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ABSTRACT
Bitcoin is an innovative decentralized cryptocurrency whose
core security relies on a “proof of work” procedure, which
requires network participants to repeatedly compute hashes
on inputs from a large search space. Finding one of the rare
inputs that generates an extremely low hash value is consid-
ered a successful attempt, allowing miners to approve new
transactions and, in return, to collect rewards in bitcoins.

This reward allocation, which provides the incentive for
miners to participate, is a random process with a large vari-
ance. Miners who desire a steady income thus often par-
ticipate in mining pools that divide among their members
the earned rewards, and reduce this variance. Mining pools
are slightly better at coordinating participants due to lower-
latency communication, a fact which implies that they man-
age to collect slightly higher rewards.

We examine dynamics of pooled mining and the rewards
that pools manage to collect, and use cooperative game the-
oretic tools to analyze how pool members may share these
rewards. We show that for some network parameters, es-
pecially under high transaction loads, it is difficult or even
impossible to distribute rewards in a stable way: some par-
ticipants are always incentivized to switch between pools.
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1. INTRODUCTION
Bitcoin [30] is a digital currency created in 2009. Its main

achievement is its ability to arrive at a consensus about the
valid transaction history in a totally decentralized fashion.

Agents in the Bitcoin network contribute computational
power in order to maintain, secure, and extend Bitcoin’s
public ledger, the block chain. In return for their resources,
the agents are awarded some amount of bitcoins, in some
proportion to the computational power they invested.

Bitcoin’s security relies on a proof of work framework,
where a money transfer is only considered valid once the sys-
tem obtains proof that a sufficient amount of computational
work has been exerted by authorizing nodes. To achieve
this, the network of participants, called miners, constantly
attempts to solve cryptographic puzzles in the form of a hash
computation. Each block in the shared data structure, the
block chain, contains a set of transactions. The process of
adding a new block to the block chain is called mining. To
mine a block, a miner must examine inputs in a huge pos-
sible space X, seeking an input x ∈ X that, when hashed
along with the block’s contents using a cryptographic hash
function h, yields a value below a certain threshold t, so
that h(b(x)) < t (where b(x) denotes the block with value
x inserted into it). To incentivize participants to search for
such an input, when such a hash is found and a block is
mined, the block is released to the network, and if the ma-
jority of miners (in terms of computational power) consider
this block to be valid and build further blocks on top of it,
the miner who mined that block is rewarded with bitcoins.

An input x selected at random from X has a very small
probability of having a low value under the hash, denoted
as pt = Prx∈X(h(b(x)) < t). Thus trying a random input
from the space is a Bernoulli trial with a success probability
pt. Currently, Bitcoin is designed to set the threshold t so
that a single block would be mined in the entire network in
expectation once every 10 minutes. Hence, a miner with a
state-of-the-art mining machine [19] will in expectation wait
687 days to mine a single block [44].

This results in a large variance in rewards across miners —
even with a long time horizon of a few months, the majority
of miners would get no rewards, while a few miners would
get large rewards. Most miners seek to have a steady income
stream and wish to reduce the variance in rewards. To do so,
miners form teams, called mining pools, that share rewards
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among the pool members. When a pool member finds a
successful input (i.e., an input x where h(b(x)) < t) the
block is mined and the rewards are distributed among the
pool members. As pool participants may be unequal in their
computational resources, the rewards are split among them
in proportion to their contributed computational power.

Combining powers by forming a pool not only reduces the
volatility in the rewards of its participants but also increases
their total accumulated revenue. As the pool presents itself
to the Bitcoin network as a single powerful node, it is able
to gain an advantage over other agents, by prevailing in the
case of natural conflicts in the network. Moreover, a recently
proposed attack allows a pool that encompasses more than a
third of the network’s overall computational power to obtain
more than its fair share of the rewards, by deviating from
the Bitcoin protocol rules [24].

Our contribution: We consider how the existence of
mining pools affects the reward allocation in the Bitcoin
network. We analyze the effect of skewed rewards, and
demonstrate the fact that a pool gains more rewards, in
expectation, than its fair share (that which corresponds to
the fraction of computational power held by the pool’s par-
ticipants). We show that the non-linear returns depend on
the communication delay parameters of the network. This
makes decisions regarding which mining pool to join a strate-
gic choice, motivating the use of software agents that choose
which pool to join so as to optimize payoffs.

We use tools from cooperative game theory to study which
pools agents may wish to join, and how pool members are
likely to share the monetary rewards. We show that due to
the non-linear nature of returns, it may be difficult to dis-
tribute the pool’s rewards among its participants in a stable
way: any reward allocation creates an incentive for some
miners to leave their pool and join other pools so as to in-
crease their expected reward. Furthermore, we show that
this instability becomes more severe as the network pro-
cesses high transaction loads. We thus expect that as more
people adopt Bitcoin, there will be a higher rate of miners
switching pools, resulting in a larger overhead for using the
system. Our analysis constitutes a practical application of
cooperative game theory in the context of automated agents,
which might be responsible for decision-making regarding
which pool to join, at any moment, so as to maximize pay-
offs. It illustrates the use of game theoretic tools applied to
a real-world software environment.

2. PRELIMINARIES
We start with a brief overview of Bitcoin.1 Bitcoin is a de-

centralized crypto-currency. Two kinds of agents participate
in the Bitcoin network: clients, who trade in the currency,
and miners, who validate monetary transactions. We focus
on interactions among miners. The entire transaction his-
tory of Bitcoin is stored on a shared data structure called
the block chain. Every block in the block chain contains a
set of the recent transactions it approves. In addition, its
header contains, among other meta-data fields, a pointer to
its predecessor in the block chain, a compressed represen-
tation of its transaction set, and a “nonce” field which acts
as a proof of work. The blocks thus form a tree, rooted at
the “genesis block” which was created at Bitcoin’s inception,

1This is a partial description. A more detailed account can
be found in [30] and the Bitcoin Wiki.

A0 A1 A2 A3 A4 A5 A6 A7

B2 B5 B6C5

Figure 1: An illustration of a block tree. Blocks in
the longest chain from the genesis block (dotted, A0)
to one of the leaves are black. Blocks that are not in
the longest chain are white. The next mined block
should refer to block A7 as its previous block.

with each block being a child of the block it references in its
header.

The process of adding a new block to the block chain is
called “mining a block”. For a block to be considered valid,
the value of the hash of its header must be lower than a
target threshold t. The nonce field can then be utilized to
modify the hash’s result to meet t. The only known method
to find a suitable nonce is by random search.

A miner is an agent that continuously tries to mine blocks.
The more hashes a miner can compute per time unit, the
more likely she is to mine the next block. When a miner
mines a valid block, she publishes it to the Bitcoin network;
if the block is eventually extended and is part of the longest
chain, its creator is rewarded with bitcoins.

We assume a fixed reward per mined block. The probabil-
ity that a single hash based on a random nonce results in a
valid block is very low, and the number of mined blocks per
time unit of a miner can be well approximated as a Poisson
process.

A chain in the block tree is a path from a leaf block to the
genesis block. Under the Bitcoin protocol, the longest chain
is the only valid chain, so transactions that are not recorded
in a block that is contained in the longest chain are not
considered valid. Moreover, miners are only rewarded for
blocks in the longest chain, so they are incentivized to extend
the longest chain of which they are aware. The longest chain
rule is designed to allow miners to reach consensus on the
state of the chain and to mitigate attacks on the protocol,
such as double-spending [37]. We assume that miners are
honest and follow the protocol. Figure 1 illustrates a block
chain and the longest chain rule. Miners communicate over
TCP [17], and delays in communication are inevitable. The
delay between fellow miners might vary based on geographic
location, physical connection, hardware, software and the
size of the message [20]. For simplicity, we assume that the
delay between every two miners is fixed.

While a new block is created in the whole Bitcoin network
every 10 minutes, in expectation, a single agent (with limited
resources) is likely to wait a very long period of time before
creating a block, due to the size of the network. To achieve
more steady and predictable returns on their investment in
computational resources, miners collaborate and form teams
called pools, managed by some pool manager. When one of
the pool members succeeds in mining a block, the members
share its rewards, in proportion to their computational con-
tributions [36].

Internal communication within a pool is relatively effi-
cient, as the pool manager sends to its miners only block
headers, while they send back only suitable nonce fields.
This is in contrast to communication outside the pool, where
agents send entire blocks to one another.
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Cooperative Games.
We analyze agent interactions in pools using cooperative

game theory. A (transferable utility) Coalitional Game [29]
is composed of a set of players I, |I| = n, and a charac-
teristic function v : 2I → < specifying the monetary value
that any coalition (a subset of the agents working as a team)
can achieve when cooperating. Intuitively, v (C) is the to-
tal utility that the members in C ⊆ I can gain by work-
ing together. The characteristic function describes the total
payoff of every coalition, but it does not prescribe a way of
distributing these payoffs among the agents in the coalition.
Such a division is called an imputation. An imputation is
a vector x ∈ <|I| that divides the gains of the grand coali-
tion I among all the agents, where

∑
i∈I xi = v (I) and

xi ≥ 0 is the payoff of player i. The most prominent solu-
tion concept that describes stability in coalitional games is
the core [25]. An imputation x is blocked by some coalition
B ⊆ I if the members of B can abandon the grand coali-
tion and achieve a higher utility, by working as a group of
their own, than the share currently allocated to them; that
is, v(B) >

∑
i∈B xi. An imputation x is in the core if it is

not blocked by any coalition, i.e., for any coalition C ⊂ I we
have that x (C) ≥ v (C) (where x (C) =

∑
i∈C xi).

Cooperative Games with Coalition Structures.
In many domains several teams may form, creating a

structure of coalitions. Cooperative games with Coalition
Structures have been used by artificial intelligence researchers
to model agent collaboration and team formation [21, 39, 40,
42]. A coalition structure is a partition of the agent set I
into disjoint sets called teams. That is, S = {C1, . . . , Cm} is
a coalition structure over I iff

⋃m
i=1 Ci = I and for all i 6= j,

Ci ∩ Cj = ∅. We denote by CS (I) the set of all possible
coalition structures over I. In some settings, the value of a
coalition depends on the structure of the other coalitions. A
cooperative game with coalition structures is defined by a
partition function [33] that takes as input a coalition struc-
ture S ∈ CS (I) and a coalition C ∈ S and outputs a value
v (S, C) = vS (C), i.e., it determines the utility of a coali-
tion C under the partition of other agents, as given by S.
Similar to transferable utility coalitional games, agents need
to divide the gains of each team in the coalition structure.
An imputation associated with S is a vector x ∈ <|I| such
that for all i ∈ I, xi ≥ 0, and for every C ∈ S it holds that
x (C) = vS (C). An imputation associated with S is in the
CS-core of S if for every C ⊂ I we have x (C) ≥ vSC (C),
where SC = {C} ∪ {{D\C} : D ∈ S, D\C 6= ∅}. Intuitively,
an imputation is in the CS-core of S if there is no agent
subset that can gain by leaving their teams and forming a
new team.

D-Stability.
Requiring that no agent subset can gain by leaving their

teams and forming a new team is quite a strong demand.
In some situations, not every agent subset can collaborate
and form a new team. To address this, we define a defection
function [2]. A defection function is a function, D : CS (I)→
2I that associates with each coalition structure in CS (I) a
set of coalitions. Intuitively, for a coalition structure S, and
a coalition C ∈ I, we say that the agents in C can defect
from S only if C ∈ D (S). An imputation associated with S
is D-stable if for every C ∈ D (S) we have x (C) ≥ vSC (C).

Figure 2: An example of a network with 9 miners
and 3 pools. The small circles represent the miners
and the large circles represent the pool managers;
edges represent overlay connections between nodes.

In addition, we define the D-CS-core of S as the set of all
the D-stable imputations that are associated with S.

In this paper we focus on the defection function DMS that
allows one coalition to merge with a subset of another coali-
tion, or for a subset of a coalition to split from its coalition.

For a coalition structure S ∈ CS (I) we define DMS (S) :=
DM (S) ∪ DS (S), where DM (S) is the set of all possible
merges between a coalition and a (possibly trivial) subset
of another, and DS (S) is the set of all possible splits of a
coalition into two (possibly trivial) subsets. Formally, we
define DM (S) := {C|D1 ⊂ C ⊂ D1 ∪D2, D1, D2 ∈ S}, and
DS (S) := {C|C ⊂ D,D ∈ S}.

3. A NETWORK OF MINERS
We model the mining pool interactions as a miner net-

work. A miner network is a tuple Γ = 〈M,S,P, D, d, λ〉,
whereM = {1, . . . , n} is the set of miners; S is the partition
of some of the miners into pools (where each element in S is a
team of miners constituting a single pool); P = {p1, . . . , pn}
is the distribution of the computational power among the
miners — if pi is agent i’s fraction of computational power
then ∀i ∈ M, pi ∈ [0, 1], and

∑
i∈M pi = 1; D > 0 is

the delay in communication, in seconds, between machines
of different pools (delay between pools); d > 0 is the delay
between machines in the same pool (delay within a pool);
and λ is the expected number of blocks mined by the net-
work, per second. We assume that every miner i ∈M mines
blocks according to a Poisson process with parameter piλ.
A miner that does not participate in a pool is referred to as
a solo miner. In our model, miners in a pool communicate
only through the pool manager. Hence, if miner i in pool Cj
mined block B at time t, then at time t+d her pool manager
knows B was mined. At this point, if B extends the longest
chain then the pool manager publishes it to the rest of the
network, and updates its participants about the header of
the next block to mine. Upon which, at time t+2d the other
miners in pool Cj will learn of B, and at time t+ d+D the
other pool managers and solo miners will learn of B. An
illustration of a network with 9 miners and 3 pools is given
in Figure 2.

We follow the notations of Sompolinsky and Zohar [43];
for a given miner network, Γ, we define β = β (Γ) to be the
rate of block addition to the longest chain per second.

For every miner i, we denote by γi = γ (Γ)i ∈ [0, 1] the
probability that a block belonging to the longest chain was
mined by miner i. For every pool Cj ∈ S we define γCj =∑
i∈Cj γi. As miners are only rewarded for blocks in the

longest chain, a miner i has an incentive to increase γi.
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Lemma 1. Let Γ = 〈M,S,P, D, d, λ〉 be a miner network
with |M| > 1 miners, D > 0 and d > 0. For every solo
miner i, it holds that λ ≥ β (Γ) > piλ.

Proof. The left-hand side inequality holds because in
the best case, every block is in the longest chain. As for the
right-hand side, any sequence of blocks created by the same
agent is necessarily of increasing height, hence the growth
rate of the longest chain is lower bounded by any solo miner’s
block creation rate.

Lemma 2. Let Γ = 〈M, {M} ,P, D, d, λ〉, be a miner
network with one pool and no solo miners. Then β (Γ) =
λ

1+2dλ
.

Proof. Under this miner network the pool manager’s
longest chain coincides with the network’s. Let block B be
the last block that was created and accepted by the man-
ager as extending the longest chain. Upon its acceptance,
it takes d seconds for the manager to update the miners
(including B’s creator) with the new block-header to mine;
any block created during this interval will be ignored by the
manager as outdated. After λ−1 seconds, in expectation, a
new block C is created, which points at B as its predeces-
sor, and it takes an additional d seconds for the manager to
learn about C, during which, again, any additional created
block will be wasted. Thus the expected time lag between
consecutive lengthening of the longest chain is 2d+λ−1 sec-
onds, which implies that the longest chain’s growth rate is(
2d+ λ−1

)−1
= λ

1+2dλ
.

Retargeting Only transactions on the longest chain are
considered valid, so the volume of transactions the Bitcoin
network can process is determined by the rate of block ad-
dition to the longest chain, rather than the total number
of blocks mined. Given a target rate β for longest chain
growth in a miner network Γ, the protocol parameters are
set so that β (Γ) = β.2 This is achieved by determining the
threshold t below which the value should be, after the hash.
Requiring a larger run of zeros in the value under the hash
(i.e., a lower threshold t) makes fewer possible nonces from
the space be successful ones, raising the computational bur-
den on the miners. Adjusting the threshold to get a desired
value of β (Γ) = β is referred to as retargeting [16].

4. THE TWO MINER CASE
We extend the analysis of miner networks with two miners

(and no pools) from Sompolinsky and Zohar [43].

Theorem 3 (Sompolinsky and Zohar). Let Γ be a
miner network with two solo miners. Then

β = β (Γ) =
(λp1)2 e2Dp1λ − (λp2)2 e2Dp2λ

λp1e2Dp1λ − λp2e2Dp2λ
(1)

and when p1 = p2 = 1
2

it holds that β (Γ) = λ 2+Dλ
2+2Dλ

.

Theorem 4. Let Γ be a miner network with two solo min-
ers. Then

γ (Γ)1 =
p21e

2Dλp1 − p1p2
(

2 e2Dλ−1

e2Dλp1+e2Dλp2−2
− 1
)

p21e
2Dλp1 − p22e2Dλp2

(2)

2We abuse the notation and use β to denote both the pa-
rameter and the function.
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Figure 3: γ1 as a function of Dλ, for p1 = 0.55, p2 =
0.45.

The theorem implies that γ (Γ)2 = 1 − γ (Γ)1. When p1 =
p2 = 1

2
, using L’Hopital’s rule we get γ1 = γ2 = 1

2
. The

proof uses similar techniques to Sompolinsky and Zohar [43],
and is omitted due to space constraints.

Corollary 1. Let Γ be a miner network with two solo min-
ers. If pi >

1
2

then γi ≥ pi and if Dλ > 0 then γi > pi.

Example 1. Consider a miner network with two solo min-
ers, the first with 55% of the hash rate (computational power),
and the second with 45%. γ1 as a function of Dλ is given
in Figure 3. This shows that even when the hash rate is
relatively similar among the miners, as Dλ grows the big-
ger miner’s share in the longest chain, hence in revenues,
grows eventually to 100%. Note that if the network suffers
no delays (Dλ = 0) the share of every miner is precisely the
proportion of computational power held by her.

5. MINING IN COALITION STRUCTURES
We propose a model of the miners and pool interactions

as a cooperative game with coalition structures.

Definition 1. A Miner Coalitional Game with Coalition
Structures is defined by the tuple C = 〈M,P, D, d, β〉, where
M is the set of miners (players); P is the distribution of com-
putational power among the miners; D is the delay between
pools and d is the delay within a pool; β is the desired
rate of longest chain growth. For a given coalition struc-
ture S ∈ CS (M), let Γ = 〈M,S,P, D, d, λ〉 be a miner
network such that β (Γ) = β. For every C ∈ S we set
vS (C) = γ (Γ)C . vS(C) is the pool’s share in the longest
chain.

We now present our main insight into games with coalition
structure: under some quite general assumptions on the par-
tition function v, there is no stable way for coalitions to di-
vide their revenues among their agents. The instability here
amounts to the DMS-CS-core of the game being empty.

Definition 2. w ∈ <|I| is a weight vector associated with
a set of players I, if wi ≥ 0 for all i ∈ I and

∑
i∈I wi = 1.

For every C ∈ I, we denote w(C) =
∑
i∈C wi.

Definition 3. We say that v is:

• Constant-Sum, if there exists c ∈ <+ such that for
every S ∈ CS (I) it holds that

∑
C∈S vS (C) = c.

• Nonlinear with respect to a weight vector w ∈ <|I|,
if for every S ∈ CS (I) such that maxC∈S w (C) >
minC∈S w (C), it holds that for Ci ∈ arg maxC∈S w (C)
we have: vS (Ci) > w (Ci) ·

∑
C∈S vS (C).
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• Monotonic, if for every S ∈ CS (I), such that S =
{C1, . . . , Cm} (m > 2) and vS (C1) ≤ · · · ≤ vS (Cm):
vS (C1) + vS (C2) < vSC (C) for C = C1 ∪ C2.

Theorem 5. Let v be a partition function of a coalitional
game with coalition structures. If v is constant-sum and
nonlinear with respect to a weight vector w satisfying ∀i ∈
I : wi <

1
2

, then for every coalition structure the CS-core is
empty.

Proof. Let v be a partition function as in the conditions
of the theorem, let S ∈ CS(I) be a coalition structure of I
and let x be an imputation associated with S; we will show
that there exists C ⊂ I such that vSC (C) > x (C). Assume
without loss of generality that I = {1, . . . , n}, and that for
every S ∈ SC (I),

∑
S∈S vS (S) = 1.

For every i let εi = xi −wi and without loss of generality
assume that ε1 ≤ ε2 ≤ · · · ≤ εn. Note that

∑
i∈I εi =∑

i∈I xi −
∑
i∈I wi = 1 − 1 = 0. Let C = I\{n}. εn ≥ 0,

hence
∑
i∈C εi ≤ 0 and x(C) ≤ w(C).

∑
i∈C wi >

1
2
, as

wn <
1
2
. In addition, vSC (C) > w(C) because v is nonlinear,

therefore vSC (C) > x (C).

The following examples show that all conditions in Theo-
rem 5 are required.

Example 2. Let w ∈ <|I| be a weight vector and consider
the game with the partition function: vS (C) = 2 if S = {I}
and vS (C) = ew(C)∑

D∈S e
w(D) otherwise. v is nonlinear in w but

v is not constant-sum. The imputation xi = 2wi associated
with the coalition structure S = {I} is stable.

Example 3. Consider a game with |I| = n players with

the partition function vS(C) = |C|
n

for every S ∈ CS(I) and
C ∈ S. v is constant-sum, however v is not nonlinear as
for every weight vector there must be some C ⊂ I, such

that |C| =
⌈
n+1
2

⌉
and w(C) ≥ |C|

n
, yet vS(C) ≤ w(C) for

every S ∈ CS(I) such that C ∈ S. The imputation xi = 1
n

associated with every coalition structure is stable.

Example 4. Consider a game with |I| = n players de-
scribed by the partition function vS (C) = 1 if 1 ∈ C, and
vS (C) = 0 otherwise. v is constant-sum and nonlinear with
respect to the weight vector w1 = 0.6 and wi = 0.4

n−1
for

i 6= 1. The imputation x1 = 1 and xi = 0 for i 6= 1, associ-
ated with every coalition structure is stable.

While Theorem 5 provides sufficient conditions for the
emptiness of the CS-core, it does not imply the emptiness
of the DMS-CS-core. Indeed, in some cases there might be
an imputation associated with a coalition structure that is
not in the CS-core, but is DMS-stable.

Example 5. Consider the game described in Table 1. In
the game there are 8 players of three types. The payoff of
every coalition in the right column is according to the order
of the coalition structure in the left column. The game is
constant-sum, because for every S ∈ CS(I),

∑
C∈S vS (C) =

100, and it is nonlinear with respect to, for example, the
weight vector wa = 1

20
and wb = 1

10
, wb = 3

10
. The im-

putation (3, 3, 3, 3, 10, 34, 10, 34) associated with S1 is DMS-
stable — any merge of two coalitions or a split of a coalition
does not result in a better outcome for the deviators.

S1 = {{a} , {a} , {a} , {a} , {b, c} , {b, c}} (3, 3, 3, 3, 44, 44)
S2 = {{a} , {a} , {a} , {a} , {b, b, c, c}} (4, 4, 4, 4, 84)
S3 = {{a} , {a} , {a} , {a} , {c} , {b, b, c}} (4, 4, 4, 4, 30, 54)
S3 = {{a} , {a} , {a} , {a} , {b} , {b, c, c}} (4, 4, 4, 4, 10, 74)
S4 = {{a} , {a} , {a} , {a} , {b} , {c} {b, c}} (3, 3, 3, 3, 10, 34, 44)
S5 = {{a} , {a} , {a} , {b, c} , {a, b, c}} (4, 4, 4, 41, 47)
S6 = {{a} , {a} , {a, a} , {b, c} , {b, c}} (2, 2, 6, 45, 45)

Table 1: The DMS-CS-core of S1 is not empty as
(3, 3, 3, 3, 10, 34, 10, 34) is DMS-stable

The next theorem provides sufficient conditions for the
emptiness of the DMS-CS-core.

Theorem 6. Let v be a partition function of a coalitional
game with coalition structures. If v is constant-sum, mono-
tonic and nonlinear with respect to a weight vector such that
for every i ∈ I: wi <

1
2

, then for every coalition structure
the DMS-CS-core is empty.

Proof. Let v be a partition function as in the conditions
of the theorem, let S ∈ CS(I) be a coalition structure of I
and let x be an imputation associated with S; we will show
that there exists C ∈ DMS (S) such that vSC (C) > x (C).
Assume without loss of generality that I = {1, . . . , n}, and
that for every S ∈ SC (I),

∑
S∈S vS (S) = 1.

If |S| ≥ 3, write S = {C1, . . . , Cm} such that vS (C1) ≤
· · · ≤ vS (Cm). Let C = C1 ∪C2. The imputation x satisfies
x(C) = x(C1) +x(C2) = vS (C1) + vS (C2). As C is a merge
of two coalitions in S we have that C ∈ DMS (S). Finally,
v is monotonic, thus vSC (C) > vS (C1) + vS (C2), therefore
vSC (C) > x (C).

If |S| ≤ 2, let εi = xi−wi (as in the proof of Theorem 5),
and assume that ε1 ≤ ε2 ≤ · · · ≤ εn. Then for C = I\{n}
we have, vSC (C) > x (C). If |S| = 1 then C is the result of
a split from the grand coalition, and if |S| = 2 then C is the
result of a merge between the two coalitions, hence in both
cases C ∈ DMS (S).

Lemma 7. Let C = 〈M,P, D, d, β〉 be a Miner Coali-
tional Game with Coalition Structures for which D,β > 0,
and ∀i: pi ∈ (0, 1). Assume that d is smaller than some
d1 (a bound that depends on P, D, and β). Then for all
S ∈ CS(M) and for all Ci, Cj ∈ S, if p(Ci) > p(Cj) then
vS(Ci)
p(Ci)

>
vS(Cj)
p(Cj)

.

Proof Sketch. Fix M, P, D and β. We will prove the
result for the case d = 0, and will then define d1 to be the
maximal positive d which satisfies the required property.

Indeed, let S ∈ CS(M) be a coalition structure, and let
λ > 0 such that β(Γ) = β for the miner network Γ =
〈M,S,P, D, d, λ〉. For every C ∈ S, we denote by αS(C)
the probability that a block that was mined by one of the
members of C will end up in the longest chain. Note that
for every pool it holds that β · γ (Γ)C = λ · p(C) · αS(C)
as both sides of the equation are the expected number of
blocks that were mined by the pool C that are in the longest
chain, in every second. Therefore, we need to show that if
p(Ci) > p(Cj) then αS (Ci) > αS (Cj).

When d = 0 there is no delay within the pools and every
pool acts as one miner. In this case, if p(Ci) > p(Cj) then
αS(Ci) > αS(Cj), because in a case of a conflict between
the pools, the next block that will be created is more likely
to belong to the stronger pool Ci; and because D > 0 the
probability of a conflict is positive. We can thus define d1
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as the maximal delay within the pools such that for every
coalition structure S ∈ CS(M) and for every Ci, Cj ∈ S,
p(Ci) > p(Cj) implies αS(Ci) > αS(Cj).

Lemma 8. Let Γk = 〈M,S,P, D, 0, λk〉 (k = 1, 2) be two
miner networks, with λ1 > λ2, S = {C1, . . . , Cm} (m >
2), p (C1) ≤ · · · ≤ p (Cm), and p (C1) < p (Cm) Then,
γ (Γ1)C1

+ γ (Γ1)C2
< γ (Γ2)C1

+ γ (Γ2)C2
.

We omit the quite involved proof due to lack of space.

Lemma 9. Let C = 〈M,P, D, d, β〉 be as in Lemma 7.
Assume that d is smaller than some d2 (a bound that depends
on P, D, and β). Then for every S ∈ CS(M) with S =
{C1, . . . , Cm} (m > 2) and p (C1) ≤ · · · ≤ p (Cm), vS (C1)+
vS (C2) < vSC (C) for C = C1 ∪ C2.

Proof Sketch. We use a similar technique to the proof
of Lemma 7. FixM, P, D and β, and let S = {C1, . . . , Cm}
be a coalition structure as in the conditions of the lemma.
Let C = C1 ∪ C2 and S ′ = SC . If p (C1) = p (Cm) then
Lemma 7 implies that vS (C1) + vS (C2) < vS′ (C). As-
sume therefore that p (C1) < p (Cm). Let λ1, λ2 > 0 such
that for the miner networks ΓS,1 = 〈M,S,P, D, d, λ1〉 and
ΓS′,2 = 〈M,S ′,P, D, d, λ2〉, it holds that β(ΓS,1) = β and
β(ΓS′,2) = β. In addition, consider the miner network
ΓS,2 = 〈M,S,P, D, d, λ2〉. Note that λ1 > λ2 as ΓS′,2 is
a more concentrated network than ΓS,1. Using the pre-
vious lemma we have: vS (C1) + vS (C2) = γ (ΓS,1)C1

+

γ (ΓS,1)C2
< γ (ΓS,2)C1

+ γ (ΓS,2)C2
.

We claim that γ (ΓS,2)C1
+ γ (ΓS,2)C1

< γ (ΓS′,2)
C

=

vS′ (C). Indeed, the merge of the two pools eliminates the
conflicts between the pools, and in a case of a conflict with
another pool, the two pools now have more hash power. We
can thus conclude that vS (C1) + vS (C2) < vS′ (C).

Upon which we define d2 as the maximal positive d for
which this property is satisfied, namely, vS (C1) +vS (C1) <
vSC (C) for every coalition structure S = {C1, . . . , Cm}.

Theorem 10. Let C = 〈M,P, D, d, β〉 be as in Lemma 7,
and let d1 and d2 be the bounds obtained in Lemma 7 and
Lemma 9, respectively. If d < min {d1, d2} then the partition
function of C is constant-sum, monotonic and nonlinear with
respect to P.

Proof. The partition function is constant-sum because
for every S ∈ CS(M) :

∑
C∈S vS (C) = 1. Lemma 9 im-

plies that the partition function is monotonic, as d < d2.
Let w ∈ <|I| be the weight vector wi = pi; we show that
the partition function is nonlinear with respect to w. Let
S ∈ CS(M) be a coalition structure with maxC∈S w (C) >
minC∈S w (C), and let Ci ∈ arg maxC∈S w (C). We have
d < d1, and therefore by Lemma 7:

1 =
∑
C∈S vS (C) =

∑
C∈S p (C) vS(C)

p(C)

<
∑
C∈S p (C) vS(Ci)

p(Ci)
= vS(Ci)

p(Ci)

∑
C∈S p (C) = vS(Ci)

p(Ci)

Consequently, vS (Ci) > p (Ci) = w (Ci), and the partition
function is nonlinear.

We finally arrive at the main result of this section, the
emptiness of the DMS-CS-Core. Combining the previous
theorems we conclude:

Corollary 2. Let C = 〈M,P, D, d, β〉 be as in the theo-
rem. If for all i: pi ∈

(
0, 1

2

)
, then for every coalition struc-

ture the DMS-CS-Core is empty.

6. MINING AS A COOPERATIVE GAME
In order to apply the result of the previous section to

the Bitcoin world, we need to investigate the behavior of
the partition function v. Unfortunately, the topology of the
Bitcoin miner network is unknown and keeps changing. To
avoid the intractable analysis of the general case, where any
topology is possible, we deviate from the coalition structure
setup, and model instead the miner and pool interactions as
a transferable utility coalitional game. In these games, the
value of a coalition depends solely on the members of that
coalition, with no dependence on the other players. To adapt
this model to the Bitcoin world, where inter-pool effects are
possible, we allow only one coalition to form, and fix the
topology of its environment as one which consists of solo
miners only.

We then investigate the conditions on the network under
which the core of the game is empty. The constriction to
the simple notion of core means that only the stability of
the grand coalition is taken into consideration.

The game’s network is denoted by C = 〈M,P, D, d, β〉,
as above. For |M| > 2 we make the following simplifying
assumptions. First, we assume that all miners hold the same
computational power: pi = 1

n
where n = |M|. Secondly, we

assume the following form of v: for any C ⊂M with |M| =
1, v (C) = 1

n
; v (M) = 1. In order to represent C’s value

for the general case, we approximate its share of the longest
chain, using Equation 2, and assign this approximation of
γC to v(C).

We apply Theorem 4 to a hypothetical two solo miner
network, Γ2 whose parameters as set as follows. Denote

αC = |C|λ
n+2d|C|λ ,and αS = n−|C|

n
λ n+dλ
n+(n−|C|)dλ . The first

miner in Γ2 (representing the pool C in the original network)
holds a fraction p1 = αC

αC+αS
of the computational power,

and the second one (corresponding to the rest of the miners)
holds p2 = 1−p2. The free parameter λ is set so as to satisfy
β(Γ2) = β, where β(Γ2) is given by Equation 1. Finally, to
complete the description of Γ2, we set λ2 = αC + αS .

The motivation for this setup is that it applies a divide
and conquer method in order to estimate γC . We first split
the miner network into two sub-networks, the first consist-
ing of the pool, and the second consisting of the solo miners.
The growth rate of the longest chain, in the sub-network of
the pool, is αC , as shown in Lemma 2. The sub-network
representing the solo miners is a symmetric network with
m = |M\C| miners, and its longest chain’s growth rate can
be approximated by λ m+Dλ

m+mDλ
(see Section 7 for further dis-

cussion). Putting m = n− |C| we arrive at αS . Combining
these two sub-networks, and approximating their operations
as following Poisson processes (with parameters αC and αS
respectively), we can extract from Equation 2 an estimate for
γC . Simulation results presented in the next section suggest
that this approximation can be done safely, as it underesti-
mates the pool’s actual value, and the instability is reached
even under weaker conditions.

We are now ready to show that under some constraints
on d, for n > 2 identical miners, the core of the game is
empty. Note that some constraints on d are indeed required
to obtain such results. If d is arbitrarily high the pool is
highly inefficient and the probability that a block in the
longest chain belongs to the pool becomes arbitrarily low,
which leaves no incentive for miners to work for the pool.
We begin with the |M| = 3 case. We precede the theorem
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with a lemma, whose (rather immediate) proof we do not
provide here:

Lemma 11. Let Γ = 〈{1, 2} , ∅, {p, 1− p} , D, λ〉 be a miner
network. The function f 2

3
: <+ →

(
1
2
, 2
3

)
, defined by f 2

3
(Dλ) =

p ⇐⇒ γ (Γ)1 = 2
3

, is monotonically decreasing.

Theorem 12. Let C = 〈M,P, D, d, β〉 be a Miner Game

with |M| = 3 miners. If d ≤
2−3f 2

3
(Dβ)

4βf 2
3
(Dβ)

, then the core of C

is empty.

Proof. Falsely assume that the core is not empty, and let
x be an imputation in the core. Without loss of generality
we can assume: x (C) ≤ 2

3
for C = {1, 2}. We shall prove

that if d ≤
2−3f 2

3
(Dβ)

4βf 2
3
(Dβ)

then v (C) > 2
3
≥ x (C).

Let Γ2 = 〈{C, S} , {pC , pS} , D, λ2〉 be the two solo miner
network used for the approximation of v(C). Let αC =

2λ
3+4dλ

and αS = λ
3

be the rates at which the miners in Γ2

publish their blocks; let pC ∝ αC , pS ∝ αS and λ satisfy
αC + αS = λ2, and λ (Γ2) = β.

Now, pC =
2

3+4dλ

λ2
= 6

9+4dλ
> 2

3+4dβ
, the last inequality

holding due to β > λ
3

. As d ≤
2−3f 2

3
(Dβ)

4βf 2
3
(Dβ)

it holds that

f 2
3

(Dβ) ≤ 2
3+4dβ

. f 2
3

is monotonic decreasing, and β ≤ λ2,

thus it holds that f 2
3

(Dβ) ≤ f 2
3

(Dλ2). We thus conclude

that pC > f 2
3

(Dλ2). By the definition of f 2
3

it holds that

γ (Γ2)C = γC > 2
3
. That is, v (C) > x (C), and we arrive at

a contradiction to x’s belonging to the core.

The following theorem provides a similar result for the
case where |M| > 3:

Theorem 13. Let C be a Miner Game with |M| = n > 3

miners. If d ≤ D(n−3)
2(n+1)(1+Dβ)

then the core of C is empty.

Proof. The proof is similar to that of the previous theo-
rem. We begin by assuming (in negation) that x is an impu-
tation in the core, and without loss of generality x (C) ≤ m

n

where m =
⌈
n
2

⌉
and C = {1, . . . ,m}. We want to prove that

if d is under the specified bound then v (C) > x (C). We now

use Γ2 with αC and αS obtaining the values |C|λ
n+2d|C|λ and

n−m
n
λ n+Dλ
n+(n−m)Dλ

, respectively.

As β > λ
n

and m ≤ n+1
2

, the bound on d implies that

d < Dn(n−m−1)
2m(n+Dλ)

, and therefore pC > m
n

. From Corollary 1

we have: γ (Γ2)C = γC > pC , hence v (C) > x (C), which
implies that x cannot be in the core.

In contrast to the case where there were at least 3 miners,
it turns out that the core of the game when |M| = 2 is not
empty, and, in fact, has precisely one element.

Theorem 14. Let C = 〈M,P, D, d, β〉 be a Miner Game
with |M| = 2 miners. The core of C has precisely one ele-
ment.

Proof. Let Γ = 〈{1, 2} , ∅,P, D, d, λ〉 be the miner net-
work with the two solo miners such that β (Γ) = β. Let
γ = (γ1, γ2) be the proportional shares of the miners in
the longest chain. The only possible deviation of the min-
ers from the grand coalition is if they work solo, yielding
v ({i}) = γi. For every imputation in the core x = (x1, x2)
we must have xi ≥ 0, x1 + x2 = 1 and xi ≥ γi. Hence, the
only solution is xi = γi and therefore the core has exactly
one element.
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Figure 4: β as observed from simulations, on a
symmetric miner network with n = 3, 10, 20 miners,
where λ = 1. Compared with λ n+Dλ

n+nDλ
.

7. SIMULATIONS
We ran two experiments simulating mining in an artificial

network. In each experiment we fixed the number of min-
ers, the structure of the pools, λ, and the delay inside and
outside the pools. In the first set of experiments, we exam-
ined β, the growth rate of the longest chain, in symmetric
networks with 3, 10, and 20 miners. We fixed λ = 1 and
compared the results to the expression λ n+Dλ

n+nDλ
. As Fig-

ure 4 demonstrates, this expression is a good approximation
of the longest chain’s growth rate in such networks.

In our second experiment we simulated miner networks
with n = 3, 10, 20 miners, and one pool C with |C| = m =⌈
n
2

⌉
miners. We fixed β = 1

2
, and λ was set accordingly;

d was given the highest possible values, as implied by The-
orems 12 (n = 3) and 13 (n = 10, 20). We examined the
pools’ share of the longest chain, and compared it to v (C),
the value we used to estimate γC .

Both γC and v (C) are presented in Figure 5. In practice,
v (C) was found to be a lower bound of γC . Recall that
in order to prove the emptiness of the core we showed that
v (C) > m

n
. Thus when using the exact value of γC instead of

the approximation, the core remains empty (under the same
constraints on d). This suggests that our results apply more
generally, even to networks that our model fails to describe
accurately.

8. DISCUSSION
We analyzed block mining in the Bitcoin network, mod-

eling mining pool interactions as a cooperative game. We
focused on ways in which miners in pools can share mining
revenues, using the core as our game theoretic solution con-
cept. Our results show that a non-linearity of the reward
function of the pool is inherent in the protocol.

We showed that in both the model with and without coali-
tion structures, the game is likely to have an empty core.
This indicates that no matter how the revenue is shared,
some miners would be incentivized to switch to a different
pool, as this switch would increase their expected revenue.
While our theoretical model makes some simplifications and
approximations, simulations corroborate these results.

We note that when the block creation rate is low, the re-
ward non-linearity is small. Currently the Bitcoin network
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Figure 5: γC as observed from simulations, on a
miner network with n = 3, 10, 20 miners and one pool,
C, with

⌈
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⌉
miners, where β = 1

2
. Compared with

v(C) — the approximate value of γC .

can process up to 3.3 transactions per second, while VISA,
for example, can process 47,000 transactions per second [45].
As Bitcoin grows and more transactions are processed, the
load on the system would result in a change in parameters
increasing the non-linearity effect, making the choice of a
mining pool more important. We thus expect more miners
to exhibit pool switching behavior, and use software imple-
mentations of automated pool choosing strategies.

9. RELATED WORK
Since its 2009 launch, Bitcoin has received attention in the

research community. Rosenfeld [37] improved the original
security analysis done in Bitcoin’s white paper [30]. Babaioff
et al. [5] looked at incentive issues related to transaction
propagation. Eyal and Sirer [24] showed an attack in which
large pools can gain more than their“fair”reward share. Pri-
vacy aspects of Bitcoin were the focus of other work [1, 34].
Ron and Shamir [35] analyzed the transaction graph, and
tried to identify which accounts belong to the same entity.
Sompolinsky and Zohar [43] analyzed the effect of network
delays on the growth rate of the blockchain, and suggested
a protocol modification that bypasses the trade-off between
high block rate and loss of security against double-spending.
Lewenberg et al. [26] suggested a modification to Bitcoin’s
data structure, in the form of directed acyclic graphs, and
have analyzed the game theoretic aspects of their proposal.

Closest in spirit to this paper is the work of Niyato, Vasi-
lakos and Kun [31], which models as a cooperative game
cloud providers that can cooperate. They show that the so-
lution of the core can be found using linear programming,
while in our model the core is empty.

Cooperation among agents has been widely studied in
the artificial intelligence literature. Relatively early work,
such as that of Sandholm and Lesser [38], analyzed coali-
tions among self-interested agents that need to solve combi-
natorial optimization problems to operate efficiently in the
world; and Shehory and Kraus [42] considered task alloca-
tions via agent coalition formation. We proposed a coopera-
tive game model for analyzing Bitcoin mining pools. Coop-
erative game models have been used for many applications,
including voting [22, 23, 10, 46, 47, 15, 41], auctions [6], ne-

gotiation [8], team formation [42, 4, 13, 11], network analy-
sis [28, 7, 14, 12] and even pricing cloud services [18].

Computational aspects of cooperative games have been
the focus of other work, such as the work of Elkind et al. [22]
that showed that many stability-related solution concepts in
weighted voting games are hard to compute, and the work
of Aziz and De Keijzer [4] who proposed an algorithm for
finding an optimal coalition structure for games with few
player types.

Cooperative games with coalition structures were intro-
duced by Aumann and Dreze [3]. In the common practice of
cooperative games with coalition structures, so-called char-
acteristic function games, the value of each coalition is in-
dependent of nonmembers’ actions [39, 32, 21, 27, 9]. Our
model is similar to one in Ray and Vohra [33], in which the
value of a coalition depends on the coalition structure.

10. CONCLUSIONS
We have examined mining pools in Bitcoin, using a game

theoretic model for team formation and reward sharing. We
showed that the Bitcoin protocol results in a pool’s reward
being a non-linear function of the pool’s computational power.
This results in some inherent instability of the teams, where
any reward allocation scheme in a pool is likely to result in
some miners wishing to switch pools. Our analysis of rela-
tive rewards for agents in various pools constitutes a prac-
tical application of cooperative game theory in the context
of automated agents, who might make decisions about what
pool to join in order to maximize their payoffs.

There are two main avenues for expanding our under-
standing of collaboration in Bitcoin’s miner network. Our
analysis made some simplifying assumptions regarding the
delays in communication. It would be interesting to see how
the results change when the communication delays are not
fixed or when the delays are not deterministic. Second, we
assumed that for a given coalition structure, all the defec-
tions that resulted from merges or splits are allowed. Fur-
ther work could examine weaker (or more relaxed) stability
notions for cooperative games with coalition structures [2].
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