(n) ≤ n.

Again, the LP relaxation has an almost matching integrality gap.

FACT 16. The LP relaxation used in Theorem 15 has integrality
gap at least 2− 2

m
.

4.3 Performance of Minisum as an Approxi-
mation Algorithm

An interesting question is whether we can use other existing al-
gorithms in approval voting to produce approximate solutions for
our family. In this subsection, we focus on the questions of whether
w-AV (resp. (k,w)-AV) can be well approximated by the optimal
solution to MINISUM (resp. k-MINISUM). The algorithm for solv-
ing MINISUM is quite simple to implement, it is also strategyproof,
and hence a guarantee that it achieves a good approximation for
any voting rule in our family would be a desirable property. It is
known that in the case of MINIMAX, the minisum solution achieves
an approximation factor of 3 [20]. Since the minimax solution is
an extreme situation among the OWA operators, we expect that for
most other vectors, minisum should not have an approximation ra-
tio worse than 3. Here, we first extend the factor 3 approximation
for all the families of non-increasing vectors and then also give
improved approximation guarantees for vectors that are close to
MINISUM in the sense defined below. We begin with a lemma that
extends the 3-approximation for non-increasing vectors.

LEMMA 17. Let w be a family of vectors as in the definition of
w-AV. Moreover, let wn be non-increasing, for all n ∈ N. Then,
an optimal Minisum solution (resp. k-Minisum solution) achieves
an approximation ratio of at most 3 for w-AV (resp. (k,w)-AV).

Notice that the above lemma holds in the special case where
w = f i, where i is allowed to be a function of n. We use Lemma 17
to prove the next theorem for vectors of the form wn = 1

n−E(n)

(
1,

. . . , 1, 1 − ε1, 1 − ε2, . . . , 1 − εn−c(n)

)
, where c : N → N with

1 ≤ c(n) ≤ n, E(n) =
∑n−c(n)

i=1 εi, and εi : N → [0, 1] for all
i ∈ {1, . . . , n − c(n)}. We call such a family of vectors a (c, E)-
reduced family. Note that when the εis are small or even close to
zero, then the voting rule is close to the minisum rule. Note also
that under this definition, vectors f

n−c(n)
n are (c(n), n− c(n))-

reduced.

THEOREM 18. Let wn = 1
n−E(n)

(
1, . . . , 1, 1 − ε1, . . . , 1 −

εn−c(n)

)
be a (c, E)-reduced family of vectors. An optimal Min-

isum (resp. k-Minisum) solution achieves an approximation ratio

of at most min
{
3n−E(n)

c(n)
, n
n−E(n)

}
for w-AV (resp. (k,w)-AV).

If, moreover, ε1(n) ≤ ε2(n) ≤ . . . ≤ εn−c(n)(n) for all n ∈ N,

then the above ratio is at most min
{
3, n

n−E(n)

}
.

PROOF. We give the proof in terms of w-AV and Minisum, but
it is the same for (k,w)-AV and k-Minisum. Let P be a profile
and let S and O be optimal Minisum and w-AV solutions respec-
tively on input P . Let OPT = wn·H(P,O). First, we prove that
wn·H(P, S) ≤ n

n−E(n)
OPT . Indeed,

wn·H(P, S) = 1
n−E(n)

[
(1, 1, . . . , 1)·H(P, S)

− (0, . . . , 0, ε1, . . . , εn−c(n))·H(P, S)
]

≤ n
n−E(n)

[
1
n
(1, 1, . . . , 1)·H(P, S)

]
≤ n

n−E(n)

[
1
n
(1, 1, . . . , 1)·H(P,O)

]
≤ n

n−E(n)
[wn·H(P,O)] = n

n−E(n)
OPT .

Note that 1
n
(1, . . . , 1)·H(P, S) ≤ 1

n
(1, . . . , 1)·H(P,O) fol-

lows by the Minisum optimality of S. We also used the fact that,
with the same set of distances, the largest dot product is given by
the vector that is more biased towards the larger distances, to get
1
n
(1, . . . , 1)·H(P,O) ≤ wn·H(P,O).
Next we prove that wn·H(P, S) ≤ 3n−E(n)

c(n)
OPT . Notice

that this ratio is better when c(n) is a small fraction of n and the
εis are close to 1. In the proof below, we denote by O′ an opti-
mal solution to fn−c(n)-AV. Recall that, by Lemma 17, we have
f
n−c(n)
n ·H(P, S) ≤ 3 f

n−c(n)
n ·H(P,O′). We now have

wn·H(P, S) ≤ fn−c(n)
n ·H(P, S)

≤ 3 fn−c(n)
n ·H(P,O′)

≤ 3 fn−c(n)
n ·H(P,O)

= 3 1
c(n)

(1, . . . , 1, 0, . . . , 0)·H(P,O)

= 3 n−E(n)
c(n)

[
1

n−E(n)
(1, . . . , 1, 0, . . . , 0)·H(P,O)

]
≤ 3 n−E(n)

c(n)
[wn·H(P,O)] ≤ 3 n−E(n)

c(n)
OPT .

If, moreover, ε1(n) ≤ . . . ≤ εn−c(n)(n), for all n ∈ N, then
wn is non-increasing for all n ∈ N, and by Lemma 17 we have
wn·H(P, S) ≤ 3OPT .

Now, if we restrict Theorem 18 to (c(n), n− c(n))-reduced vec-
tors we get an improvement on Lemma 17.

COROLLARY 19. Let c : N → N with 1 ≤ c(n) ≤ n. An opti-
mal Minisum solution (resp. k-Minisum solution) achieves an ap-
proximation ratio of at most min

{
3, n

c(n)

}
for fn−c(n)-AV (resp.

(k, fn−c(n))-AV).

5. MANIPULABILITY
In this section, we briefly report on the manipulability of the w-

AV rules. We note first that the Gibbard-Satterthwaite theorem [26,
11] (or other known impossibility results) do not apply in our set-
ting since we are in a domain of Hamming-induced preferences.
Not surprisingly however, we will show that most of the rules in
our family are manipulable. Let us, first, formally define manipu-
lability in our setting. Given a profile P and an algorithm R, we
denote by R(P ) the outcome of the algorithm on profile P . We
also denote by P−i the preferences of all voters besides i. Hence,
we can also write P as (Pi, P−i). Manipulability means that some
voter i has an incentive to unilaterally change her preference so as
to reduce the distance of Pi from the outcome of the algorithm.
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DEFINITION 3. An algorithm R is manipulable if for some pro-
file P , there exists a voter i and a preference P ′

i ⊆ A such that

dH(Pi, R(P ′
i , P−i)) < dH(Pi, R(Pi, P−i)) .

Note that so far we did not deal with how the ties are resolved in
an election. It was implied that ties break arbitrarily, and this was
sufficient. Here, we introduce a simple deterministic tie-breaking
rule which assigns distinct IDs to the candidates (e.g., their index);
ties are resolved by selecting the candidates with the smallest ID.

It is known that minimax approval voting is manipulable and that
minisum approval voting is not (see [5, 20]). How does this extend
to w-AV (or (k,w)-AV) rules in general? Here again, we will
focus mostly on non-increasing vectors, for the reason explained in
Section 2. Due to space constraints, we only give an overview of
our results and we omit the proofs. Note that for special cases, e.g.,
for a small, fixed number of candidates, one can obtain stronger
results. We start with a theorem that holds for both w-AV and
(k,w)-AV.

THEOREM 20. Let wn = (w1, w2, . . . , wn) be any non-in-
creasing family of vectors, such that for any n ∈ N it holds that
w1 > w⌊ 2n

3 ⌋. Then, any exact algorithm for either w-AV or

(k,w)-AV, that breaks ties with the smallest-ID-first tie-breaking
rule is manipulable.

To illustrate the main idea of the proof, we give next a small
example that extends to prove Theorem 20 in the case of w-AV.

Consider an election E, with 4 voters {1, 2, 3, 4}, and 4 candi-
dates {x1, x2, x3, x4}, and the following profile P :

P1 : (0100);P2 : (0101);P3 : (0110);P4 : (0111)

Figure 1 shows the w-AV scores for some committees. One can
easily verify that committees that are not mentioned have even
larger w-AV scores. The w-AV scores of these 4 committees are

C w4·H(P,C)
0100 2 · w1 + 1 · w2 + 1 · w3 + 0 · w4

0101 2 · w1 + 1 · w2 + 1 · w3 + 0 · w4

0110 2 · w1 + 1 · w2 + 1 · w3 + 0 · w4

0111 2 · w1 + 1 · w2 + 1 · w3 + 0 · w4

Table 1: w-AV scores with true preferences

equal and minimal, so there are 4 co-winning committees. Then,
according to the tie-breaking rule, the committee (0111) is elected.
The manipulation comes from voter 1 by voting (1000) instead of
her true preferences. With this new vote, we have new w-AV scores
summarized in Figure 2. Then, with a non-increasing w such that

C w4·H(P,C)
0100 2 · w1 + 2 · w2 + 1 · w3 + 1 · w4

0101 3 · w1 + 2 · w2 + 1 · w3 + 0 · w4

0110 3 · w1 + 2 · w2 + 1 · w3 + 0 · w4

0111 4 · w1 + 1 · w2 + 1 · w3 + 0 · w4

Table 2: w-AV scores with manipulation of voter 1

w1 > w4, we obtain a unique winning committee (0100).
This proof can be extended by adding an equal number of copies

of voters 1, 2, 3 and 4, and by adding dummy candidates approved
by all the voters. Actually, this gives a slightly better result than
stated in Theorem 20, since it suffices to have w1 > w⌊ 3n

4 ⌋+1.
For w-AV and for strictly decreasing vectors we can state a stronger

result than Theorem 20, for any tie-breaking rule.

PROPOSITION 21. Let w be any family of strictly decreasing
vectors. Then, any exact algorithm for w-AV is manipulable inde-
pendently of the tie-breaking rule used.

Moreover, for (k,w)-AV we can state a result that holds for vec-
tors that are not necessarily non-increasing.

PROPOSITION 22. Let wn = (w1, w2, . . . , wn) be a family of
vectors, such that for any n ∈ N, there exists some j with ⌊n+3

2
⌋ ≤

j ≤ ⌊ 2n+1
3

⌋ and w1 > wj . Then, any exact algorithm for (k,w)-
AV that breaks ties with the smallest-ID-first tie-breaking rule is
manipulable.

6. CONCLUSIONS
We have introduced a family of voting rules that generalize the

standard (‘minisum’) rule and the minimax approval rule in com-
mittee elections and multiple referenda. By making use of Ordered
Weighted Average operators, we are able to remedy the extreme
behaviour of the minimax approval rule while retaining the idea
of fairness to voters: our parameterized family of rules allows for
fine-tuning the trade-off between fairness and utilitarian efficiency.

We have shown that although winner determination for rules be-
longing to this family is typically NP-hard, still there are cases
where a winning committee can be computed efficiently. We also
designed approximation algorithms for some of the cases where
NP-hardness holds. Finally, we have addressed manipulability is-
sues, and shown that, unsurprisingly, most of these rules are ma-
nipulable. Most of our results (both for computation and manipula-
bility) hold for families of nonincreasing vectors, which correspond
to “fair” rules that lay between pure egalitarianism (MINIMAX) and
pure utilitarianism (MINISUM).

An interesting question is whether one can fully characterize the
members of the family that admit polynomial time algorithms. As
far as manipulability is concerned, it would be interesting to ad-
dress the computational resistance to manipulability (as studied for
other multiwinner voting rules in [24]), as well as to obtain a full
characterization of strategyproof rules of our family (depending on
n, m and w). This would complete existing results by [3] for com-
mittee elections and by [18, 29] for multi-issue elections.

We have focused here on computation and manipulability; obvi-
ously, going further with an axiomatic study of our rules, along the
general line for multiwinner rules exposed in [9], is the next major
step in the study of our rules.

Finally, there is no reason to stick only to the Hamming distance
for defining the satisfaction of a voter. Other possibilities, sug-
gested in [13] and recently further studied in [1], are to measure the
satisfaction of a voter by the fraction of her approved candidates
that are elected (called satisfaction approval voting) or a concave
function of the number of her approved candidates, such as in pro-
portional approval voting. For all these other means of defining
the satisfaction of a voter, one can define an OWA-based family of
rules in the same way as we generalized minimax approval voting.
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