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ABSTRACT
Cake cutting has been recognized as a fundamental model in
fair division, and several envy-free cake cutting algorithms
have been proposed. Recent works from the computer sci-
ence field proposed novelmechanisms for cake cutting, whose
approaches are based on the theory of mechanism design;
these mechanisms are strategy-proof, i.e., no agent has any
incentive to misrepresent her utility function, as well as
envy-free. We consider a different type of manipulations;
each agent might create fake identities to cheat the mecha-
nism. Such manipulations have been called Sybils or false-
name manipulations, and designing robust mechanisms against
them, i.e., false-name-proof, is a challenging problem in mech-
anism design literature. We first show that no random-
ized false-name-proof cake cutting mechanism simultane-
ously satisfies ex-post envy-freeness and Pareto efficiency.
We then propose a new randomized mechanism that is op-
timal in terms of worst-case loss among those that satisfy
false-name-proofness, ex-post envy-freeness, and a new weaker
efficiency property. However, it reduces the amount of allo-
cations for an agent exponentially with respect to the num-
ber of agents. To overcome this negative result, we pro-
vide another new cake cutting mechanism that satisfies a
weaker notion of false-name-proofness, as well as ex-post
envy-freeness and Pareto efficiency.
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1. INTRODUCTION
Cake cutting is a fundamental model of fair division [10,

15, 16] in which agents share a whole cake that is usually
represented as an interval, say [0, 1], in a fair manner. This
abstract model can be applied to many realistic situations
for sharing a divisible good, such as land, time slots of a
computational resource, usage of a meeting room, etc. Sev-
eral cake cutting protocol/algorithms have been developed
in the literature, such as cut-and-choose and moving-knife.

In cake cutting, envy-freeness (in an ex-post sense) is one
of the most studied fairness properties. An allocation/share
of the cake is said to be envy-free if, under it, no agent envies
any other one, i.e., no agent wants to trade her share for any
other’s share. For instance, when there are only two agents,
any allocation produced from the cut-and-choose protocol
satisfies envy-freeness.

In recent years, there are several notable works on cake
cutting, which consider the problem as mechanism design
and propose strategy-proof cake cutting mechanisms, rather
than cake cutting protocols. A cake cutting mechanism asks
each agent to report her utility (valuation) function over the
cake, instead of indicating where she wants the cut to oc-
cur. Under a strategy-proof cake cutting mechanism, it is
guaranteed that reporting a true utility function is a dom-
inant strategy, although she could report any utility func-
tion. Many strategy-proof cake cutting mechanisms have
been proposed in the computer science field [3, 13, 14]. Es-
pecially, the mechanism proposed in Chen et al. [9] is known
to be strategy-proof and envy-free, as well as satisfies an ef-
ficiency property called Pareto efficiency.

In mechanism design literature, there is another line of
research on agents’ manipulations: false-name-proof mecha-
nism design. Assuming that each agent can use fake identi-
ties besides of her true one, they consider designing mech-
anisms in which no agent has such an incentive to use fake
identities. In cake cutting mechanisms implemented in highly
anonymous environments, such as over the Internet or a net-
work, each agent might pretend to be multiple agents by
adding fake identities to receive more pieces of cake. Fur-
thermore, an agent might also ask her friends/colleagues
who are willing to work with her to hand over any pieces
of cake they might get.

Let us look at an example of a cake cutting situation with
such false-name manipulations. Consider a computational
resource that is available from 9am to 5pm in your research
institute, where any group in it can apply for usage rights,
i.e., time slots. When your group urgently needs the resource
due to an upcoming deadline, you want more time slots.
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However, under a fair (or more specifically, envy-free) cake
cutting mechanism, it seems unlikely that your group will
get more slots than other groups who also face the same
deadline. In this situation, your group could apply for the
resource under “fake groups,” e.g., by asking colleagues in
different groups who have no upcoming deadline.
In this paper we investigate the effect of such false-name

manipulations in randomized cake cutting mechanisms that
respects some fairness property. As long as the authors
know, this is the first work of false-name-proof mechanism
design for cake cutting. We first show two impossibility
results: (i) no randomized false-name-proof cake cutting
mechanism satisfies ex-post proportionality, which is another
well-studied fairness property, and (ii) no randomized false-
name-proof cake cutting mechanism simultaneously satisfies
ex-post envy-freeness and Pareto efficiency. Since all the
other properties than false-name-proofness are very tradi-
tional and well-studied in the literature, these two results
have quite negative implication in false-name-proof cake cut-
ting. They could, however, be natural starting points of
further discussion that dig deeper the effect of false-name
manipulations in cake cutting and general fair division prob-
lems.
We then propose a new randomized cake cutting mecha-

nism that satisfies false-name-proofness, ex-post envy-freeness,
and a weak efficiency property called simple allocation. Fur-
thermore, the proposed mechanism is almost deterministic,
meaning that randomization only occurs in the mechanism
for “tie-breaking”, and each agent related to the random tie-
breaking receives the same ex-post utility under any realiza-
tion of allocation as long as she truthfully report her utility
function. We further show that the proposed mechanism
is optimal in terms of the worst-case non-wastefulness ratio
among those that satisfy all the three properties. Having
this kind of worst case guarantee is theoretically quite ap-
pealing when we see a mechanism as an algorithm, although
the ratio converges to zero when the number of agents grows.
In the wake of the negative insight that the proposed

mechanism only guarantees a very weak efficiency property,
we finally show an approach for obtaining positive results,
namely, weakening the definition of false-name-proofness.
We define a weaker notion of false-name-proofness by as-
suming that each agent could use only one (possible fake)
identity to receive a piece of cake, although she could add
any number of fake identities. We then propose a new ran-
domized mechanism that satisfies false-name-proofness in
this weaker sense, as well as ex-post envy-freeness, ex-post
proportionality, and Pareto efficiency. This positive result
under the natural restriction on false-name manipulations
sheds light on the possibility of false-name-proof mecha-
nism design, compared to several existing negative results
on false-name-proof mechanisms in various domains such as
combinatorial auctions.

2. RELATED WORKS

Traditional Envy-Free Cake Cutting.
Gamow and Stern [10] proposed a cake cutting proto-

col that returns an envy-free allocation when only three
agents exist. Brams and Taylor [7] extended the results and
proposed an algorithm that returns an envy-free allocation
by discrete procedures for any number of agents. In an-
other way, Austin [2] proposed an algorithm that returns an

envy-free allocation for two agents, based on the well-known
moving-knife protocol. Barbanel and Brams [4] extended
this algorithm for three and four agents.

Mechanism Design for Cake Cutting.
Brams [6] investigated the effects of strategic manipula-

tions in cake cutting. Chen et al. [9] proposed a polynomial-
time cake cutting mechanism that satisfies strategy-proofness,
proportionality, envy-freeness, and Pareto efficiency under
piecewise uniform utility (valuation) functions. Maya and
Nisan [13] proposed a cake cutting mechanism for two agents,
which is strategy-proof and Pareto efficient, and provided
several characterization results. Mossel and Tamuz [14] pro-
posed a randomized cake cutting mechanism that satisfies
strategy-proofness, proportionality, and Pareto efficiency un-
der general utility functions. Aziz and Ye [3] proposed a
randomized cake cutting mechanism that satisfies strategy-
proofness and proportionality under piecewise uniform and
piecewise constant utility functions.

False-name-proofness.
Yokoo et al. [17, 22] initiated the research on false-name-

proof mechanism design, which revealed that the VCGmech-
anism is not false-name-proof and provided an impossibil-
ity theorem. Todo et al. [19] identified a condition called
sub-additivity which characterizes false-name-proof alloca-
tion rules for combinatorial auctions. Iwasaki et al. [11]
analyzed the lower and the upper bounds of the worst-case
efficiency that can be obtained by false-name-proof combina-
torial auction mechanisms. Even though these results seem
quite negative, there are also some works producing posi-
tive insights. For example, Alkalay-Houlian and Vetta [1]
analyzed the efficiency of VCG in the Nash equilibria when
false-name manipulations are possible and showed that it is
constant under natural assumptions on agents’ valuations.
Todo and Conitzer [18] showed that well-studied matching
mechanisms are false-name-proof.

3. MODEL
In this section we introduce the cake cutting model con-

sidered by this paper. We basically follow the precise model
proposed in Chen et al. [9].

Let N be the set of all potential agents/identities. Let
N = {1, 2, . . . , n} ⊆ N be a set of attending agents/identities,
while n := |N | indicates the number of elements within the
set N . The cake is represented as an interval [0, 1]. A piece
X of cake is a finite union of intervals in the cake, i.e.,
[0, 1]. Let len(I) = y − x be the length of a closed interval
I = [x, y] ⊆ [0, 1] with x ≤ y, and let len(X) =

∑
I∈X len(I)

be the length of a piece X of cake, where I ∈ X indicates
each interval that consists of the piece X.

Each agent i ∈ N has a value density function vi : [0, 1] →
R≥0, which represents her preference/valuation over the cake.
The utility Ui(X) of an agent i with a value density function
vi when she receives a piece of cake X is given as

Ui(X) :=
∑
I∈X

∫
I

vi(x)dx.

Here the utility function Ui is uniquely determined by the
value density function vi. Therefore, in what follows we
assume without loss of generality that each agent has the
utility function Ui as its private information. Furthermore,
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Figure 1: Example of reference pieces: r1 = [.1, .6]
and r2 = [0, 1]

we assume that for a given distribution P over some pieces
of the cake, an agent i’s utility is defined as an expected
utility over the distribution, i.e., Ui(P ) = EX∼PUi(X). By
definition, any utility function Ui is automatically additive
and non-atomic. We also assume that it is normalized.

additive: Ui(X ∪Y ) = Ui(X)+Ui(Y ) for any X,Y ⊆ [0, 1]
such that X ∩ Y = ∅,

non-atomic: Ui([x, x]) = 0 for any x ∈ [0, 1], and

normalized: Ui([0, 1]) = 1.

Note that we can treat open/half-open intervals as closed in-
tervals with respect to agents’ utilities by the non-atomicity
property.
In this paper, we further restrict our attention to piecewise

uniform utility functions [9]. Each agent i with a utility
function Ui, which is derived from a value density function
vi, has a reference piece ri ⊆ [0, 1], which represents finite
union of intervals, and a non-negative and certain utility
for it. More formally, agents’ value density functions are
restricted to the following form:

vi(x) =

{
1

len(ri)
if x ∈ ri,

0 otherwise.

Let us emphasize that a reference piece can be a union of
intervals. The utility Ui(X) of an agent i with a value den-
sity function vi (when she receives a piece X of cake) is
represented, by the reference piece ri, as:

Ui(X) =
len(X ∩ ri)

len(ri)
.

We show an example of piecewise uniform utility functions
in Fig. 1, which also indicates their reference pieces. The
horizontal axis represents the whole cake, while the vertical
axis indicates the valuation for the cake.
Let U denote the set of all possible piecewise uniform util-

ity functions, which is common among all potential agents.
Let U = (Ui)i∈N ∈ Un denote a profile of the utility func-
tions of attending agents N , U−i = (Uj)j∈N\{i} ∈ Un−1

denote a profile of the utility functions of attending agents
N except for i, and (Ui, U−i) denote a profile of utility func-
tions when an agent i reports Ui and the other agents report
U−i.
A feasible allocation A of the cake to a set of attend-

ing agents/identities N is represented as a tuple (Ai)i∈N ,
where Ai indicates an allocation to a specific agent i ∈ N ,
Ai∩Aj = ∅ for any pair i, j(̸= i) ∈ N , and

∪
i∈N Ai ⊆ [0, 1].

Let AN denote the set of all feasible allocations to N . Fur-
thermore, let ∆(AN ) denote the set of all possible probabil-
ity distributions over the set AN .

Now we are ready to define randomized cake cutting mech-
anisms (shortly, randomized mechanisms). A randomized
mechanism f is a union of functions fN : Un → ∆(AN ) for
each N ⊆ N . That is, fN maps a profile of utility func-
tions reported by N to a probability distribution over AN .
For simplicity, we usually abbreviate fN to f if it is clear
from the context. For a given profile U of utility functions,
let f(U) denote the distribution that a mechanism f re-
turns, and fi(U) denote the distribution over the pieces of
the cake allocated to agent i according to f(U). Further-
more, we sometimes say an allocation A is realizable by a
randomized mechanism f under a profile U if f(U) assigns
non-zero probability to A, and represent this by A ∼ f(U).

3.1 Properties
Cake cutting mechanisms are expected to satisfy ’good’

properties, three of which we introduce here: ex-post envy-
freeness, strategy-proofness, and false-name-proofness.

We first define ex-post envy-freeness, which is one rep-
resentative property of fairness concepts. Intuitively it re-
quires that no agent envies any other agent. More precisely,
no agent gets better utility by trading her own piece of the
cake for a piece allocated to any other agent. Note that this
property is defined in the ex-post sense, meaning that the
above must hold for any realization of allocation.

Definition 1 (Ex-Post Envy-Freeness). A random-
ized cake cutting mechanism f is said to satisfy ex-post envy-
freeness if for any N ⊆ N , any U ∈ Un, any A ∼ f(U), and
any i, j(̸= i) ∈ N , Ui(Ai) ≥ Ui(Aj).

We next define an incentive property called strategy-proofness,
which requires that reporting a true utility function to a
mechanism is the best strategy, i.e., truth-telling is a domi-
nant strategy, for every agent.

Definition 2 (Strategy-Proofness). A randomized
cake cutting mechanism f is said to satisfy strategy-proofness
if for any N ⊆ N , any i ∈ N , any U−i ∈ Un−1, any Ui ∈ U ,
and any U ′

i ∈ U ,

Ui(fi((Ui, U−i))) ≥ Ui(fi((U
′
i , U−i))).

In this paper we discuss false-name-proofness, which is a
stronger incentive property than strategy-proofness. False-
name-proofness requires that reporting a true utility func-
tion to a mechanism only using one identity is a dominant
strategy for every agent, even though she could add fake
identities and pretend to be multiple agents. In other words,
under a false-name-proof mechanism, an agent’s expected
utility when she reports her true utility function using only
one identity is (weakly) greater than the expected utility
for the union of the pieces of cakes she gets under multiple
identities.

Definition 3 (False-Name-Proofness). A random-
ized cake cutting mechanism f is said to satisfy false-name-
proofness if for any N ⊆ N , any i ∈ N , any U−i ∈ Un−1,
any Ui ∈ U , any U ′

i ∈ U , any S ⊆ N \N , and any US ∈ Uk

s.t., k = |S|,

Ui(fi((Ui, U−i))) ≥
∑

j∈{i}∪S

Ui(fj((U
′
i , U−i, US))),

where (U ′
i , U−i, US) indicates the profile of utility functions

when an agent i reports U ′
i under her true identity and US

under fake identities S and the other agents report U−i.
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By setting S = ∅, we can easily observe that if a mech-
anism is false-name-proof, then it is also strategy-proof. In
the rest of this paper (except for Section 4.1), we will study
ex-post envy-free and false-name-proof cake cutting mecha-
nisms.

4. PRELIMINARY IMPOSSIBILITIES
Fairness is one of the most studied concepts of cake cut-

ting algorithms/mechanisms. Therefore, in this paper, we
start our discussion by investigating the relationships be-
tween false-name-proofness and fairness properties. We fo-
cus on two fairness properties; ex-post proportionality and
ex-post envy-freeness. In the following two subsections, we
show two impossibility results: (i) there exists no mecha-
nism that satisfies false-name-proofness and ex-post propor-
tionality, and (ii) there exists no mechanism that satisfies
false-name-proofness, ex-post envy-freeness, and Pareto ef-
ficiency.

4.1 Impossibility with Proportionality
Proportionality is another well-known fairness property in

the literature of fair division. As an exercise, we first derive
an impossibility result by taking ex-post proportionality into
account, instead of ex-post envy-freeness, as a fairness prop-
erty in conjunction with false-name-proofness.
Let us first define the proportionality property. It intu-

itively requires that every agent receives a utility of at least
1/n for her own perspective, where n is the number of at-
tending agents/identities. The following is its formal de-
scription:

Definition 4 (Ex-Post Proportionality). A random-
ized cake cutting mechanism f is said to satisfy ex-post pro-
portionality if for any N ⊆ N , any U ∈ Un, any A ∼ f(U),
and any i ∈ N , Ui(Ai) ≥ 1

n
holds.

Ex-post proportionality is implied by ex-post envy-freeness
in the case that the entire cake is distributed. It seems ob-
vious that this property is incompatible with false-name-
proofness, since adding a large enough number of fake iden-
tities increases the manipulator’s (expected) share of the
whole cake arbitrarily close to one in any proportional cake
cutting mechanism. We now formally show this intuition.

Proposition 1. There exists no randomized cake cutting
mechanism that satisfies false-name-proofness and ex-post
proportionality.

Proof. For the sake of contradiction, we assume that
there exists a cake cutting mechanism f that satisfies false-
name-proofness and ex-post proportionality.
We first consider the following case: there are only two

agents {i, j}, who have the same utility function, i.e., Ui =
Uj ∈ U . Let A = (Ai, Aj) be an arbitrary allocation realiz-
able by the mechanism under the profile U = (Ui, Uj). From
ex-post proportionality, Ui(Ai) ≥ 1

2
and Uj(Aj) ≥ 1

2
. Fur-

thermore, since Ai∩Aj = ∅ from feasibility, Ui = Uj implies
Ui(Aj) ≥ 1

2
and Uj(Ai) ≥ 1

2
. Therefore, under the normal-

ization assumption, it must hold that Ui(Ai) = Uj(Aj) =
1
2

for any realizable allocation A, and thus Ui(fi(U)) =

Uj(fj(U)) = 1
2
.

We then consider the following case: there is also another
agent k with the same utility function, i.e., Uk = Ui = Uj .
Let B = (Bi, Bj , Bk) be an arbitrary allocation realizable

by the mechanism under the profile Ũ = (Ui, Uj , Uk). By
almost the same argument as above, we have Ui(Bi) =

Uj(Bj) = Uk(Bk) = 1
3

for any B, and thus Ui(fi(Ũ)) =

Uj(fj(Ũ)) = Uk(fk(Ũ)) = 1
3
.

Here, consider that the agent i in the first case adds a
fake identity k to make the situation identical to the second
case. By this false-name manipulation, agent i’s utility in-
creases from Ui(fi(U)) = 1

2
to Ui(fi(Ũ)) + Ui(fk(Ũ)) = 2

3
,

which contradicts the assumption that the mechanism is
false-name-proof.

Note that the statement is also true even if we just re-
quire interim envy-freeness, meaning that no agent envies
any other agent in expectation. The ‘tightness’ of the im-
possibility, i.e., the necessity of both of the properties for
deriving the contradiction in the proof, can be easily ver-
ified. For example, a mechanism that does not allocate
any piece at all, which has been sometimes referred to as
the ‘empty allocation’ mechanism, is obviously false-name-
proof, but not proportional. On the other hand, we can
design a proportional mechanism based on the well-known
moving-knife algorithm, but it cannot be false-name-proof.

4.2 Impossibility with Envy-Freeness
We now return to our main subject: the compatibility of

false-name-proofness and ex-post envy-freeness. Some read-
ers may already be aware that the ‘empty allocation’ mech-
anism (the false-name-proof one mentioned in Section 4.1)
also satisfies ex-post envy-freeness. However, since it is com-
pletely inadequate in terms of the quality of allocations, it
possesses no interest at all in practical applications. There-
fore, in this subsection we introduce an efficiency property
called Pareto efficiency, which guarantees the quality of the
allocations obtained by the mechanisms.

Pareto efficiency, which is one of well-studied efficiency
properties in the literature of social choice and mechanism
design, requires that the allocation obtained by a mechanism
must always be ‘socially optimal.’ More precisely, for a given
allocation obtained by a Pareto efficient mechanism, there
exists no other allocation that weakly raises the utilities of all
the attending agents/identities and strictly raises the utility
of at least one.

Definition 5 (Pareto Efficiency). For a given N ⊆
N and U ∈ Un, an allocation A′ ∈ AN is said to Pareto
dominates another allocation A ∈ AN if Ui(A

′
i) ≥ Ui(Ai)

holds for any i ∈ N , with inequality strict for some j ∈ N .
A randomized cake cutting mechanism f is said to satisfy
Pareto efficiency if for any N ⊆ N , and any U ⊆ Un, and
for any A ∼ f(U), there exists no allocation A′ ∈ AN that
Pareto dominates A.

The following theorem shows the incompatibility between
false-name-proofness and ex-post envy-freeness under Pareto
efficiency, which is one of our main contribution in this pa-
per. Since its proof closely resembles the proof of Proposi-
tion 1, we only sketch it here.

Theorem 1. There exists no randomized cake cutting mech-
anism that satisfies false-name-proofness, ex-post envy-freeness,
and Pareto efficiency.

Proof Sketch. For the sake of contradiction, we assume
that there exists a mechanism f that satisfies false-name-
proofness, ex-post envy-freeness, and Pareto efficiency.
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We first consider that there are only two agents {i, j},
who have the same utility function Ui = Uj with a reference
piece [0, 1] and show that Ui(fi(U)) = Uj(fj(U)) = 1

2
for

U = (Ui, Uj).
Let A = (Ai, Aj) be an arbitrary allocation realizable

by the mechanism under the profile U . Since both refer-
ence pieces are [0, 1], Ui(Ai) = len(Ai ∩ [0, 1])/len([0, 1]) =
len(Ai) and Uj(Aj) = len(Aj). From ex-post envy-freeness,
len(Ai) = len(Aj) holds. Furthermore, from Pareto effi-
ciency, Ai ∪Aj = [0, 1] must hold; otherwise we can find an
allocation that Pareto dominates A by just allocating the
remaining pieces [0, 1] \ {Ai ∪ Aj} of the cakes to either of
the agents with keeping the original allocations Ai and Aj

still assigned to each agent. Therefore, it must be the case
that Ui(Ai) = Uj(Aj) =

1
2
for any such realizable allocation

A, and thus Ui(fi(U)) = Uj(fj(U)) = 1
2
.

We next consider the following case: there is also another
agent k with the same utility function, i.e., Uk = Ui = Uj ,
with the reference piece [0, 1]. By almost the same argument

as above, Ui(fi(Ũ)) = Uj(fj(Ũ)) = Uk(fk(Ũ)) = 1
3
holds for

the profile Ũ = (Ui, Uj , Uk).
The rest of the proof is identical with the proof of Propo-

sition 1.

We then verify the tightness of the impossibility. As we
have already seen, the ‘empty allocation’ mechanism is false-
name-proof and ex-post envy-free but not Pareto efficient. A
serial-dictatorship mechanism, based on such unmanipulable
signals as log-in timestamp, is false-name-proof and Pareto
efficient but not ex-post envy-free. Finally, a randomized
mechanism that will be presented in Section 6 is Pareto ef-
ficient and ex-post envy-free (and even strategy-proof) but
not false-name-proof.

5. ALTERNATIVE EFFICIENCY
Due to Theorem 1 which we provided in the previous sec-

tion, we need to abandon Pareto efficiency as an efficiency
property, as long as both false-name-proofness and ex-post
envy-freeness are hard requirements. In this section, we in-
troduce a weaker efficiency property called simple allocation,
which can be satisfied by false-name-proof and ex-post envy-
free randomized mechanisms.
A key idea for introducing a new efficiency property is

that we should reduce the amount of allocations when there
is conflict between agents/identities’ reference pieces, since
during the proof of Theorem 1 we only considered prefer-
ence profiles such that all the agents have the same prefer-
ence. This idea sounds reasonable from the perspective of
mechanism design; because an agent who is going to cheat
could manipulate the existence of a conflict between refer-
ence pieces by false-name manipulations, e.g., adding a fake
identity having a utility function with the same reference
piece, false-name-proof mechanisms should not allocate such
pieces which more than one agent wants.
Therefore, as an extreme starting point, we define the new

efficiency property in the following manner. For any interval
of the cake, when it is solely required by exactly one agent,
it must be allocated to that agent. In other words, if more
than one agent wants to receive an interval of the cake (i.e.,
there is a conflict between reference pieces over it), then it
does not have to be allocated to any agent.
To define the property, we introduce a few additional no-

tations. For a given profile U of the utility functions asso-

ciated with reference pieces r1, . . . , rn, and a given agent i,
r̂i ⊆ ri is the piece that the agent i solely requires, i.e.,

r̂i = ri \
∪

j∈N\{i}

rj .

We sometimes say below that a piece X ⊆ [0, 1] is with
conflicts if there is a set of at least two agents, say {i, j},
in N with utility functions associated with reference pieces,
say ri and rj , such that X = ri ∩ rj .

Definition 6 (Simple Allocation). A randomized
cake cutting mechanism f is said to satisfy simple alloca-
tion if for any N ⊆ N , any U ∈ Un, any A ∼ f(U), and
any i ∈ N , r̂i ⊆ Ai holds.

To make the paper self-contained, we explicitly show the
intuition that the new property is weaker than Pareto effi-
ciency in the following lemma.

Lemma 1. If a randomized cake cutting mechanism satis-
fies Pareto efficiency, then it also satisfies simple allocation.

Proof Sketch. Consider a mechanism f that does not
satisfy simple allocation but does satisfy Pareto efficiency.
Then under some utility profile and realized allocation, at
least one agent i misses an interval of the length non-zero
within r̂i. Since such a missed interval is not required by
any other agent by definition, assigning it to i with keeping
all the remaining allocations the same Pareto dominates the
original allocation.

5.1 Mechanism Satisfying Simple Allocation
We then propose a randomized cake cutting mechanism

that satisfies false-name-proofness, ex-post envy-freeness, and
simple allocation and provide an example that shows how it
works. For defining the mechanism, let us first introduce a
concept called minimal valid partition.

Definition 7 (Minimal Valid Partition). Given a set
N of attending agents and a profile of utility functions asso-
ciated with reference pieces (ri)i∈N , we say a set of intervals
I is a valid partition of the interval [0, 1] if

• each I ∈ I is a continuous interval,

• ∀I, I ′ ∈ I, I ∩ I ′ = ∅,

•
∪

I∈I I = [0, 1], and

• ∀I ∈ I,∀i ∈ N , either I ⊆ ri or I ∩ ri = ∅ holds.

We say I is a minimal valid partition if |I| is minimized
within all valid partitions for a given N and (ri)i∈N .

Note that finding a minimal valid partition is easy; we
first collect the start and end points of intervals within the
reference pieces of all agents. Let L = (p0, . . . , pl) be the list
of these points sorted in an ascending order, where dupli-
cated points are eliminated, p0 = 0, and pl = 1 hold. Then,
the minimal valid partition must be I = {[pk, pk+1] | 0 ≤
k ≤ l− 1}. By using the concept of minimal valid partition,
we define a randomized cake cutting mechanism.

Mechanism 1. Given a set N of attending agents, and a
profile U of utility functions, let I be a minimal valid parti-
tion. For each I ∈ I, let W (I, U) be {i ∈ N | I ⊆ ri}. Di-

vide each I into 2|T |−1 intervals of the same length, and as-
sign exactly one arbitrary interval (among 2|T |−1) uniformly
at random to each agent i ∈ T , where T = W (I, U).
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Figure 2: Three agents i, j, k with reference pieces
ri = [0, 1], rj = [.3, .6] ∪ [.7, 1], and rk = [.2, 1].

Example 1. Consider there are three agents N = {i, j, k},
whose utility functions U = (Ui, Uj , Uk) are associated with
reference pieces ri = [0, 1], rj = [.3, .6] ∪ [.7, 1], and rk =
[.2, 1], respectively (please see Fig. 2).
Then, the minimal valid partition is {[0, .2), [.2, .3), [.3, .6),

[.6, .7), [.7, 1]}. These intervals are allocated as follows.

• [0, .2) is given to agent i.

• [.2, .3) is divided into two intervals, e.g., [.2, .25) and
[.25, .3). Each of i and k receives one of them with
equal provability 1/2.

• [.3, .6) is divided into four intervals. e.g., [.3, .375),
[.375, .45), [.45, .525), and [.525, .6). Each of i, j, and
k receives one of them with equal probability 1/4. One
interval remains unallocated.

• [.6, .7) is divided into two intervals, e.g., [.6, .65) and
[.65, .7). Each of i and k receives one of them with
equal provability 1/2.

• [.7, 1] is divided into four intervals, e.g., [.7, .775),
[.775, .85), [.85, .925), and [.925, 1]. Each of i, j, and
k receives one of them with equal probability 1/4. One
interval remains unallocated.

The proposed mechanism guarantees false-name-proofness
by reducing the amount of allocations for each agent expo-
nentially with respect to the number of attending agents,
motivated by the false-name-proof mechanism proposed in
Tsuruta et al. [20] for redistribution auctions. The follow-
ing theorem shows this intuition as well as other desirable
properties.

Theorem 2. Mechanism 1 satisfies false-name-proofness,
ex-post envy-freeness, and simple allocation.

Proof Sketch. The proposed mechanism obviously sat-
isfies simple allocation, since for each i, r̂i is solely allocated
to the agent i for any realization by its definition.
We next show ex-post envy-freeness. For a given profile

U and a given agent i, its reference piece is divided into
intervals in I. For each I ∈ I, where i ∈ T = W (I, U), by
definition, i receives the same length of the interval in I with
each of the other agents j ∈ T \ {i}, for every such I and
every realization from the mechanism. Therefore, no other
agent in N \ {i} could have a strictly better utility, with
respect to i’s utility function, than her own utility under
any realization, which implies ex-post envy-freeness.
We finally prove that the mechanism satisfies false-name-

proofness. Let us fix U−i and focus on an agent i. Let I

be the minimal valid partition computed by the mechanism
when i truthfully report her utility function using only one
identity. For each I ∈ I, where i ∈ T = W (I, U), by the def-
inition of the mechanism, she receives an expected utility of
1/2|T |−1 of Ui(I) under truth-telling. We can also easily see
that she could not receive more than this by any misreport
(while might receive a smaller expected utility by shrinking
her reference piece ri), as long as she does not use fake iden-
tities. Furthermore, for any given false-name manipulation
that reports U ′

i under her true identity and US under a set
S of fake identities, where associated reference pieces are
r′i and rj for j ∈ S respectively, using one reference piece
r∗i = r′i ∪

∪
j∈S rj under her true identity without using any

fake one gives her at least as same utility as it. Therefore,
there exists no beneficial false-name manipulation, which
completes the proof.

Another good property of the proposed mechanism is that
it is “almost deterministic,” meaning that randomization
only occurs for determining allocation of pieces with con-
flicts, as a kind of tie-breaking, and each agent related to
the random tie-breaking receives the same ex-post utility
under any realization of allocations as long as she truthfully
reports her utility function.

Let us note here that the proposed mechanism is even
not strategy-proof in ex-post sense. That is, between two
specific realizations, one of which for a truth-telling case and
the other for a misreporting case, an agent could better off.
For example, consider the following case: there are only two
agents i, j, whose utility functions Ui and Uj are associated
with reference pieces ri = [0, .5] and rj = [0, 1], respectively.
Then, from the distribution f((Ui, Uj)), agent i receives one
between, e.g., [0, .25) and [.25, .5), both of which give her an
ex-post utility of 1/2. On the other hand, when i misreports
her utility functions as U ′

i with a reference piece r′i = [0, 1],
agent i receives, e.g., [0, .5) under a realization of allocation
(and [.5, 1] under the other realization), which gives her an
ex-post utility of 1, although the expected utility is 1/2 as
we have already verified in the proof above.

Since exponentially decreasing amount of allocation is un-
happy for the agents, some readers may think the proposed
mechanism is not a “good” mechanism. In the next sub-
section, we show optimality of this mechanism in terms of
worst-case non-wastefulness ratio: how much portion of the
desired intervals are allocated to the agents.

5.2 Worst-Case Optimality
As we have already seen at the beginning of this section,

the simple allocation property is developed in a quite pes-
simistic way; because allocating pieces with conflicts all such
pieces with conflicts are thrown out. Therefore, although the
proposed mechanism satisfies simple allocation, one might
deem it still very poor in terms of efficiency due to its re-
duction of allocation with respect to the number of agents.
Actually, it is true that when all attending n agents have the
same reference piece [0, 1], only n/2n−1 of the whole cake is
allocated for any realization, which converges to zero. We
could show in Theorem 3 and Proposition 2, however, that
in terms of the worst-case non-wastefulness, the proposed
mechanism is optimal among those that satisfy false-name-
proofness and ex-post envy-freeness.

Definition 8 (Worst-Case Non-Wastefulness Ratio).
For a given n, a randomized cake cutting mechanism f is
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said to have a worst-case non-wastefulness ratio (WCNWR)
of αn ∈ R≥0 if

αn ≤ arg min
N s.t., |N|=n,U∈Un,A∼f(U)

len
(∪

i∈N Ai

)
len

(∪
i∈N ri

) .

Intuitively, the worst-case non-wastefulness ratio of a mech-
anism shows how much portion of the desired intervals are
allocated to the agents. Having a bigger worst-case non-
wastefulness ratio is considered better in terms of efficiency
in the worst-case. If a mechanism is Pareto efficient, then it
has the worst-case non-wastefulness ratio of one. The follow-
ing theorem shows the upper bound of the worst-case non-
wastefulness ratio of mechanisms that satisfy false-name-
proofness and ex-post envy-freeness.

Theorem 3. For any n ≥ 2, any randomized mechanism
that satisfies false-name-proofness and ex-post envy-freeness
has a worst-case non-wastefulness ratio of at most n/2n−1.

Proof. We prove the theorem by induction on n, for ar-
bitrary randomized mechanism f that satisfies false-name-
proofness and ex-post envy-freeness. We can obviously see
that the statement is true for n = 2, i.e., the base case, since
the ratio cannot exceed one by definition.
We then go to the induction step. Assuming that the

statement is true for n = m(≥ 3), we show that the state-
ment is also true for n = m + 1. For the sake of con-
tradiction, we assume αm+1 > (m + 1)/2m. Consider a

profile Ũ ∈ Um+1 with the same reference piece [0, 1] (as
the proof of Proposition 1). By definition of αm+1, it must
hold, for any i ∈ N with |N | = m + 1 and for any realiza-

tion B ∼ f(Ũ), that αm+1 ≤ len
(∪

i∈N Bi

)
/len

(∪
i∈N ri

)
.

Therefore, (m+1)/2m < len
(∪

i∈N Bi

)
/len

(∪
i∈N ri

)
holds

for any i ∈ N and any realization B. Furthermore, from ex-
post envy-freeness and the fact that all the reference pieces
are [0, 1], each of the m + 1 agents must have the same
amount. Thus, it must hold that len(Bi) > 1/2m for any
agent/identity i ∈ N .
On the other hand, from the assumption that the state-

ment is true for n = m, αm ≥ m/2m−1 holds. This implies
in conjunction with ex-post envy-freeness that len(Ai) ≤
1/2m−1 holds for any i ∈ N ′ and for any realization A ∼
f(U), where |N ′| = m and U ∈ Um is the profile of identical
utility functions associated with the reference piece [0, 1].
Therefore, an agent in N ′ can make the situation identical
to the above one by creating a fake identity with the same
utility function, which increases her utility from ≤ 1/2m−1

to > 2/2m = 1/2m−1.

We now complete the optimality result by intuitively show-
ing that the proposed mechanism matches the upper bound,
i.e., has the worst-case non-wastefulness ratio of n/2n−1 for
arbitrary n ≥ 2.

Proposition 2 (Optimality w.r.t. WCNWR). For
any n ≥ 2, Mechanism 1 has the worst-case non-wastefulness
ratio of n/2n−1.

Proof Sketch. Let f denote the proposed mechanism.
By definition, we can see, for any n ≥ 2, any U ∈ Un, and
any realization A ∼ f(U), that the ratio is described as∑

I∈I len(I) · |T |
2|T |−1

len
(∪

i∈N ri
) .

The denominator is bounded from above by 1, while |T |
2|T |−1

is bounded from bottom by |N |/2|N|−1. Furthermore, by
the definition of the valid partition,

∑
I∈I len(I) = 1 holds.

Therefore, the ratio is bounded from bottom by n
2n−1 .

Let us note that the optimality with respect to the worst-
case non-wastefulness ratio seems strongly depending on ex-
post envy-freeness, as we used it in the proof of the upper
bound. Actually we remain unsure whether Mechanism 1 is
optimal even among all mechanisms that satisfy false-name-
proofness, including those that do not satisfy ex-post envy-
freeness.

Open Question 1. Does there exist any cake cutting mech-
anism that is false-name-proof and has a better worst-case
non-wastefulness ratio than Mechanism 1?

Furthermore, even though we focus on randomized mecha-
nisms that satisfy false-name-proof and ex-post envy-freeness,
it is also still open to clarify whether there exists a mech-
anism that Pareto dominates Mechanism 1, meaning that
for every realization under any profile of utility functions
it is not Pareto dominated by Mechanism 1, and for some
realization under some profile it Pareto dominates Mecha-
nism 1. In other words, is there any mechanism that strictly
better than Mechanism 1 with respect to efficiency and also
matches the best possible WCNWR?

6. BEYOND THE IMPOSSIBILITY
As we have already seen in the previous section, we could

not come up with any mechanism that respects good effi-
ciency properties in the worst case, as long as we keep all
the other requirements unchanged. In this section we define
a weaker notion of false-name-proofness, which conceptually
assumes that each agent can use exactly one (possibly fake)
identity to receive a piece of cake, although she could use
multiple fake identities. Under this assumption, we modify
Mechanism 1 to improve the worst-case non-wastefulness ra-
tio and satisfy the weaker notion of false-name-proofness, as
well as remain ex-post envy-free.

In practice, it seems natural to assume that receiving a
piece of cake, e.g., a usage right/time slot of a shared com-
putational server, needs direct contact with a mechanism
designer or a third party for confirmation. In this sense,
it is reasonable to consider the following weaker notion of
false-name-proofness as robustness against false-name ma-
nipulations.

Definition 9 (Weak False-Name-Proofness). A ran-
domized cake cutting mechanism f is said to satisfy weak
false-name-proofness if for any N ⊆ N , any i ∈ N , any
U−i = Un−1, any Ui ∈ U , any U ′

i ∈ U , any S ⊆ N \N , and
any US ∈ Uk s.t., k = |S|,

Ui(fi((Ui, U−i))) ≥ max
j∈{i}∪S

Ui(fj((U
′
i , U−i, US))).

That is, under a weakly false-name-proof mechanism, the
utility when an agent reports her true utility function is
never smaller than the maximal utility she can receive un-
der a single identity by any false-name manipulation. The
weaker definition of false-name-proofness was also used in
Todo and Conitzer [18] in the context of two-sided matching.
It is obvious that this weaker notion of false-name-proofness
still implies strategy-proofness.
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The following mechanism is a slight modification of Mech-
anism 1, whose behavior is described in Example 2.

Mechanism 2. Given a set N of attending agents and a
profile U of utility functions, let I be a minimal valid par-
tition. For each I ∈ I, let W (I, U) be {i ∈ N | I ⊆ ri}.
Divide each I into |T | intervals of the same length, and as-
sign exactly one arbitrary interval (among |T |) uniformly at
random to each agent i ∈ T , where T = W (I, U).

Example 2. Consider the same situation with Example 1.
By the definition of the mechanism,

• [0, .2) is given to agent i.

• [.2, .3) is divided into two intervals. Each of i and k
receives one of them with equal provability 1/2.

• [.3, .6) is divided into three intervals. Each of i, j, and
k receives one of them with equal probability 1/3.

• [.6, .7) is divided into two intervals. Each of i and k
receives one of them with equal provability 1/2.

• [.7, 1] is divided into three intervals. Each of i, j, and
k receives one of them with equal probability 1/3.

Now we show that the mechanism satisfies all the require-
ments introduced in this paper, namely, ex-post propor-
tionality, ex-post envy-freeness, Pareto efficiency, and weak
false-name-proofness.

Theorem 4. Mechanism 2 satisfies ex-post envy-freeness,
ex-post proportionality, Pareto efficiency, and weak false-
name-proofness.

Proof Sketch. We can show ex-post envy-freeness by
the same argument with the proof of Theorem 2. Further-
more, Pareto efficiency obviously holds since the mechanism
allocate every piece within the interval

∪
i∈N ri to an agent

who have non-zero utility for it.
We next show ex-post proportionality. For each agent i,

consider the set of intervals I in the minimal valid partition
I such that i ∈ T = W (I, U). Note that by definition, the
union of such intervals i coincides with i’s reference piece ri.
Here, for each of such I, agent i receives 1/|T | of it under any
realization. Thus, her utility is described as

∑
I(Ui(I)/|T |)

regardless of realization, where the summation is taken over
those interval I with I ⊆ ri. Therefore,∑

I

Ui(I)

|T | ≥
∑

I Ui(I)

|N | =
Ui(ri)

|N | =
1

|N |

holds, which implies ex-post proportionality.
We finally prove that the mechanism satisfies weak false-

name-proofness. Let us fix U−i and focus on an agent i. Let
I be the minimal valid partition computed by the mecha-
nism when i truthfully report her utility function Ui using
only one identity. For each I ∈ I, where i ∈ T = W (I, U),
by the definition of the mechanism, she receives an expected
utility of at most 1/|T | of Ui(I) when she does not use
fake identities. That is, the mechanism satisfies strategy-
proofness.
We then consider an arbitrary false-name manipulation

by agent i with adding a set S of fake identities. We first
replace all the utility functions by i’s true utility function
Ui, i.e., the mechanism takes (Ui, U−i, US) as the argument,

where US = (Ui, . . . , Ui) ∈ U |S|. In this case, it holds by
the definition of the mechanism that Ui(fi((Ui, U−i))) ≥
Ui(fi((Ui, U−i, US))). Furthermore, all the identities in {i}∪
S, including her true one, must receive the same utility from
ex-post envy-freeness. Therefore, no identity is receiving a
strictly higher expected utility than Ui(fi((Ui, US))) with
respect to its utility function Ui (note that in this case all
those identities have the same utility function Ui). By re-
placing each of the utility functions of {i} ∪ S one by one,
we can emulate any possible false-name manipulation by i
that adds the set S of fake identities. Here, from strategy-
proofness, no identity can better off compared to the above
case with respect to Ui at each step to the target false-name
manipulation. This argument holds for any S, which com-
pletes the proof.

On the other hand, as we can obviously see from The-
orem 1 and the fact that Mechanism 2 satisfies both ex-
post envy-freeness and Pareto efficiency, it is not false-name-
proof. For instance, when there are only two agents, say i, j,
whose utility functions are identical and associated with the
reference piece [0, 1], agent i could better off by adding a
fake k also with the same reference piece and totally obtains
a utility of 2/3 under the two identity, instead of just 1/2
by truth-telling under its true identity only (as we already
see in the proof of Theorem 1).

7. CONCLUSION
In this paper, we investigate the effect of false-name ma-

nipulations in fair cake cutting mechanisms. We first show
two impossibility results: (i) the incompatibility of false-
name-proofness and ex-post proportionality, and (ii) the in-
compatibility between false-name-proofness, ex-post envy-
freeness, and Pareto efficiency. We then propose a new ran-
domized cake cutting mechanism that satisfies false-name-
proofness, ex-post envy-freeness, and a very weak efficiency
property called simple allocation. Our proposed mechanism
is optimal among those satisfying false-name-proofness and
ex-post envy-freeness with respect to the worst-case non-
wastefulness ratio. We finally determine that by naturally
weakening the requirement of false-name-proofness, we can
design a randomized cake cutting mechanism that satisfies
ex-post proportionality, ex-post envy-freeness, and Pareto
efficiency as well as weak false-name-proofness.

In addition to some open questions mentioned above, it
would also be an interesting future direction to consider dif-
ferent equilibrium concepts, such as Nash equilibria, when
false-name manipulations are possible. In the literature of
social choice and fair division, analyzing the cake cutting
protocol based on the Nash equilibria is a very natural ap-
proach [8]. Even in false-name-proof mechanism design, re-
cent papers have considered the Nash equilibria to analyze
the quality of solutions by mechanisms that are not fully
false-name-proof [1, 12]. Other approaches for preventing
false-name manipulations, such as introducing participation
costs [21], might work as well.
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