
Adversarial Modeling in the Robotic Coverage Problem

Roi Yehoshua and Noa Agmon
The SMART Group

Bar Ilan University, Israel
{yehoshr1,agmon}@cs.biu.ac.il

ABSTRACT
The general problem of covering an area is a fundamental
problem in robotics with applications in various domains.
In a recently introduced version of the problem, adversar-
ial coverage, the covering robot operates in an environment
that contains threats that might stop it. Previous stud-
ies of this problem dealt with finding optimal strategies for
the coverage, that minimize both the coverage time and the
probability that the robot will be stopped before completing
the coverage. However, these studies assumed a simplistic
adversarial model, in which the threats are randomly scat-
tered across the environment. In this paper, we allow the
adversary to choose the locations of the threats in a way that
maximizes the probability of stopping the robot performing
the coverage. In other words, we discuss the problem of
finding the best strategy to defend a given area from being
covered by an agent, using k given guards. We show that
although in general finding an optimal strategy for an ad-
versary with zero knowledge is NP-Hard, for certain values
of k an optimal strategy can be found in polynomial time,
and for others we suggest heuristics that can significantly
improve the random baseline strategy.

Categories and Subject Descriptors
I.2.9 [Computing Methodologies]: Artificial Intelligence—
Robotics

General Terms
Algorithms, Theory

Keywords
Mobile robot coverage, adversarial coverage, adversarial mod-
eling, motion and path planning, robotics in hazardous fields

1. INTRODUCTION
In robotic coverage, a robot is required to visit every part

of a given area using the most efficient path possible ([1],
[3], [4], [10], [15]). Coverage has many applications in a
multitude of domains, including search and rescue, mapping,
and surveillance.

Appears in: Proceedings of the 14th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2015), Bordini, Elkind, Weiss, Yolum (eds.), May,
4–8, 2015, Istanbul, Turkey.
Copyright c⃝ 2015, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

In a recently introduced version of the problem, adversar-
ial coverage [13], the robot has to cover the given terrain
without being detected or damaged by an adversary. Each
point in the area is associated with a probability of the robot
being stopped at that point. The objective of the robot is
to cover the entire target area as quickly as possible while
minimizing the probability that it will be stopped before
completing the coverage. This version of the problem has
many real-world applications in various domains, from per-
forming coverage missions in hazardous environments such
as nuclear power plants or the surface of Mars, to surveil-
lance of enemy forces in the battle field and field demining.

In previous studies of the problem ([13], [14]), a simplistic
adversarial model, in which the locations of the threat points
in the environment are randomly chosen, was assumed. In
this paper we build a more sophisticated model of the ad-
versary, in which it can choose the best locations of the
threat points, such that the probability of stopping the cov-
ering robot is maximized, i.e., we are examining the opposite
problem of adversarial coverage. In the eyes of the adver-
sary, the threat points are considered as guards that protect
its territory from being covered by an intruder. Here we
assume that the guards are stationary, and they can catch
the robot only if it enters into their positions.

We examine the impact of the adversarial knowledge of
the coverage path on the choice of the guards’ locations,
and provide solutions for adversaries having no knowledge
and full knowledge of the coverage path. We show that
for a full-knowledge adversary there is a simple algorithm
that provides the optimal strategy, whereas finding an op-
timal strategy for a zero-knowledge adversary is NP-Hard.
Nevertheless, we propose an algorithm for a zero-knowledge
adversary that outperforms the baseline random strategy,
and in some cases can provide the optimal solution. We
provide both theoretical and empirical evaluation of these
algorithms. Finally, we discuss some cases in which the
adversary has partial knowledge of the coverage path (for
example, when it only knows where the coverage begins).

2. RELATED WORK
The problem of robot coverage has been extensively dis-

cussed in the literature (see [4] for a recent exhaustive sur-
vey). The adversarial coverage problem, in which the en-
vironment contains threats that may stop the robot, was
formally defined in a recent study [13]. There the authors
proposed a simple heuristic algorithm that generates a cover-
age path which tries to minimize a cost function, that takes
into account both the survivability of the robot and the cov-

891



erage path length. In a follow-up paper [14] they have ad-
dressed a more specific version of the problem, namely, find-
ing the safest coverage path. They suggested two heuristic
algorithms to solve this problem with some theoretical guar-
antees: GAC, which follows a greedy approach and STAC,
a spanning-tree based coverage algorithm. However, these
studies assumed a simplistic adversarial model, in which the
threats are randomly scattered across the environment.
A related problem to coverage is the patrolling problem,

where a team of robots is required to visit a target area re-
peatedly in order to monitor some change in state of that
area, typically to detect an intrusion to the area (see [11]
for a survey on multi-robot patrolling algorithms). In con-
trast, here the guards are stationary and they may catch the
covering robot with some probability less than 1.
Another related problem is the art gallery problem or

museum problem, in which one has to determine the mini-
mum number of guards who together can observe the whole
gallery. This problem is known to be NP-Hard [9]. In con-
trast, here the guards should not only observe the robot but
also prevent it from completing its coverage mission, and
they can do so only when the robot enters the same position
where one of the guards is located. In addition, here we are
not interested in finding the minimum number of guards,
but in finding the best possible locations of k given guards
in order to maximize the probability of stopping the robot.
Pursuit-evasion is another family of problems in which

one group (the pursuers) attempts to track down members
of another group (the evaders) in an environment. Borie
et al. [2] discuss the complexity of several pursuit-evasion
variants, namely how many pursuers are needed to clear a
given graph (i.e., capture all the evaders) and how a given
number of pursuers should move on the graph to clear it with
either a minimum sum of their travel distances or minimum
task-completion time. In contrast to the problem discussed
here, the evaders are not trying to visit all the points in the
area, and also they are facing a mobile agent.

3. PROBLEM FORMULATION
We represent the target area by an undirected connected

graph G = (V,E) with vi ∈ V vertices, ei,j ∈ E edges,
and |V | = n. G corresponds to the topological map for the
coverage mission and is assumed to be known a priori.
The objective of the robot that covers the target area is

to find a path in G of minimum length that visits every
vertex of V at least once. Except for the simplest environ-
ments (e.g., without obstacles), the coverage mission cannot
be completed without repeated visits of some of the ver-
tices. In graph theory, this problem is also known as finding
Hamiltonian walks in graphs [6], which is a generalization of
the Hamiltonian cycle problem and thus it is NP-Complete.
A typical representation of the environment used in the

robotic coverage literature is that of a grid map (e.g., [3],
[10], [15]). In this case, the graph G = (V,E) is the graph
induced by the grid cells, i.e., each grid cell that is not oc-
cupied by an obstacle is represented by a vertex in V and
vertices that represent adjacent free cells in the grid are con-
nected by an edge in E. It is also usually assumed that the
robot can move only in the four basic directions (up/down,
left/right), but not diagonally. Thus, the grid graph G is
4-connected.
To make our analysis as general as possible, we will assume

a generic graph representation of the environment in the

theoretical analysis part. However, in the evaluation part
we will use grid maps as the typical representation.

Some of the coverage algorithms known in the literature
assume that the robot must return to its starting point when
the coverage ends, facilitating its collection and storage (e.g.,
Spiral-STC [3]), while others do not hold this assumption
(e.g., the wavefront algorithm [15]). We will relate to both
cases when we explain how to compute the adversarial plan.

3.1 Adversarial Model
The objective of the adversary is to defend its territory

from being covered by the robot. The adversary can place
k < n guards at different locations of the area. Each guard
has a probability 0 < p ≤ 1 of stopping the robot, when the
robot enters its location.

The goal of the adversary is to assign the k guards to k
locations in the environment such that the probability of
stopping the covering robot is maximized. Let us formally
define this objective function. First, we denote the coverage
path followed by the robot by A = (v1, v2, ..., vm), where
v1, ..., vm are vertices of the graph G. Note that m ≥ n, i.e.,
the number of vertices in the coverage path might be greater
than the number of vertices in G, since the robot might have
to repeat its steps in order to complete the coverage. Let us
denote the probability that the robot is stopped at vertex vi
by pi. pi = p when vi has a guard assigned to it, otherwise
pi = 0. Now, we define the event SA as the event that the
robot is able to complete its coverage path A, without being
stopped by any of the guards. The probability of SA is:

P (SA) =

m∏
i=1

(1− pi) (1)

Thus, the probability that the robot is stopped before
completing its coverage mission is 1− P (SA).

We now distinguish between adversaries having no knowl-
edge and full knowledge of the coverage path. A full-knowledge
adversary knows the exact coverage path A of the robot.
Thus, its objective is to choose k vertices in V at which
to place guards, such that P (SA) is minimized for a spe-
cific coverage path A. On the other hand, a zero-knowledge
adversary has no information on the coverage path of the
robot. Thus, it can only assume that the covering robot fol-
lows an optimal covering strategy, i.e., that it tries to visit
each point in the target area the least possible number of
times. Hence, the objective of a zero-knowledge adversary
is to choose k vertices in V at which to place guards, such
that P (SA) is minimized for an optimal coverage path A.
We also provide a discussion of cases in which the adver-
sary has some knowledge (between full and zero knowledge)
of the covering strategy of the robot, for example when it
knows only the starting location of the coverage path.

3.2 Full-Knowledge Adversary
For a full-knowledge adversary, there is a simple algorithm

with linear run-time that generates an optimal adversarial
strategy with maximum probability of stopping the robot
(see algorithm 1). The idea is to place the given k guards
at vertices that are most frequently visited along the known
coverage path A.

3.3 Zero-Knowledge Adversary
For a zero-knowledge adversary, the problem of finding an

892



Algorithm 1 Place Guards(G,A, k)

input: G = (V,E) - the graph representing the environment, A
- the coverage path, k - the number of guards

1: Compute for every vertex in V the number of times it is visited
by A

2: Run a selection algorithm to find the first k vertices with the
highest number of visits (break ties randomly)

3: Place guards at these k vertices

optimal strategy becomes NP-Hard, as proven by the next
theorem.

Definition 1. Zero-Knowledge Adversarial Coverage Prob-
lem (ZKACP): Given a graph representation of the environ-
ment G = (V,E), choose k vertices of V at which to position
guards, such that the probability of stopping a robot cover-
ing the environment is maximized, assuming that the robot
is following an optimal coverage strategy.

Theorem 1. The ZKACP problem is NP-Hard. 1

Proof. (Sketch). To prove the NP-hardness of the problem,
we will use a reduction from the Hamiltonian path problem,
which is known to be NP-complete [5]. Given an instance
of the Hamiltonian path problem on a graph G = (V,E),
we construct an instance of the zero-knowledge adversarial
coverage problem on the same graph G with k = 1. There
exists a Hamiltonian path in G, if and only if the optimal
strategy for the adversary is to place its single guard at
a random vertex of G. This is because when there is a
Hamiltonian path, the optimal coverage path visits every
vertex in the graph only once, thus there is no difference
at which one the guard is placed. However, when there is
no such path, some of the vertices must be visited more
than once by the optimal coverage path, and thus one of
them must be chosen for the guard’s location by the optimal
adversarial strategy.

4. COMPUTING ADVERSARIAL PLAN
In this section we describe a strategy for placing k guards

in the environment for a zero-knowledge adversary. The
strategy we propose is optimal for certain values of k, and for
others it offers a significant improvement over the random
baseline strategy. The strategy consists of three main steps:

1. Place guards at vertices that must be visited more than
once, giving precedence to vertices that must be visited
more frequently.

2. Place guards at groups of vertices, in which some of the
vertices must be visited more than once, giving prece-
dence to groups that must be visited more frequently.

3. If there are any more guards left to place after taking
the first two steps, use heuristics to choose additional
locations in which to place the remaining guards.

4.1 Vertices that must be visited more than
once

We begin by characterizing the vertices in G that the cov-
ering robot must visit more than once. For that purpose,
we will use the following definitions from graph theory [7].

Definition 2. An articulation point (cut vertex) in a con-
nected graph G is a vertex whose removal would break the
graph into two or more connected components.

1Full proofs can be found in [12].

Definition 3. A connected graph is biconnected if it has
no articulation points.

Definition 4. A biconnected component (a block) is a
maximal biconnected subgraph, i.e. a subgraph with as many
edges as possible and no articulation points.

The block decomposition theorem [7] states that any con-
nected graph decomposes into a tree of biconnected com-
ponents called the block tree of the graph. In this tree the
blocks are attached to each other at the articulation points
of the graph, which are the only shared vertices between
different blocks. The block tree of a graph is unique.

Figure 1 shows an example for a block decomposition of
a graph. The blocks are b1 = ⟨1, 2⟩, b2 = ⟨2, 3, 4⟩, b3 =
⟨2, 5, 6, 7⟩, b4 = ⟨7, 8, 9, 10, 11⟩, b5 = ⟨8, 12, 13, 14, 15⟩, b6 =
⟨10, 16⟩, b7 = ⟨10, 17, 18⟩ and the articulation points are c1 =
2, c2 = 7, c3 = 8, c4 = 10.

Figure 1: A graph (upper) and its block tree (lower).

We will add the following two definitions.

Definition 5. Connectivity(v) is the number of connected
components the graph would split into if v is removed from
the graph.

Definition 6. A k-connected articulation point is an
articulation point whose connectivity is k.

We start by analyzing coverage paths that must return to
their starting vertex.

Coverage paths that return to their starting vertex
The next theorem provides a lower bound on the number of
times each articulation point in G must be visited along any
coverage path that returns to its starting vertex.

Theorem 2. Any coverage path that returns to its starting
vertex must visit every k-connected articulation point at least
k times. In addition, if the starting vertex of the coverage
path, s, is a k-connected articulation point then it must be
visited at least k + 1 times.

Proof. Consider a k-connected articulation point v. Remov-
ing v from the graph breaks it into k connected components

893



C1, ..., Ck. The robot must visit each of these connected
components along its coverage path, and in order to move
between these connected components it must go through v.
Assume without loss of generality that the order of visit
of these components is C1, ..., Ck (the same component may
appear more than once in the sequence). Consider two cases:
Case 1. v ̸= s. In this case s ∈ C1. Thus, the coverage

path has the following structure: p = C1  v  C2  v  
...  Ck  v  C1. Hence, the coverage path must go
through v at least k times.
Case 2. v = s. In this case s does not belong to any of

the connected components Ci. Thus, the coverage path has
the following structure: p = s  C1  s  ...  Ck  s.
Hence, the coverage path must visit s at least k+1 times.

Algorithm 2 describes how to find all the articulation
points in the graph and their connectivity. It is an exten-
sion of the classical linear-time algorithm for computing bi-
connected components in a connected undirected graph by
Hopcroft and Tarjan [8]. The algorithm is based on Depth-
First Search (DFS). The idea is that in a DFS tree of an
undirected graph, a node v is an articulation point, if and
only if for every child u of v there is no back edge from u
to a node higher in the DFS tree than v, i.e., every node in
the descendant subtree of v has no way to visit other nodes
in the graph without passing through v. The algorithm uses
the following definitions.

Definition 7. DfsNum(v) is the DFS visit number of v.

Definition 8. DfsLevel(v) is the DFS tree level of v.

Definition 9. Low(v) is the lowest-numbered vertex reach-
able from v using 0 or more tree edges and then at most one
back edge.

The algorithm is based on the following two key facts:
1. The root of the DFS tree is an articulation point if and

only if it has more than one child.
2. Any other vertex v is an articulation point if and only

if v has some child w such that Low(w) ≥ DfsNum(v),
i.e., there is a child w of v that cannot reach a vertex
visited before v.

In order to find the blocks of the graph, the edges of G
are placed on a stack as they are traversed. When an ar-
ticulation point is found, the corresponding edges of the bi-
connected component are all on top of the stack. The helper
procedure Create Biconnected Component is then used to pop
the edges of this block from the stack.
We have extended the classical algorithm with the follow-

ing additions:
1. We compute the connectivity of each articulation point

(lines 15, 22 and 24 in the algorithm).
2. We maintain for each articulation point a list of all the

blocks that are attached to it in the block tree (lines
17 and 26). This extension will be useful when we
handle the case of the robot not having to return to
its starting point.

The correctness of algorithm 2 with respect to finding the
articulation points and blocks of the graph follows directly
from the correctness of the original algorithm by Hopcroft
and Tarjan [8]. We also prove that the connectivity of each
articulation point is computed correctly by the algorithm.

Theorem 3. (correctness) Algorithm 2 computes correctly
the connectivity of each articulation point.

The runtime complexity of the original algorithm for find-

Algorithm 2 Find Articulation Points(v)

input: v - the current vertex
Global data structures: S - the stack of visited edges,
ArticulationPointList - the list of articulation points
Global initialization: dfsCounter = 0, s.dfsLevel = 0, where s is
the starting vertex.

1: dfsCounter← dfsCounter + 1
2: v.dfsNum← dfsCounter
3: v.low← v.dfsNum
4: for each neighbor w of v do
5: if w was not visited yet then
6: w.dfsLevel← v.dfsLevel + 1
7: Push(S, (v, w))
8: Find Articulation Points(w)
9: ◃ recursively perform DFS at children nodes
10: v.low← min(v.low, w.low)
11: if v.dfsNum = 1 then ◃ special case for root
12: if v.numChildren ≥ 2 then
13: if v /∈ ArticulationPointList then
14: Add v to ArticulationPointList
15: v.connectivity← v.numChildren

16: B ← Create Biconnected Component(S, v, w)
17: Add B to v.blocks
18: else if w.low ≥ v.dfsNum then
19: ◃ v is an articulation point separating w
20: if v /∈ ArticulationPointList then
21: Add v to ArticulationPointList
22: v.connectivity← 2
23: else
24: v.connectivity← v.connectivity + 1

25: B ← Create Biconnected Component(S, v, w)
26: Add B to v.blocks
27: else if w.dfsLevel < v.dfsLevel− 1 then
28: ◃ (v, w) is a back edge
29: v.low← min(v.low, w.dfsNum)
30: Push(S, (v, w))

1: procedure Create Biconnected Component(S, v, w)
input: S - the stack of visited edges, v and w are vertices
where w is a child of v

2: Create a new biconnected component C
3: while Top(S) ̸= (v, w) do
4: ◃ Retrieve all edges in the component
5: (u1, u2)← Pop(S)
6: Add (u1, u2) to C

7: Add Pop(S) to C ◃ Add (v, w) to C
8: return C

ing biconnected components is O(|V |+ |E|). Since we need
to add only O(1) operations to compute the connectivity of
each articulation point, the runtime complexity of algorithm
2 remains linear in the size of the graph.

Given the articulation points of a graph G and their con-
nectivity, we now describe a strategy for placing k guards at
vertices in G (algorithm 3). The idea is to place the guards
at the k articulation points with highest connectivity. If
there are fewer than k articulation points in the graph, the
positions of the remaining guards will be determined by ex-
ploiting additional features of the graph (see section 4.2).
Note that by theorem 2 if the starting vertex s is an articu-
lation point with connectivity c, then it must be visited at
least once more than the other articulation points with the
same connectivity. In this case the algorithm treats s as if
it was an articulation point with connectivity c+ 1.

Since there are worst-case linear time selection algorithms,
the runtime complexity of algorithm 3 is O(|V | + |E|), i.e.,

894



Algorithm 3 Place Guards At Articulation Points(s, k)

input: s - the starting vertex of the coverage, k - the number of
guards

1: ArticulationPointList← Find Articulation Points(s)
2: a← the number of articulation points
3: m← min(k, a)
4: if s is an articulation point then
5: Add 1 to s.connectivity

6: Run a selection algorithm to find the first m articulation
points with the highest connectivity (break ties randomly)

7: Place guards at these m articulation points

linear in the size of the graph.
We now show that for certain values of k, the adversarial

strategy depicted in algorithm 3 is optimal, in the sense that
its probability of stopping a robot that follows an optimal
coverage strategy has the maximum possible value. We start
with the following lemma, that provides an upper bound on
the maximum number of times an optimal coverage path
(i.e., a coverage path with minimum length) must visit every
vertex of the graph.

Lemma 1. Denote the degree of a vertex v by deg(v). An
optimal coverage path of a graph G = (V,E) that returns to
its starting vertex visits every vertex v ∈ V at most deg(v)
times, except for the starting vertex s that is visited at most
deg(s) + 1 times.

Theorem 4. Let the maximum degree in a graph G be d.
If the number of articulation points in G whose connectivity
is d is equal to or greater than the number of guards k, then
the adversarial strategy described in algorithm 3 is optimal.

Proof. By lemma 1, an optimal coverage path that returns to
its starting vertex visits every vertex v ∈ V at most d times,
or d+1 times if v is the starting vertex. By theorem 2, any
such coverage path must visit every d-connected articulation
point at least d times, or d+1 times if it is the starting vertex.
Thus, the optimal coverage path visits every d-connected
articulation point precisely d times if it is not the starting
vertex, or d + 1 times if it is the starting vertex. Hence, d-
connected articulation points are the most frequently visited
vertices along the optimal coverage path. As a consequence,
placing all the given k guards at these articulation points is
guaranteed to maximize the probability of stopping a robot
that follows this path.

We now discuss a case in which the adversary has some
knowledge of the coverage path, namely, it knows where the
coverage begins. The following theorem shows that changing
the starting vertex of the coverage may affect the placement
of only one guard.

Theorem 5. The strategy for placing k guards as given by
algorithm 3 is not affected by changing the starting vertex of
the coverage, except for maybe a placement of one guard.

Proof. The block decomposition of a graph is unique. Thus,
the number of articulation points in the graph and their
connectivity are not affected by the selection of the starting
vertex of the coverage. According to algorithm 3, if the start-
ing vertex is an articulation point, then it gets precedence
over the other articulation points with the same connectiv-
ity, since it must be visited once more. Therefore, changing
the starting vertex of the coverage may affect the placement
of only the guard at the starting vertex.

Coverage paths that do not return to the starting vertex
We now handle the case in which the robot does not have to
return to its starting point when the coverage ends. Simi-
larly to the previous case, the adversary can take advantage
of the articulation points in the graph as locations that must
be visited multiple times by the covering robot. However, in
this case, the number of minimum visits in each articulation
point may depend on the coverage path itself.

The next theorem provides a lower bound on the number
of times each articulation point in G must be visited along
any coverage path. It uses the term terminating subpath
of the coverage path, defined as a simple subpath (with no
repeating vertices) of the coverage path that ends at the
terminating vertex of the coverage path.

Theorem 6. Any coverage path must visit every k-connected
articulation point at least k times, except for maybe articula-
tion points on the terminating subpath of the coverage path,
which must be visited at least k − 1 times. In addition, if
the starting vertex of the coverage path is a k-connected ar-
ticulation point, then it must be visited at least k + 1 times,
unless it is part of the terminating subpath of the coverage,
in which case it is visited at least k times.

According to theorem 6, if the adversary has no informa-
tion on the coverage path, the best it can do is to use the
same strategy for placing the guards as in algorithm 3, since
any articulation point can reside on the terminating sub-
path of some coverage path. However, if the adversary has
some knowledge of the coverage path, particularly if it knows
where the coverage begins, a better strategy for choosing the
articulation points can be devised.

Algorithm 4 describes a strategy for choosing the locations
of k guards, assuming that the adversary knows the starting
location of the coverage. The algorithm uses the block tree
of the graph, rooted at the starting vertex of the coverage
path. The main observation is that the terminating subpath
of the coverage path belongs to a specific branch of the tree,
since moving between branches of the tree requires visiting
one of the articulation points more than once. Since the
articulation points on the terminating subpath may be vis-
ited one time fewer than the other articulation points in the
graph (by theorem 6), we assume that the covering robot
will prefer to finish its coverage path in the branch that
contains the maximum number of articulation points with
guards. Hence, the optimal strategy for the adversary is to
spread the guards evenly across the different branches of the
block tree, such that the number of articulation points with
guards in the branch with the maximum number of such
articulation points is minimized.

First, the helper procedure Create Articulation Points Tree
is used to build a DFS tree that contains only the articula-
tion points of the graph and is rooted at the starting vertex
of the coverage path. Let us denote this tree by T . The
child nodes of an articulation point v in T are defined as the
articulation points contained in all the attached blocks of v.

Going from the highest connectivity level of articulation
points in T to the lowest level, the algorithm calls the pro-
cedure Place Guards to place guards at articulation points
with a given connectivity level. This procedure uses a DFS
scan of T in order to place one guard at every branch of the
tree, starting from the lowest vertices of each branch and go-
ing upwards in every new scan of the tree until reaching the
root. The procedure is continuously invoked, until guards

895



are assigned to all the articulation points within the current
connectivity level.
In order to decide when a branch of the tree cannot be

used anymore to place guards, we maintain two fields for
each vertex in the tree:

• v.containsGuard - a flag indicating whether a guard
has been placed at v

• v.allDescendantsContainGuards - a flag indicating
whether all the descendant vertices of v in T with the
same connectivity as v contain guards. For vertices
with no descendants of the same connectivity, this flag
is also set to true.

When a guard is assigned to an articulation point v, the field
v.containsGuard is updated and also the field allDescen-
dantsContainGuards of its ancestors in the tree is updated
using the procedure Update Vertex. The complete pseudo-
code of the helper procedures Create Articulation Points Tree
and Update Vertex can be found in [12].

Algorithm 4 Place Guards At Articulation Points2(s, k)

input: s - the starting vertex of the coverage, k - the number of
guards

1: ArticulationPointList← Find Articulation Points(s)
2: T ← Create Articulation Points Tree(s)
3: cmin ← the minimum connectivity of any articulation point
4: cmax ← the maximum connectivity of any articulation point
5: g ← 0 ◃ guards placed so far
6: v ← T.root
7: for c = cmax downto cmin do
8: artPointsLeft = true ◃ is there any articulation point

with connectivity c left without a guard
9: while artPointsLeft do
10: if Place Guards(v, c, k) then exit
11: if v.allDescendantsContainGuards and

(v.containsGuard or v.connectivity ̸= c) then
12: artPointsLeft← false

1: procedure Place Guards(v, c, k)
input: v - a vertex in the articulation points tree, c - con-
nectivity level, k - number of guards to place
output: A flag that indicates whether there are any more
guards to place
globals: g - number of guards placed so far

2: if v.allDescendantsContainGuards then
3: if not v.containsGuard and v.connectivity = c then
4: Place a guard at v
5: v.containsGuard← true
6: g ← g + 1
7: if v.parent ̸= null then
8: Update Vertex(v.parent) ◃ update the flag

allDescendantsContainGuards in v’s ancestors
9: if g = k then return true

10: else
11: for each w in v.childNodes do
12: if Place Guards(w, c, k) then return true

13: return false

Lemma 2. The runtime complexity of algorithm 4 on a
graph G = (V,E) is O(|V |2).

4.2 Groups of vertices in which some of the
vertices must be visited more than once

When the number of guards is greater than the number of
articulation points in the graph, we need to find additional
locations in the environment that must be visited by the

covering robot more than once. Another potential group of
such locations is the vertex cuts of the graph, defined as
follows.

Definition 10. A vertex cut in a connected graph G is a
set of vertices whose removal renders G disconnected.

An articulation point is a private case of a vertex cut
which contains only one vertex. As for articulation points,
we define the connectivity of a vertex cut as the number of
connected components the graph splits into when the vertex
cut is removed from the graph. We also define a k-connected
vertex cut as a vertex cut with connectivity k.

The next two theorems provide a lower bound on the num-
ber of times each vertex cut in the graph must be visited
along the coverage path. These are generalizations of theo-
rems 2 and 6.

Theorem 7. Let U be a k-connected vertex cut. Then any
coverage path that returns to its starting vertex must visit
vertices in U at least k times. In addition, if the starting
vertex of the coverage path belongs to U , then the vertices in
U must be visited at least k + 1 times.

Theorem 8. Let U be a k-connected vertex cut. Then any
coverage path must visit vertices in U at least k−1 times. In
addition, if the starting vertex of the coverage path belongs
to U , then the vertices in U must be visited at least k times.

From theorem 8, we can conclude that a k-connected ver-
tex cut with m < k vertices will have at least k − m − 1
repetitive visits along any coverage path. However, the the-
orem does not specify which of the vertices in the vertex cut
will be visited multiple times.

Algorithm 5 describes how to place the remaining guards
at the vertex cuts of the graph. It starts with placing guards
at vertex cuts of size 2 (separating pairs), and then increases
the size of the vertex cuts used, until all the remaining
guards are positioned. The reason for this strategy is that
any vertex cut of size k is also part of a vertex cut of size
k + 1 (adding any vertex in the graph to it creates a ver-
tex cut of size k + 1), and by theorem 8 smaller vertex cuts
have potentially more revisits (ideally, we would have to first
find all the vertex cuts that satisfy the conditions of theo-
rem 8, but computing all the vertex cuts takes exponential
time). For vertex cuts of a given size, the algorithm first
prefers vertex cuts that have higher connectivity, and then
prefers those that are more spread across the environment,
i.e., whose vertices are farther apart from each other. This
heuristic has provided better results in practice than just
choosing randomly between the vertex cuts.

Algorithm 5 uses procedure Find Vertex Cuts to find all
the vertex cuts of size k in the graph. Since we are interested
only in finding vertex cuts that do not contain any proper
subset of vertices which is also a vertex cut, the search for
vertex cuts can be limited to the biconnected components
of the graph. This is proven by the next theorem.

Theorem 9. Any vertex cut that does not contain a proper
subset of vertices, which is also a vertex cut, belongs entirely
to one biconnected component.

We now discuss the runtime complexity of algorithm 5.

Lemma 3. The runtime complexity of Find Vertex Cuts is
O
((|V |

k

)
· (|V |+ |E|)

)
, where k is the given vertex cut size.

Note that for a constant k (which is not dependant on
|V |), the runtime complexity of the procedure is polynomial
in the graph size. On the other hand, if k depends on |V |

896



Algorithm 5 Place Guards At Vertex Cuts(G,LB , g)

input: G - the graph representing the environment, LB - the list
of blocks, g - the number of guards to place

1: n← 0 ◃ the number of guards placed so far
2: k ← 2 ◃ the current cut size
3: while n < g do
4: LC ← Find Vertex Cuts(G,LB , k)
5: Sort the vertex cuts in LC first by their connectivity and

then by their spread (both in descending order)
6: for each vertex cut C ∈ LC do
7: for each vertex v ∈ C do
8: Place a guard in v
9: n← n+ 1
10: if n = g then exit

11: k ← k + 1

1: procedure Find Vertex Cuts(G,L, k)
input: G - the graph representing the environment, LB - the
list of blocks, k - the size of the vertex cut

2: Create a new list of vertex cuts C
3: for every block B ∈ LB do
4: GB ← subgraph of G induced by the nodes in B
5: F ← list of nodes in B that don’t contain guards
6: for every subset S of k nodes in F do
7: Find the connected components in GB−S by run-

ning DFS
8: n← the number of connected components
9: if n > 1 then
10: Add the subset S to C
11: S.connectivity ← n

12: return C

(for example, if k = |V |
2
), then the runtime is exponential.

Theorem 10. The runtime complexity of algorithm 5 is
O
(
2|V | · (|V |+ |E|)

)
.

Although the upper bound on the runtime complexity is
exponential in the number of nodes, in practice using vertex
cuts of sizes 2 and 3 was enough to place all the remaining
guards, thus it was never needed to compute vertex cuts of
size more than k = 3.

5. EMPIRICAL EVALUATION
In this section we evaluate the following four adversarial

strategies:
1. Strategy level 0 is the baseline strategy, in which the

adversary randomly chooses the positions of the guards.
2. Strategy level 1, in which the adversary uses only the

articulation points to place guards according to algo-
rithm 3. If there are more guards to place than ar-
ticulation points, then the positions of the remaining
guards are randomly chosen.

3. Strategy level 2, in which the adversary uses only the
articulation points to place guards, but chooses them
in a more clever way (by running algorithm 4), assum-
ing that it knows the starting location of the coverage.
As in strategy level 1, if there are more guards to place
than articulation points, then the positions of the re-
maining guards are randomly chosen.

4. Strategy level 3, in which the adversary uses both the
articulation points and the vertex cuts of the graph in
order to place guards, by running algorithms 4 and 5.

In the experiments we assume that the coverage path does
not have to return to its starting location.
Note that when the number of guards is greater than the

number of articulation points in the grid’s graph, there is no
difference between the first and the second level strategies,
since they both use all the articulation points for placing
guards. On the other hand, when the number of guards is
lower than or equal to the number of the articulation points,
there is no difference between the second and the third level
strategies, since there is no need to use the vertex cuts in
the graph.

We first use specific maps to illustrate the operations of
the different strategies and then we also report on the sta-
tistical analysis of its behavior based on multiple randomly
generated maps with varying parameters. For the coverage
strategy of the robot we have used GAC (Greedy Adversar-
ial Coverage), the state-of-the-art solution to the adversarial
coverage problem, as described in [14].

Figure 2 demonstrates the effectiveness of algorithm 4 in
choosing the articulation points at which to place guards,
as compared to algorithm 3. The sample map consists of
10 × 10 square cells, 30% of which contain obstacles. The
locations of the obstacles are randomly chosen. There are
20 guards placed on the map. Each guard has a probability
of 3% of stopping the robot. Changing this probability does
not affect the results of the strategies - it just modifies the
overall probability of stopping the robot. In all experiments
the starting position of the robot was set to cell (1,1).

There are 26 articulation points in the graph representing
this map, thus it is enough to use the articulation points
to place all the 20 guards on this map. Comparing the two
maps shows that algorithm 4 spreads the guards more evenly
across the different branches of the blocks tree. Addition-
ally, it prefers to place guards at articulation points that are
located deeper in the blocks tree than at those located near
the beginning of the coverage path. Running GAC on the
map generated by the first level strategy creates a coverage
path that visits cells with guards 37 times and its probabil-
ity to complete is 32.4%. On the other hand, running GAC
on the map generated by the second level strategy creates a
coverage path that visits cells with guards 48 times and its
probability to complete is 23.18%.

Figure 3 shows the result of running algorithm 5 on the
same map. In this case, we increased the number of guards
from 20 to 30, thus four of the guards had to be placed at the
vertex cuts of the graph. The algorithm has chosen two ver-
tex cuts of size 2 in which to place the guards. The first one
consists of cells (7,2) and (8,1). This is the only vertex cut
that splits the graph into 3 connected components. When
GAC is run on this map it visits one of these cells twice
(cell (7,2)). The second vertex cut consists of cells (7,4) and
(10,1). This vertex cut splits the graph into only two con-
nected components. The distance between its vertices (6)
is the largest amongst the vertex cuts with connectivity 2.
Indeed, GAC had to visit one of its cells twice (cell (7,4)).

Next, we have compared the different strategies on 50 ran-
domized maps of size 20 × 20. 30% of the cells in the map
contain obstacles and the other cells are free. The number
of guards that have been placed on the map varied between
0 and 100. Each guard has a probability of 1% of stopping
the robot (a low probability was chosen so we could measure
the effect of adding a large number of guards to the graph,
up to 25% of the map’s size). Figure 4 shows the probability
that the robot will be stopped along its coverage path, when
the adversary is using one of the four mentioned strategies.

As anticipated, for all strategies the probability of stop-

897



Figure 2: An example map with the results of strat-
egy level 1 (upper figure) and strategy level 2 (lower
figure). Cells containing guards are colored with
purple. The numbers in the cells indicate the con-
nectivity of the articulation points.

Figure 3: The results of strategy level 3 on the sam-
ple map. Cells labeled with VC and a number be-
long to the vertex cuts of the graph. The number
in the label indicates the spread of the cut.

ping the robot increases as we add more guards to the map.
We can also see that higher-level strategies dominate the
lower-level strategies. The differences between the results of
the strategies are statistically significant. A one-tailed t-test
between strategies 0 and 1 yields p = 3.67 · 10−51, between
strategies 1 and 2 it yields p = 9.3 · 10−13, and between
strategies 2 and 3 it yields p = 5.83 · 10−19.
On average, the third-level strategy causes the robot to

visit 31 more cells with guards than the baseline random
strategy, and by that to increase the probability of stopping

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

Number of guards

P
ro

b.
 T

o 
S

to
p 

R
ob

ot
 %

 

 

Random
Strategy 1
Strategy 2
Strategy 3

Figure 4: The probability of stopping the covering
robot for different numbers of guards.

the robot by 12.89%.
The first- and second-level strategies differ only when the

number of guards is below 35. As the number of guards
increases from 0 to 35, the gap between these strategies
widens, since there is a greater choice of which articulation
points to choose. For 35 guards, the second-level strategy,
which chooses the articulation points in a more clever way,
causes the robot to visit 2 more cells with guards (on av-
erage), and thus increases the probability of stopping it by
1%.

On the other hand, the second- and third-level strategies
differ only when the number of guards is above 35. The gap
between these strategies increases as we add more guards.
For 100 guards, the third-level strategy, that also uses the
vertex cuts to place guards, causes the robot to visit 9 more
cells with guards (on average), and thus increases the prob-
ability to catch it by 1.7%.

6. CONCLUSIONS AND FUTURE WORK
We have described how to model an adversary in the

robotic coverage problem, and examined the impact of the
adversarial knowledge on the model. By analyzing the graph
representing the target area for the coverage, we have shown
how the adversary can take advantage of the vulnerability
points in the environment (i.e., those that must be visited by
the covering robot more than once), in order to increase the
probability of stopping the covering robot. Although find-
ing an optimal strategy for a zero-knowledge adversary is
generally hard, when the number of guards that can be used
by the adversary to protect its territory is limited to certain
values, such an optimal strategy can be found in polynomial
time. For other cases, we have suggested how to exploit
additional features of the representative graph in order to
devise an adversarial strategy that outperforms the random
baseline strategy. Finally, we have evaluated different levels
of adversarial strategies in an extensive set of experiments.

In the future, we intend to use the knowledge gained from
this research in order to develop new coverage strategies
that take into account the model of the adversary. We also
plan to investigate adversarial strategies that can deal with
a multi-robot team that covers the given area.

898



7. REFERENCES
[1] E. M. Arkin, S. P. Fekete, and J. S. Mitchell.

Approximation algorithms for lawn mowing and
milling. Computational Geometry, 17(1):25–50, 2000.

[2] R. Borie, C. Tovey, and S. Koenig. Algorithms and
complexity results for graph-based pursuit evasion.
Autonomous Robots, 31(4):317–332, 2011.

[3] Y. Gabriely and E. Rimon. Competitive on-line
coverage of grid environments by a mobile robot.
Computational Geometry, 24(3):197–224, 2003.

[4] E. Galceran and M. Carreras. A survey on coverage
path planning for robotics. Robotics and Autonomous
Systems, 61(12):1258–1276, 2013.

[5] M. R. Garey and D. S. Johnson. Computers and
intractability: a guide to the theory of
NP-completeness. Freeman, San Francisco, 1979.

[6] S. Goodman and S. T. Hedetniemi. On Hamiltonian
walks in graphs. SIAM Journal on Computing,
3(3):214–221, 1974.

[7] F. Harary. Graph theory, 1969.

[8] J. E. Hopcroft and R. E. Tarjan. Efficient algorithms
for graph manipulation. Communications of the ACM,
16(6):372–378, 1973.

[9] D. T. Lee and A. Lin. Computational complexity of
art gallery problems. IEEE Transactions on
Information Theory, 32(2):276–282, 1986.

[10] C. Luo, S. X. Yang, D. A. Stacey, and J. C. Jofriet. A
solution to vicinity problem of obstacles in complete
coverage path planning. In Proc. IEEE International
Conference on Robotics and Automation (ICRA-02),
volume 1, pages 612–617, 2002.

[11] D. Portugal and R. Rocha. A survey on multi-robot
patrolling algorithms. In Technological Innovation for
Sustainability, pages 139–146. Springer, 2011.

[12] R. Yehoshua and N. Agmon. Adversarial modeling in
the robotic coverage problem: Proofs and algorithm
details. Technical Report SMART 2015/01, available
at http://www.cs.biu.ac.il/∼yehoshr1/, Bar Ilan
University, Computer Science Department, SMART
Group, 2015.

[13] R. Yehoshua, N. Agmon, and G. A. Kaminka. Robotic
adversarial coverage: Introduction and preliminary
results. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS-13), pages
6000–6005, 2013.

[14] R. Yehoshua, N. Agmon, and G. A. Kaminka. Safest
path adversarial coverage. In IEEE/RSJ International
Conference on Intelligent Robots and Systems
(IROS-14), pages 3027–3032, 2014.

[15] A. Zelinsky, R. A. Jarvis, J. Byrne, and S. Yuta.
Planning paths of complete coverage of an
unstructured environment by a mobile robot. In
Proceedings of international conference on advanced
robotics, volume 13, pages 533–538, 1993.

899




