Knowledge Revision for Reinforcement Learning with
Abstract MDPs

Kyriakos Efthymiadis
Department of Computer Science
University of York, UK
ke517@york.ac.uk

ABSTRACT

Reward shaping is a method often used in RL so as to pro-
vide domain knowledge to agents and thus improve learn-
ing. An unrealistic assumption however is that the provided
knowledge is always correct. This assumption can lead to
poor performance in terms of total reward and convergence
speed in case it is not met. Previous research demonstrated
the use of plan-based reward shaping with knowledge re-
vision in a single agent scenario where agents showed that
they can quickly identify and revise erroneous knowledge
and thus benefit from more accurate plans. This method
however has no mechanism to deal with non-deterministic
scenarios and is thus limited to deterministic domains. In
this paper we present a method to provide heuristic knowl-
edge via abstract MDPs, coupled with a revision algorithm
to manage the cases where the provided domain knowledge
is wrong. We show empirically that our method can effi-
ciently revise erroneous knowledge even in the cases where
the environment is non-deterministic and also removes the
need for some of the assumptions present in plan-based re-
ward shaping with knowledge revision.

Categories and Subject Descriptors

Computing methodologies [Artificial Intelligence]: Learn-
ing

General Terms

Experimentation

Keywords

reinforcement learning; reward shaping; knowledge revision

1. INTRODUCTION

Reinforcement learning has been proven to be a success-
ful technique when an agent needs to act and improve in a
given environment. The agent receives feedback about its
behaviour in terms of rewards through constant interaction
with the environment. Traditional reinforcement learning
assumes the agent has no prior knowledge about the envi-
ronment it is acting on. Nevertheless, in many cases (po-

Appears in: Proceedings of the 14th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2015), Bordini, Elkind, Weiss, Yolum (eds.), May,
4-8, 2015, Istanbul, Turkey.

Copyright (©) 2015, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

763

Daniel Kudenko
Department of Computer Science
University of York, UK
daniel.kudenko@york.ac.uk

tentially abstract and heuristic) domain knowledge of the
reinforcement learning tasks is available, and can be used to
improve the learning process.

In earlier work on knowledge-based reinforcement learning
[3, 7, 8] it was demonstrated that the incorporation of do-
main knowledge in reinforcement learning via reward shap-
ing can significantly improve the speed of converging to an
optimal policy. Reward shaping is the process of provid-
ing prior knowledge to an agent through additional rewards.
These rewards help direct an agent’s exploration, minimis-
ing the number of sub-optimal steps it takes and so directing
it towards the optimal policy quicker.

However, expert knowledge is often of a heuristic nature
and therefore may contain inaccuracies. Previous research
shows that when an agent is provided with incorrect knowl-
edge, there is a direct impact in performance which points
to a clear need for knowledge revision methods [6].

Previously, basic belief revision operations were used in
order to revise wrong knowledge when an agent was shaped
using plan-based reward shaping [6]. The results were very
promising with the agent quickly revising the wrong parts
of the knowledge base and thus benefiting from more accu-
rate shaping. However, that method included exhaustively
searching in the environment to verify the parts of the knowl-
edge base that were deemed erroneous which can impact
performance in larger domains.

Moreover, in order for the agent to be able to search
the environment it was allowed to ‘teleport’ between states.
This required the agent to run only in simulation as back-
tracking or jumping among states cannot take place in a
real world problem. In addition it is not possible for the
plan-based revision method to handle a stochastic domain.

Marthi [10] proposed the use of abstract MDPs as a source
of reward shaping in which an abstract high-level MDP of
the environment is defined and solved using dynamic pro-
gramming, e.g. value iteration. The resulting value function
can then be used in order to shape the agent. Since this
method relies on abstract MDPs to provide additional re-
wards and the environment probabilities are a vital part, it
can be used to tackle stochastic environments.

In this paper we propose a method to revise knowledge
in abstract MDPs which removes the need for some of the
assumptions and problems presented in the revision method
for plan-based reward shaping [6].

We compare our revision method to that developed for
agents using plan-based reward shaping [6] and we demon-
strate empirically that our agent can achieve similar perfor-

mance when the agents are provided with wrong knowledge
in deterministic domains.

In addition we demonstrate empirically that our agent
can overcome the problems posed by erroneous knowledge
in a stochastic environment through the use of knowledge
revision.

2. BACKGROUND

2.1 Reinforcement Learning

Reinforcement learning is a method where an agent learns
by receiving rewards or punishments through continuous in-
teraction with the environment [14]. The agent receives a
numeric feedback relative to its actions and in time learns
how to optimise its action choices. Typically reinforcement
learning uses a Markov Decision Process (MDP) as a math-
ematical model [12].

A MDP is a tuple (S, A, T, R), where S is the state space,
A is the action space, T'(s,a,s’) = Pr(s'|s,a) is the prob-
ability that action a in state s will lead to state s’, and
R(s,a,s’) is the immediate reward 7 received when action
a taken in state s results in a transition to state s’. The
problem of solving a MDP is to find a policy (i.e., mapping
from states to actions) which maximises the accumulated
reward. When the environment dynamics (transition prob-
abilities and reward function) are available, this task can be
solved using dynamic programming [2].

When the environment dynamics are not available, as with
most real problem domains, dynamic programming cannot
be used. However, the concept of an iterative approach re-
mains the backbone of the majority of reinforcement learn-
ing algorithms. These algorithms apply so called temporal-
difference updates to propagate information about values of
states, V(s), or state-action pairs, Q(s,a) . These updates
are based on the difference of the two temporally different
estimates of a particular state or state-action value. The
SARSA algorithm is such a method [14]. After each real
transition, (s,a) — (s’,7), in the environment, it updates
state-action values by the formula:

Q(s,a) < Q(s,a) + afr +1Q(s',a') = Q(s,@)] (1)

where « is the rate of learning and ~y is the discount factor.
It modifies the value of taking action a in state s, when
after executing this action the environment returned reward
r, moved to a new state s’, and action a’ was chosen in state
s

It is important whilst learning in an environment to bal-
ance exploration of new state-action pairs with exploitation
of those which are already known to receive high rewards. A
common method of doing so is e—greedy exploration. When
using this method the agent explores, with probability €, by
choosing a random action or exploits its current knowledge,
with probability 1 — €, by choosing the highest value action
for the current state [14].

Temporal-difference algorithms, such as SARSA, only up-
date the single latest state-action pair. In environments
where rewards are sparse, many episodes may be required for
the true value of a policy to propagate sufficiently. To speed
up this process, a method known as eligibility traces keeps a
record of previous state-action pairs that have occurred and
are therefore eligible for update when a reward is received.
The eligibility of the latest state-action pair is set to 1 and all
other state-action pairs’ eligibility is multiplied by A (where

764

A < 1). When an action is completed all state-action pairs
are updated by the temporal difference multiplied by their
eligibility and so Q-values propagate quicker [14].

Typically, reinforcement learning agents are deployed with
no prior knowledge. The assumption is that the developer
has no knowledge of how the agent(s) should behave. How-
ever, more often than not, this is not the case. We are in-
terested in knowledge-based reinforcement learning, an area
where this assumption is removed and informed agents can
benefit from prior knowledge.

2.2 Reward Shaping

One common method of imparting knowledge to a re-
inforcement learning agent is reward shaping. In this ap-
proach, an additional reward representative of prior knowl-
edge is given to the agent to reduce the number of subop-
timal actions made and so reduce the time needed to learn
[11, 13]. This concept can be represented by the following
formula for the SARSA algorithm:

Q(s.a) « Q(s,a) +afr+ F(s,s") +9Q(s', ') = Q(s,a)] (2)

where F(s,s’) is the general form of any state-based shaping
reward.

Even though reward shaping has been powerful in many
experiments it quickly became apparent that, when used
improperly, it can change the optimal policy [13]. To deal
with such problems, potential-based reward shaping was
proposed [11] as the difference of some potential function
® defined over a source s and a destination state s':

F(s,s') = 7®(s') — ®(s) (3)

where v must be the same discount factor as used in the
agent’s update rule (see Equation 1).

This formulation of reward shaping has been proven to not
alter the optimal policy of a single agent in both infinite- and
finite- state MDPs [11].

Wiewiora [16] later proved that an agent learning with
potential-based reward shaping and no knowledge-based Q-
table initialisation will behave identically to an agent with-
out reward shaping when the latter agent’s value function is
initialised with the same potential function.

More recent work on potential-based reward shaping, has
removed the assumptions of a single agent acting alone and
of a static potential function from the original proof. In
multiagent systems, it has been proven that potential-based
reward shaping can change the joint policy learnt but does
not change the Nash equilibria of the underlying game [4].

With a dynamic potential function [5], it has been proven
that the existing single and multi agent guarantees are main-
tained provided the potential of a state is evaluated at the
time the state is entered and used in both the potential cal-
culation on entering and exiting the state. Furthermore,
potential-based reward shaping with a dynamic potential
function is not equivalent to Q-table initialisation.

Reward shaping is typically implemented bespoke for each
new environment using domain-specific heuristic knowledge
[3, 13] but some attempts have been made to automate [9,
10] and semi-automate [8] the encoding of knowledge into
a reward signal. Automating the process requires no previ-
ous knowledge and can be applied generally to any problem
domain. The results are typically better than without shap-
ing but less than agents shaped by prior knowledge. Semi-
automated methods require prior knowledge to be put in but

then automate the transformation of this knowledge into a
potential function.

2.3 Plan-Based Reward Shaping

Plan-based reward shaping [7, 8], generates a potential
function from prior knowledge provided by a domain expert
represented as a high-level STRIPS plan.

The STRIPS plan is translated! into a state-based repre-
sentation so that, whilst acting, an agent’s current state can
be mapped to a step in the plan as shown in Figure 1.

z
z
_ < LES N s En~
STRIPS plan
HEEEEEREEEEN
Q-function
S s’

Figure 1: Plan-Based Reward Shaping.

The potential of the agent’s current state then becomes:

(4)

where CurrentStepInPlan is the step number of the STRIPS
plan that corresponds to state s and w is a scaling factor.

To not discourage exploration off the plan, if the current
state is not in the state-based representation of the agent’s
plan then the potential used is that of the last state expe-
rienced that was in the plan. This feature of the potential
function makes plan-based reward shaping an instance of
dynamic potential-based reward shaping [5].

These potentials are then used as in Equation 3 to calcu-
late the additional reward given to the agent and so encour-
age it to follow the plan without altering the agent’s original
goal.

2.4 Abstract MDP Reward Shaping

Plan-based reward shaping with knowledge revision has
been shown to perform well in a deterministic environment
[6]. However, while the results are promising this method is
not able to handle stochastic environments since the domain
dynamics cannot be captured by a STRIPS plan.

Marthi [10] proposed a general automatic framework to
learn the potential function by solving an abstract MDP.
The shaping algorithm obtains the potential function by
solving a MDP which is based in an abstraction of the low
level environment.

®(s) = CurrentStepInPlan x w

!This translation is automated by propagating and extract-
ing the pre- and post- conditions of the high level actions
through the plan.

765

Although the dynamics of the environment are often not
known beforehand, the a MDP representing general abstract
(and potentially heuristic) knowledge about the RL domain
can be provided by domain experts before the learning pro-
cess begins, similar to plan-based reward shaping.

In addition, by providing a mapping of low-level states
of the environment to high-level abstract states®, the ab-
stract MDP can be solved using any off-the-shelf dynamic
programming algorithm e.g. value iteration, before the main
learning process begins, and the obtained value function can
be used directly as a potential function of the low level en-
vironment:

B(s) =V (2) * w, (5)

where V*(z) is the optimal value function over the abstract
state space Z i.e. the space that contains all low level states
s which map to a high level state z as shown in Figure 1,
and w is an optional scaling factor.

3. THE REVISION PROCESS

Providing expert domain knowledge to an agent can im-
prove its learning performance. However, as mentioned pre-
viously, expert knowledge is often of a heuristic nature and
therefore may contain inaccuracies. It has been shown that
when an agent is guided by wrong knowledge it has a direct
impact on its performance and can inhibit learning [6, 8].

A first successful attempt to tackle that problem was de-
veloped for agents using plan-based reward shaping in which
an agent could revise potential errors in its knowledge base
and thus benefit from more accurate shaping [6]. However
that method required the agent to exhaustively search and
verify wrong knowledge before deciding to revise. This can
prove to be a daunting task especially in large domains.

Moreover, the agent needed to ‘teleport’ to any state while
verifying wrong knowledge which is impractical or even in-
feasible in most real world scenarios and as mentioned pre-
viously, one of the assumptions in plan-based revision is the
agent to run in simulation so as to make the ‘teleportation’
possible. Instead, our method does not require the agent to
verify knowledge as the revision takes place alongside the
agent’s exploration of the low level states whilst learning.

Another issue was that there was no mechanism in place to
tackle non-deterministic environments. The use of STRIPS
does not allow the dynamics of the domain to be captured
i.e. actions that can fail, probabilistic transitions etc. As a
result, the agent would constantly revise parts of its knowl-
edge back and forth due to the stochastic nature of the do-
main.

We propose using abstract MDPs with a revision algo-
rithm which eliminates the above assumptions. The agent
no longer needs to “teleport” since there is no need for ver-
ification. In addition, since this method is based on ab-
stract MDPs, the stochastic domain dynamics can now be
specified and thus the agent can tackle the problems of a
non-deterministic environment.

In order to enable knowledge revision we allow the ab-
stract MDP to constantly update its probabilities according
to the agent’s experiences in the low level environment using

2Please note that a high-level abstract state will map to
many low level states. Therefore, even when provided with
the correct knowledge, the agent still needs to learn the op-
timal path to finish the episode.

Algorithm 1 Revision Algorithm.

Solve abstract MDP
for episode = 0 to max_number_of_episodes do
initialise transitions table T’
for step = 0 to max_number_of_steps do
main learning process
add transition to T
if goal position then
end episode
/* add new transitions */
for all transition in T do
if transition not in abstract MDP then
add transition to abstract MDP
Pr(transition) = 1
/* update the probabilities */
for all transition in abstract MDP do
if transition in T then
Pr(transition)+ = a[l — Pr(transition)]
else
Pr(transition)+ = a0 — Pr(transition)]
Solve abstract MDP
/* continue to next episode */

the following formula (which is based on the computations
of transition probabilities [15]):

Pro. = {
(©)

In addition if the agent experiences a state transition which
is not present in the abstract MDP, it is added with Pr,,, =
1. The MDP is solved at the end of each episode and the
new value function is used for shaping.

Equation 6 implies that if a transition from abstract state
z to 2’ was performed during an episode then the probability
of this transition is increased. If a certain transition from z
to 2z’ was not performed during an episode then the prob-
ability of this transition is lowered. This results in states
which are not experienced, either because of wrong domain
knowledge or because of the environment dynamics, to as-
sume a lower probability based on Equation 6 which in turn
results in a lower value V(z).

Note that since the potential function changes whilst the
agent is learning, this is an instance of dynamic potential-
based reward shaping [5] for which the theoretical guarantees
of policy invariance still hold.

Pr..,+a(l = Pr,.)
Pr.. +a(0— Pr..,)

if 2z, 2’ experienced
otherwise

4. EXPERIMENTAL DESIGN

We evaluate the revision algorithms using two domains.
We use the flag collection domain from the work on plan-
based reward shaping with knowledge revision to show that
our method can reach a similar performance. In addition,
we evaluate our algorithm in a non-deterministic Micro UAV
problem, and demonstrate that our method can deal with
both the stochastic nature of the domain, as well as erro-
neous knowledge provided to the agent. Note that this is a
real-world domain provided by our industrial collaborators
and shows the wider applicability of our method.

Flag Collection Domain

The flag collection domain is an extended version of the
navigation problem. The agent needs to navigate through

766

the maze, collect flags and drop them off at a designated
location.

At each time step it can decide to move north, east, south
or west and will deterministically complete its move pro-
vided it does not collide with a wall which results in the
agent staying at the same position. Regardless of the col-
lected flags the episode ends once the agent reaches the goal
position and the resulting reward is 100 times the number
of collected flags. At each point the agent’s state represen-
tation includes the position it is in the grid i.e. x and y
coordinates and the flags it has picked up.

RoomA [Al RoomB RoomE
B
F
Hall4 @ HallB
RoomD
D
RoomC
C
G
E

Figure 2: Flag Collection Domain.

At a more abstract level, the maze can be thought of as
a house with doors between rooms. Each room might, or
might not contain a flag and it is up to the agent to find
where the flags are located.

Figure 2 shows the layout of a simple version of the domain
in which rooms are labelled RoomA-E and HallA-B, flags are
labelled A-F, S is the starting position of the agent and G is
the goal position.

Given this domain, the state abstraction includes the rooms
and halls that the agent can navigate to i.e. hallA, hallB,
roomA, roomB and so on as well as the location of flags e.g.
flagA_in_roomA.

The action abstraction are the moves the agent can per-
form according to the layout e.g. roomA_to_hallA. The agent
can also perform the action of picking a flag e.g. taken_flagA.
By generating all the possible states and their respective
probabilities an abstract MDP of the flag collection domain
can be solved to be used as guidance by the agent.

A partial example of the value function to be used for
shaping is given in Listing 1 with V' (z) used in Equation 5
shown in the right hand column.

robot_in (hallA) 96
robot_in (roomD) 98
robot_in (roomD) taken (flagD) 100

Listing 1: Example Partial Value Function

Micro UAV Problem

The Micro UAV problem is one where a micro UAV is in-
tended to go through a building and locate a villain. This
is realised as a grid world where the agent is provided with
a high level map of the building it needs to search which
serves as the domain knowledge that the agent is provided

(a) Hilda Garde

(¢) Tomb of the Forgot-
ten King

(d) Pharos Ascend

Figure 3: Micro UAV Problem.

with. The state representation for the RL agent is its posi-
tion within the grid i.e. the z and y coordinates.

The building is comprised of rooms and corridors each
associated with a probability that the agent gets caught by
the enemy. All rooms are a 20220 grid and all corridors
have a width of 5 squares. The domain knowledge that is
provided is similar to that in the flag collection domain with
rooms and halls but this time the knowledge also includes
the probabilities that the agent might get caught at certain
parts in the maze.

Specifically, the state abstraction for the abstract MDP
includes rooms 1-17 and the probability of the agent being
detected in those areas, halls A-V along with the probability
of detecting the agent and the location of the villain within
the building.

A partial abstract value function for this domain is shown
in Listing 2 where the low values of certain states correspond
to areas of high detection in the building and should be
avoided.

robot_in (hallA) 30
robot_in (rooml) 35
robot_in (hallC) 39
robot_in (room3) 10
robot_in (hallE) 8

robot_in (room5) 40
robot_in (hallB) 34
robot_in (hallD) 4

Listing 2: Partial Abstract Value Function in the
Micro UAV Domain

Within the low level grid the agent can choose to move
north, east, south or west to one of its neighbouring squares.
If the agent is caught while searching the building then the
episode ends and the agent receives a reward of —50. If the
agent manages to successfully locate the villain i.e. enter
the square the villain is located, it is given a reward of 1000
and the episode is reset.

It is worth noting that a safe path to the villain always
exists i.e. a path where there is a low probability of the

767

(a) Hilda Garde

(¢) Tomb of the Forgot-
ten King

(d) Pharos Ascend

Figure 4: Micro UAV Problem. Safe routes.

agent being detected as shown in Figure 4. The rooms that
are not part of this safe route have a 0.4 — 0.6 probability
of the agent being detected while the corridors a 0.7 — 0.9
probability.

Figure 3 shows the map configuration used for evaluating
this method in the Micro UAV problem. The room the agent
is located at the start of an episode is shown in green and
the villain’s position within the building is shown in red.

4.1 Results

Flag Collection Domain

Our agent is compared against an agent with knowledge re-
vision using plan-based reward shaping. The comparison is
based on the performance in terms of discounted goal re-
ward.

All agents implemented SARSA with e—greedy action se-
lection and eligibility traces® [14]. For all experiments, the
agents’ parameters were set such that a = 0.1, v = 0.99,
e = 0.3 and A = 0.4. The experiments were run for 30
iterations each lasting 50,000 episodes.

For clarity all the graphs only display results up to 20000
episodes, after this time no significant change in behaviour
occurred in any of the experiments. The graphs also include
error bars showing the standard error of the mean. We com-
pare the agents across three classes of erroneous knowledge:

1) Incorrect knowledge where the agents are provided with
knowledge which contains extra information which is not
present in the environment. This means that the knowledge
contains those facts that are correct in the environment as
well as more irrelevant information. In this case the knowl-
edge contains 2 to 6 extra flags which are not present in the

3These methods, however, do not require the use of SARSA,
e—greedy action selection or eligibility traces. Potential-
based reward shaping has previously been proven with
Q-learning, RMax and any action selection method that
chooses actions based on relative difference and not abso-
lute magnitude [1]. Furthermore, it has been shown to work
before without eligibility traces [3, 11].

simulation but also includes those that are in the correct
position®.

2) Incomplete knowledge where the agents are provided
with knowledge which is missing important goals. In this
case 1 to 3 flags are missing from the provided knowledge
and thus the shaping does not provide an incentive to collect
them.

3) Combination of incorrect and incomplete knowledge
where the provided knowledge not only contains incorrect
and incomplete knowledge in terms of flags as described pre-
viously, but also wrong connections between rooms and mis-
placed flags. Since the erroneous parts of the knowledge are
generated randomly in each experiment there can be cases
where the knowledge does not contain any correct facts i.e.
all the transitions are either missing or do not have the cor-
rect probabilities. We present these results only for the ab-
stract MDP shaping with revision as the plan-based method
cannot handle these types or wrong knowledge efficiently.

The results are shown in Figures 5, 6 and 7 presenting
the average performance over 30 runs, each run involving
different instances of erroneous knowledge chosen at random
as described previously.

200 ii’
it

Discounted Goal Reward
S
o

R e L

—#— abs—correct
— ¥ - abs-with—revision
— B - abs-without-revision
---+--- no—shaping

I I

50/

2000 4000 6000 8000 10000 12000 14000 16000 18000
Episodes

Figure 5: Abstract MDP agent with combination of
erroneous knowledge.

The biggest performance improvement of our revision al-
gorithm is shown in the combination of incorrect and in-
complete knowledge shown in Figure 5. The agent there has
to deal with potentially, entirely wrong knowledge in terms
of transitions between rooms, missing flags, extra flags and
misplaced flags as mentioned earlier. However the results
show that by updating the probabilities of the states in the
abstract MDP and by adding new transitions as it encoun-
ters them, it manages to identify the wrong parts in the
knowledge which are revised out, while including the cor-
rect states and transitions to its knowledge. This results
in the agent achieving a similar performance to the agent
receiving correct knowledge.

In the incomplete knowledge case, the agent can encounter
states which are not in its provided knowledge. Our agent

4More experiments have been conducted with varying errors
in the knowledge base and the results show the same trend
as the results presented here.

768

250

200

B

]

2

Q

o

T 150 |
o

5]

°

Q

S ool |
3 100

& e s b sl T e, bt - L. Tk b bl
o

l —%— abs-correct
3 — v~ - abs-with—revision
— B~ - abs-without-revision
— &~ - pb-with-revision
— ¥~ - pb-without-revision
---+--- no-shaping

n n

50

2000 4000 6000 8000 10000 12000 14000 16000 18000
Episodes

Figure 6: Incomplete knowledge comparison.

250

200+
°
g ENENT I S E S
: FELY Y
< Y
® 150+
o
3 /
°
Q
£ /
3 100 |
& B At SEL S L Lt e S S
a ?

..' —*— abs—correct
50/ — B~ - abs-without-revision|
! — & - pb-with-revision
/ — ¥ - pb-without-revision
/ ---+--- no-shaping
=X n n n n
0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Episodes

Figure 7: Incorrect knowledge comparison.

manages to quickly identify the parts which are missing from
the provided MDP. By adding these new transitions it en-
counters in the low-level to the abstract MDP, it manages
to solve a more accurate MDP and thus benefit from better
shaping.

The results are interesting when it comes to the “incorrect”
case of wrong knowledge in abstract MDPs. While the plan-
based agent has an impact on behaviour and a need for
revision is apparent, this is not the case for the abstract
MDP agent. It appears that the agent’s performance is not
impacted at all®.

Taking a closer look at how the abstract MDP provides
extra rewards, it becomes clear why this happens. Since a
value function is used as a reward shaping source, every state
the agent finds itself in will have a potential that will lead
to the goal. These multiple paths to the goal mean that the
agent will never be left without guidance. Paths which are
not encountered by the agent because they do not exist do
not feature at all when receiving rewards. Therefore there is

5Due to this behaviour, we have not included the abstract
MDP agent with knowledge revision to Figure 7 since it
achieves a similar performance to the agent without revision
and the agent with correct knowledge.

no need to revise incorrect knowledge when using abstract
MDP shaping. However, it is this specific reward shaping
method that can handle incorrect knowledge and as shown
in Figures 6 and 5, a need for revision is still apparent when
the agent is given incomplete knowledge, or a combination
of incorrect and incomplete knowledge.

In contrast, the plan-based agent receives only a single
path to the goal. Therefore if the agent cannot achieve a
step in the provided plan because the path does not exist, it
does not receive any further guidance after that point and
is effectively left to act without reward shaping.

Micro UAV Problem

While our abstract MDP method works perfectly well in
a deterministic domain, in order for it to be widely appli-
cable it needs to be able to tackle the complexity of non-
determinism. Therefore, we evaluate our method in a non-
deterministic domain, the Micro UAV problem which was
presented previously. Plan-based reward shaping with knowl-
edge revision cannot tackle such a domain as there is no
mechanism in place to account for non-deterministic envi-
ronments.

We have used the same parameters as those used in the
flag collection domain to conduct these experiments. For
clarity we only show up to 3000 episodes since there was
no change in performance after that point. The graphs also
include error bars showing the standard error from the mean.

Discounted Goal Reward

—#— no Revision
— &~ - with Revision

; ---+-- Correct Shaping
./ -—3— no Shaping

2500

1500 2000

Episodes

1000

Figure 8: Hilda Garde.

The erroneous knowledge the agents are given is both in-
correct and incomplete with varying degrees of “wrongness”
per experiment i.e. the agent receives a combination of erro-
neous knowledge which can vary for each experiment in the
number of incorrect or incomplete parts regarding rooms,
corridors and their connections, villain location and transi-
tion probabilities. The number of incorrect and incomplete
parts can vary from 2 up to 5 and are generated randomly
for each experiment.

For example, in the Hilda Garde building shown in Fig-
ure 3 the agent can receive domain knowledge which can
be missing room3, have additional information of a corridor,
hallT, connecting room5 to roomé and also have the proba-
bility that the agent gets detected in the corridors set to 0
for all corridors.

A sample value function for this example is shown in List-
ing 3. The agent will need to utilise its knowledge revision

769

B

o

H

o

4

©

-]

(4]

o

o

€

3

9

o

0

a
[—#— no Revision

504' — @~ - with Revision
i ---+-- Correct Shaping
-—8— no Shaping
0 500 1000 1500 2000 2500
Episodes

Figure 9: Pulse.

n

a

=)
T

Discounted Goal Reward
n
o
o
T

1001}

—%— no Revision
— @~ - with Revision
---+-- Correct Shaping
-—8— no Shaping

i
50
!

7500 1000 1500 2000 2500
Episodes

Figure 10: Tomb of the Forgotten King.

350+ . /} ?
I""}%
300
B g
s :
3 250 :
o« o
3 il
S 2000 Ol
b !
2 |
£ I/
3 150f ,
o S
2 ;
a H
100t %
il —#— no Revision
sob il —&- - with Revision
i ---+-- Correct Shaping
J -—8 — no Shaping
oll-*“-‘-_:::‘: ol
500 1000 1500 2000 2500
Episodes

Figure 11: Pharos Ascend.

capabilities and overcome the problems posed by this erro-
neous knowledge. Figures 8, 9, 10 and 11 show the agents’
performance.

Similar to the flag collection domain the abstract MDP
agent can efficiently revise erroneous knowledge even when
dealing with a non-deterministic environment. On all con-
figurations the agent manages to quickly overcome the prob-
lems posed by erroneous knowledge and reach a performance
similar to the agent receiving correct knowledge.

robot_in (rooml) 0
robot_in (hallA) 0
robot_in (room2) 0
robot_in (hallB) 46
robot_in (room4) 55
robot_in (hallC) 68
robot_in (room5) 75
robot_in (hallD) 85
robot_in (hallT) 85
robot_in (room6) 100
robot_in (hallE) 81

Listing 3: Sample Erroneous Value Function in the
Hilda Garde Domain

The agent without knowledge revision takes longer to find
the optimal policy, around 1000 episodes on most cases apart
from Pharos Ascend where it takes more than 4000 episodes
to start improving, while the agent receiving no shaping is
not able to overcome the problem of non-determinism and
cannot reach a good enough policy within the time frame
shown in the graphs.

As the theory suggests all agents are able to reach the
same performance after episode 15000 but the benefits of
using reward shaping and knowledge revision are visible es-
pecially at the start of the experiments.

5. CONCLUSION

Imparting domain knowledge through reward shaping can
significantly increase the learning performance of a RL agent.
However, the provided knowledge may be erroneous which
results in a need for revision. Previous research showed
promising results in deterministic domains but stochastic
environments could not be handled properly [6].

In this paper, we propose a revision algorithm for agents
using abstract MDP reward shaping. We demonstrate em-
pirically that our approach can achieve a similar behaviour
to the revision method using plan-based reward shaping in
deterministic environments, while removing the need for cer-
tain assumptions which make the plan-based method impos-
sible to use in non-deterministic environments.

More importantly, we apply our method to a non-deterministic

environment and empirically demonstrate that our agent
manages to efficiently revise erroneous knowledge in order
to reach better policies, quickly reaching performance of an
agent that receives the correct knowledge.

6. REFERENCES

[1] J. Asmuth, M. Littman, and R. Zinkov.
Potential-based shaping in model-based reinforcement
learning. In Proceedings of the Twenty-Third AAAI
Conference on Artificial Intelligence, pages 604—609,
2008.

D. P. Bertsekas. Dynamic Programming and Optimal
Control (2 Vol Set). Athena Scientific, 3rd edition,
2007.

770

3]

[4]

[5]

[6]

7]

8]
[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

S. Devlin, M. Grzes, and D. Kudenko. An empirical
study of potential-based reward shaping and advice in
complex, multi-agent systems. Advances in Complex
Systems, 2011.

S. Devlin and D. Kudenko. Theoretical considerations
of potential-based reward shaping for multi-agent
systems. In Proceedings of The Tenth Annual
International Conference on Autonomous Agents and
Multiagent Systems, 2011.

S. Devlin and D. Kudenko. Dynamic potential-based
reward shaping. In Proceedings of The Eleventh
Annual International Conference on Autonomous
Agents and Multiagent Systems, 2012.

K. Efthymiadis, S. Devlin, and D. Kudenko.
Overcoming erroneous domain knowledge in
plan-based reward shaping. In Autonomous agents and
multi-agent systems, pages 1245-1246. International
Foundation for Autonomous Agents and Multiagent
Systems, 2013.

K. Efthymiadis and D. Kudenko. Using plan-based
reward shaping to learn strategies in starcraft:
Broodwar. In Computational Intelligence and Games
(CIG). IEEE, 2013.

M. Grze$ and D. Kudenko. Plan-based reward shaping
for reinforcement learning.

M. Grze$ and D. Kudenko. Multigrid Reinforcement
Learning with Reward Shaping. Artificial Neural
Networks-ICANN 2008, pages 357-366, 2008.

B. Marthi. Automatic shaping and decomposition of
reward functions. In International Conference on
Machine learning, page 608. ACM, 2007.

A.Y. Ng, D. Harada, and S. J. Russell. Policy
invariance under reward transformations: Theory and
application to reward shaping. In Proceedings of the
16th International Conference on Machine Learning,
pages 278-287, 1999.

M. L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley and
Sons, Inc., New York, NY, USA, 1994.

J. Randlgv and P. Alstrom. Learning to drive a
bicycle using reinforcement learning and shaping. In
Proceedings of the 15th International Conference on
Machine Learning, pages 463471, 1998.

R. S. Sutton and A. G. Barto. Reinforcement
Learning: An Introduction. MIT Press, 1998.

C. Szepesvari and M. L. Littman. Generalized markov
decision processes: Dynamic-programming and
reinforcement-learning algorithms. Proceedings of
International Conference of Machine Learning, 96,
1996.

E. Wiewiora. Potential-based shaping and Q-value
initialization are equivalent. Journal of Artificial
Intelligence Research, 19(1):205-208, 2003.

