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ABSTRACT
We present the design of a fully autonomous smart thermostat that
supports end-users in managing their heating preferences in a real-
time pricing regime. The thermostat uses a machine learning algo-
rithm to learn how a user wants to trade off comfort versus cost. We
evaluate the thermostat in a field experiment in the UK involving 30
users over a period of 30 days. We make two main contributions.
First, we study whether our smart thermostat enables end-users to
handle real-time prices, and in particular, whether machine learning
can help them. We find that the users trust the system and that they
can successfully express their preferences; overall, the smart thermo-
stat enables the users to manage their heating given real-time prices.
Moreover, our machine learning-based thermostats outperform a
baseline without machine learning in terms of usability. Second,
we present a quantitative analysis of the users’ economic behavior,
including their reaction to price changes, their price sensitivity, and
their comfort-cost trade-offs. We find a wide variety regarding the
users’ willingness to make trade-offs. But in aggregate, the users’
settings enabled a large amount of demand response, reducing the
average energy consumption during peak hours by 38%.
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Sustainability; home heating; real-time prices; user interfaces; ma-
chine learning; field experiment.

1. INTRODUCTION
Over the last decade, we have witnessed a steadily increasing

effort to realize a paradigm shift in the energy sector. The goal
of this shift is to transform energy production from a centralized
architecture of power plants that burn the ever dwindling amounts
of fossil fuels to a distributed grid of renewable energy sources
like wind and solar [30]. This transformation of the electricity
grid is motivated by the need to combat the negative economic and
sociological effects of climate change as well as by the fact that the
production of many conventional oil and gas fields are decreasing.

Implementing such a distributed electricity grid poses a number of
challenges due to the current structure of the grid and the volatility in
the production of renewable energy. If the share of renewable energy
sources keeps growing, maintaining the stability of the grid will
become an increasingly challenging problem since the production
level of renewables is very hard to control and therefore, matching
supply and demand will become much more difficult [11].
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1.1 Managing the Demand for Energy
To solve the problem of grid stability, it will be critical to also

manage the demand side by incentivizing consumers to adapt their
consumption levels to the amount of energy available in the grid [20].
One way to encourage consumers to decrease their demand when
energy is scarce is via financial incentives [3]. A particular financial
mechanism that has been put forward is real-time pricing, where the
price of electricity varies across the day according to market forces.
Real-time pricing has a number of advantages over flat pricing. First,
economists argue that real-time pricing improves system reliability
and mitigates market power in the long term [6]. Second, it offers
consumers the opportunity to save significant amounts of money if
they are willing to dynamically adjust their consumption [12]. A
number of power companies in the US and Europe have successfully
conducted pilot studies, to assess the potential benefits and the
feasibility of using real-time pricing for residential end-users (see
e.g., [13, 14, 15, 29]). Some power companies already offer real-
time pricing programs to their end-users.1

While energy plays a large role in many domains, residential
heating is one of the major drivers of energy consumption, account-
ing for approximately 45% and 62% of the total household energy
consumption in the US and the UK, respectively, which amounts to
10% and 18% of the respective country’s total energy consumption
[19, 31]. With the goal in mind to move away from fossil fuels, the
electrification of heating using heat pumps is seen as a key technol-
ogy for achieving a society that is more sustainable. Indeed, many
low-carbon scenarios assume that in the future, a majority of houses
will be heated by heat pumps (see, e.g., [9]). These reasons make
home heating a formidable case study to explore the potential for
demand-side management with real-time electricity prices.

1.2 Home Heating with Smart Thermostats
In this paper, we envision a future electricity grid where a sub-

stantial number of private homes are heated by heat pumps and at
least some end-users are exposed to real-time prices. Obviously, this
poses multiple challenges for the design of a usable heating system.

First, it is not feasible for end-users to constantly monitor the
energy price and manually adjust their thermostat whenever prices
change. Thus, we need an autonomous agent, which we call the
smart thermostat, that automatically reacts to price changes on the
user’s behalf. Second, before the smart thermostat can make these
decisions autonomously, it needs to know how the user wants to
trade off comfort (heating to a particular temperature) versus cost
(for heating to that temperature) at different price levels. Some
users might be willing to spend a lot of money to have their home
always heated to a comfortable temperature, while others may want

1E.g., Commenwealth Edison’s “Residential Real-time Pricing Pro-
gram”: https://rrtp.comed.com/
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to decrease their temperature if energy becomes too expensive. This
means that to achieve high economic efficiency, it must be possible
to personalize the smart thermostat to individual users. However,
manually specifying how to trade off comfort and cost at all price
levels might lead to high cognitive costs on the user’s side.

Obviously, there is a tension between economic efficiency on the
one hand high cognitive costs on the other hand. To address this
tension, we turn to the hidden market design paradigm introduced
by Seuken et al. [24], who argued that it is often necessary to hide
some of the market’s complexity from the end-users. They showed
that a hidden market UI can reduce the interaction complexity for
the end-users, while still maintaining the loop between the market
and the users [25]. In our domain, we instantiate the hidden market
design paradigm by designing a smart thermostat that elicits the
user’s trade-off between comfort and cost over time while keeping
the user’s input at a minimum. To realize this, we build on prior
work by Shann and Seuken [26] who proposed a machine learning
algorithm to solve this exact problem. However, their work was
purely theoretical. In particular, they did not design any UIs or a real
system. In this research project, we expand on this theoretical work
by designing a real-world application of a smart thermostat that
supports users in managing their heating preferences in a real-time
pricing regime. We deployed this smart thermostat in 30 homes in
the UK and ran a 30-day field experiment from February to March
2015 to explore how people interact with such a system.

1.3 Overview of Contributions
We make two main contributions. First, we study whether our

smart thermostats can enable end-users to successfully handle real-
time prices in the home heating domain – in particular, whether
using machine learning can improve the usability of the thermostat.
Our results show that the majority of our users were satisfied with
the smart thermostats, and trusted them to automatically adjust the
temperature for them. More importantly, the data shows that the
machine learning algorithm increased the usability of the system,
compared to a baseline implementation that uses no learning.

Second, we present a detailed quantitative analysis of the eco-
nomic behavior of our 30 participants when exposed to real-time
pricing. Our results show that the users react to price changes in
an economically rational way, and on average, they are willing to
decrease their indoor temperature by 3 °C when energy is most
expensive. Fortunately, due to the thermal inertia of the homes,
the indoor temperature does not decrease by more than 1 °C, even
during peak price hours. Still, this price-sensitive behavior leads to
a large amount of demand response, reducing the average energy
consumption by 38% during peak hours.

2. RELATED WORK
Automated Control in the Smart Grid. Yang et al. [32] exam-

ined the real-world uptake of a smart thermostat with 23 participants.
They highlighted how sub-optimal decisions taken by a smart ther-
mostat are likely to cause user frustrations and may lead them to
abandon the technology. Bourgeois et al. [8] deployed energy-aware
washing machines in 18 households and found that sending sugges-
tions on when to do the laundry via text messages is more effective
than other interventions. Costanza et al. [10] conducted a field exper-
iment with 10 participants that used “Agent B," an agent that helps
users book their washing machine given real-time prices. Their re-
sults indicate that users are willing to shift their washing in response
to real-time prices. Alan et al. [1] tested “Tariff Agent,” an agent
that helps users select electricity tariffs on a daily basis, in a field
experiment with 10 users. The results show that people are willing
to delegate decisions regarding energy consumption to an agent.

Our study differs from the above studies in two key ways. First,
our system is fully autonomous, i.e., it takes decisions on the users’
behalf instead of just giving advice to the users. Second, the sys-
tem’s decisions have a direct impact on users’ well-being via the
temperature it sets in the respective homes, while previous systems
only affected the study participants’ financial rewards.

In our own prior work [2], we already analyzed the exit inter-
views with the 30 participants of our field experiment from an HCI
perspective. Via thematic analysis (qualitative text analysis of the in-
terviews), we studied what kinds of understandings and expectations
the participants formed regarding the thermostat. One striking find-
ing was that the participants developed very different mental models
regarding how the thermostats were functioning. The present paper
is based on the same field experiment; however, we answer different
research questions, and we use different data (mostly quantitative
data gathered from the users’ interactions with the system).

Hidden Market Design. Seuken et al. [24] argued that for many
of the new, complex markets that are emerging to be successful
(like the smart grid market), it is a necessity to “hide” some of the
market’s complexities from the end-users. They proposed the design
of a “hidden market user interface (UI)” that makes the interaction
with the market more seamless, such that even non-sophisticated
users can easily participate in it [25]. To this end, the UI needs to
hide or reduce some of the interaction complexity for the user. One
way to achieve this goal is to design a learning agent that operates in
the background and mediates between the user and the market. The
goal of implementing this agent is to reduce the cognitive costs for
the user, while still keeping the important feedback loop between the
user and the market that is needed for economic efficiency. In [23],
Seuken et al. presented a case study on how to apply hidden market
design to the design of a peer-to-peer backup market, demonstrating
that it is possible to hide a significant amount of complexity from
the end-user, while still keeping the important user–market loop. In
[24], Seuken et al. already suggested the smart grid domain as a
suitable application area for hidden market design.

Home Heating. One approach aimed at energy-efficient heating
is to predict future environmental conditions (e.g., weather) to opti-
mize the heating process. The state-of-the-art method used in the
control community is model predictive control [17, 18]. In contrast,
Shann and Seuken [27] used MDPs to compute a sequentially opti-
mal heating policy given uncertainty about future weather conditions
and future electricity prices. An orthogonal approach is to develop
algorithms that try to sense and predict the occupancy of the house
with the goal of reducing the inside temperature when people are
not at home. For example, Scott et al. [22] use motion sensing and
machine learning to find patterns in user behavior to heat adaptively.
A similar approach is taken by Lu et al. [16]. These approaches are
all complementary to the approach taken in this paper and could, in
principle, also be included in our thermostat.

Occupancy detection has also been applied in commercial ther-
mostats. For example, the Nest thermostat has a motion sensor
that detects people’s presence.2 It learns a heating schedule that
conforms to its users’ habits. Recently, Nest has started a volun-
tary demand response program called “Rush Hour Rewards” that
remotely controls the air conditioner during peak hours.3 However,
in contrast to our smart thermostat, the Nest thermostat does not
learn an individual user’s trade-off between comfort and cost.

2https://nest.com
3https://nest.com/support/article/What-is-Rush-Hour-Rewards
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The Underlying Machine Learning Algorithm.
We now briefly describe the learning algorithm introduced by

Shann and Seuken [26], as this is the algorithm that we implemented
in our smart thermostats. The main components are the user model,
the update rule and the heating rule.

User Model. The user’s heating preferences are modeled with a
utility function that quantifies a particular user’s trade-off between
comfort and cost of heating. Shann and Seuken [26] provide a
formula to measure how much utility a user has for a certain indoor
temperature at any given price of energy. This utility is composed of
a value for the indoor temperature minus the cost of heating to this
temperature. Using this utility function, they derive an individual
user’s optimal indoor temperature at a given price p, which is:

T opt(p) = T ∗ −mp, (1)

where T ∗ is the user’s most preferred temperature if energy was
for free, and m > 0 is the user’s sensitivity to price. Thus, the
optimal temperature equation is a weakly decreasing straight line
that is defined by the two parameters T ∗ and m, whose values
depend on an individual user’s preferences. The linearity of the
optimal temperature line follows directly from the assumption of a
quadratic loss function regarding the user’s preferences (see [26]).
This simplifies the model, but is not essential for the system.

Note that the user model assumes that a user behaves in an eco-
nomically rational way upon price changes, i.e., when the price
increases then the user is assumed to weakly reduce his temperature.
Of course, many different models are plausible to capture a user’s
trade-off between comfort and cost. For our field experiment, we
purposefully chose this relatively simple model, such that the corre-
sponding learning algorithm is robust, and the UI design task (see
Section 3.1) was manageable. More sophisticated user models (e.g.,
[5]) and corresponding learning algorithms could be incorporated
into our system, but this is beyond the scope of this paper.

Update Rule. Every time the user changes the setpoint on the
thermostat, the algorithm updates its knowledge of the user’s pref-
erences. Implicitly, the algorithm assumes that the user solves an
optimization problem (how to trade off comfort and cost) when
changing the setpoint. To update its knowledge of the user’s op-
timal temperature line (Equation (1)), the learning algorithm uses
Bayesian inference. The algorithm starts with some prior and treats
every new setpoint as noisy input, which it uses to compute the
posterior probability of the optimal temperature. Every time step,
it computes the currently optimal temperature T̂opt(pt) using the
maximum a posteriori estimates of T ∗ and m. See [26] for details.

Heating Rule. The smart thermostat heats the house in the fol-
lowing way. At every time step t, it sets the setpoint to the estimated
optimal temperature for the current price according to the current
estimates of the most preferred temperature and the sensitivity:

T̂opt(p) = T̂ ∗ − m̂p. (2)

3. SYSTEM DESIGN
Figure 1 shows a schematic overview of our system. It consists

of the following components: a Horstmann thermostat, which is
a standard programmable thermostat that can be controlled wire-
lessly via the z-wave radio protocol; a Raspberry Pi, which is a
pocket-sized computer on which a z-wave software transceiver is
installed that enables communication between the Raspberry Pi and
the Horstmann thermostat; a web application, which the user can
use to remote-control the smart thermostat; and a web server.

While the Raspberry Pi controls the setpoint of the Horstmann
thermostat, it also receives data regarding the current indoor temper-
ature from the Horstmann thermostat. These two components are

Figure 1: Schematic overview of our smart heating system

installed in a user’s home. The Raspberry Pi periodically connects
to the web server to pull the latest schedule on how to heat the house
for the next several days (based on a particular user’s settings). With
every pull request, it also sends along the current indoor temperature
of the house, which is then stored in a database on the web server.
As part of the deployment, users are given a tablet running the web
application, which they can use to remote-control the smart thermo-
stat (see Figure 2); alternatively, the users can use any other device
with a web browser. In either case, the data for the web application
is served by the web server, from which the application also receives
the current real-time prices every 30 minutes.

3.1 Design Challenges
The main challenge in designing the UI of the smart thermostat

is the inherent tension between the user input and the machine
learning output. The learning algorithm assumes the user input (i.e.,
the setpoint changes) to be noisy data. Thus, when the user changes
the temperature, the algorithm will update the parameters of the
utility function. However, the optimal temperature according to the
model might be a different value than what the user just provided.

For example, assume the current price is 20 pence/kWh, and the
current optimal setpoint according to the user model is 18.5 °C.
Assume the user changes the setpoint to 20 °C, and the learning
algorithm does a Bayesian update and concludes that the new opti-
mal temperature (based on all previous inputs) is 19 °C. The design
challenge is apparent: if the user sets the setpoint to 20 °C, but the
system heats to 19 °C instead, then the user will not be satisfied.

We use two different interaction paradigms to reconcile the user
input with the machine learning output. The first paradigm is based
on direct manipulation, exposing the user more directly to how
the algorithm is working. The second paradigm lets the user only
indirectly interact with the learning algorithm. Based on these two
interaction modes we designed two UIs, which we call “learning
direct" and “learning indirect". In addition to these two learning
thermostats, we designed a third UI without machine learning. In
this UI, the user has to manually configure his optimal temperature
line. This UI, which we call “manual", served as the control group.

Figure 2: The smart thermostat application running on a tablet
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Figure 3: Home page of the “Learning Direct" thermostat

3.2 The UIs of the Three Thermostats
We first give an overview of the UI elements that are shared by

all three versions. For this, consider Figure 3, which shows the
home page of the learning direct UI. The page shows the current
indoor temperature as well as the setpoint for the current price. The
setpoint can be changed by pressing the +/− buttons next to it. The
price is color coded (with corresponding labels normal, high, very
high) to give the user some intuitive feel for the current price level.

Importantly, we also show the user his Estimated 30 days cost,
i.e., an estimate how high his heating bill will be, given his current
settings. By exploring the financial consequences of different set-
tings, the user can decide how to trade off comfort (a warm house)
versus cost (the monthly heating bill). To compute an estimate of
the 30-day costs, we use a simple thermal model of the user’s home
(see Section 4.1), as well as predictions of the energy prices and the
outdoor temperature for the next 30 days. Finally, we also show the
user how much of his heating budget he has already spent.

3.2.1 Learning Direct UI
The distinctive feature of the learning direct UI is the fact that

the setpoint that is displayed is always the learned setpoint by
the thermostat. Thus, the semantics of the +/− buttons changes
over time. Assume that the current setpoint is 18.5 °C. If the user
now presses the warmer button once, the algorithm will take 19 °C
as input and do a Bayesian update, resulting in a learned optimal
setpoint of 18.7 °C, which is then rounded to 18.5 °C (the granularity
is in steps of 0.5 °C). Thus, the user does not see any change in the
setpoint. However, if he presses a second time, the algorithm will
take 19.5 °C as input and the learned optimal setpoint increases to
18.9 °C, which will then result in a setpoint change to 19 °C. Thus,
in this hypothetical example, the user had to press the + button
twice to increase the setpoint from 18.5 to 19 °C.

3.2.2 Learning Indirect UI
Figure 5 shows the home page of the learning indirect UI. In

this UI, the user is less directly exposed to the machine learning
algorithm. The interaction mode for changing the setpoint is as
follows. The temperature the user inputs temporarily overrides the

Figure 4: Home page of the “Manual” thermostat

Figure 5: Home page of the “Learning Indirect" thermostat

optimal temperature the algorithm would set. For example, when
the user sets the temperature to 20 °C, the thermostat will heat to
this exact temperature for one hour. In the background, it takes the
20 °C as a new learning input and performs a Bayesian update. After
one hour, the thermostat switches to the temperature that will be
optimal (according to its new user model) at the then current price.

3.2.3 Manual UI
Figure 4 shows the home page of the manual thermostat. In

contrast to the two learning UIs, here the user has to manually
specify how the temperature should be set at different prices. He
can do this using the four sliders on the right side of the UI. The
sliders represent the temperature setpoints at 5, 15, 25, and 35
pence/kWh (which covers the whole price range). To maximize
the comparability of the manual thermostat with the two learning
thermostats, the sliders were constrained to always form a straight
line, to adhere to the user model underlying the learning algorithm.
Thus, if the user changes the setpoint at any slider, the other sliders
change their values as well to conform to the linear model.

3.2.4 Settings Page
The settings page (not shown) is an additional screen that is

only provided to users of the two learning thermostats. Here, they
can review and manage their learned setpoint preferences. The
motivation for this screen is to provide an additional level of control
for users who are either not satisfied with the price–temperature
mapping the thermostat has learned, or who prefer not to interact
with the machine learning algorithm. The settings are displayed in
the form of four sliders in the same way as on the home page of the
manual UI (showing the price–temperature mapping). The user can
manually change the temperature on each of the four sliders, and
the slider functionality is the same as for the manual UI.

3.2.5 Schedule Page
Our smart thermostat also offers a schedule page (see Figure

6) that allows the user to program the heating times of the boiler
based on hourly time slots. Here, the user also sees how choosing a
particular schedule impacts his estimated 30-days heating cost.

Figure 6: The schedule page
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4. EVALUATION
To evaluate our thermostats, we conducted a field experiment. We

recruited 30 participants living in England who used the system in
their homes for 30 days from February to March 2015. The partici-
pants came from diverse backgrounds, had an average age of 50, and
had no prior experience with smart thermostats (see [2] for detailed
demographics). We randomly assigned the participants to two treat-
ment groups and one control group, each with 10 participants. The
treatment groups used the learning direct and the learning indirect
UI, respectively; the control group used the manual UI.

4.1 Deployment & Incentives
The whole field experiment was divided into a 7-day data col-

lection phase and a 30-day experimental phase. In a first step, an
experimenter went to the users’ homes and installed the Horstmann
thermostat and the Raspberry Pi. This was followed by the 7-day
data collection phase in which we let the users heat their homes
normally and recorded their indoor temperature as collected by the
Horstmann thermostat. This phase was necessary to personalize
the software to each user. In particular, the temperature recordings
allowed us to fit the parameter values of the thermal model to each
individual home. This served two purposes: first, it created more re-
alism in the study as the predicted heating costs would more closely
match the actual costs. Second, it allowed us to create financial
incentives tailored to each user (which we will describe shortly).

After the data collection phase, an experimenter visited the users’
homes a second time. He instructed the users on how to use the web
application using the tablet that was provided (or with any other
device running a web browser). Then the actual study with a length
of 30 days started. Going forward, every evening, the users were
sent a text message to remind them of their current heating budget,
their current setpoint, and the current energy price.

Incentives. To create realistic financial incentives, we endowed
every participant with a heating budget of £100.4 We explained to
them that they would take part in a virtual market for heating in
which energy prices change every 30 minutes. We explained that,
every day, the heating costs in the virtual market would be sub-
tracted from their virtual heating budget, and at the end of the study,
they could keep whatever budget they had left as an experimental
reward. Note that it was necessary to simulate the heating costs in a
virtual market since nowadays, end-users in the UK do not yet face
dynamically changing electricity prices.

Calculating Heating Costs. The calculation of the estimated
heating costs was personalized for every user as follows. After the
data collection phase, we computed a best fit of the parameters for
the thermal model (i.e., leakage rate λ and heater output rh; see
[21]) to the data collected for every user. Furthermore, based on
the recorded heating data, we estimated their preferred temperature
T ∗
prior . Finally, we took into account the predictions of the energy

prices and the outdoor temperature for the remaining days of the
experiment. Given all of this, we then calibrated the heating costs
such that heating constantly to (T ∗

prior + 1)°C for the whole month
would cost the user £80. Thus, even if the user increased his average
setpoint by 1 °C during the experimental phase (and otherwise
heated as before), he could still get a £20 reward. Of course, if
the user changed his settings, his estimated heating costs changed
accordingly. To ultimately calculate the true heating costs, we used
the same formula, and simply assumed that the heater was on at time
t if the recorded temperature was below the current setpoint, and off
4This corresponds approximately to the amount of money an average
UK households spends on total energy per month: https://www.
gov.uk/government/uploads/system/uploads/
attachment_data/file/487650/table_262.xls

Figure 7: Prices on a sample day

when the recorded temperature was above the current setpoint. Note
that we employed this indirect way to determine when the boiler
was on because our system did not have direct access to the boiler.

4.2 Prices
To add realism, the prices the users encountered during the study

were taken from the UK electricity spot market, dating from January
1 to January 30, 2014.5 We normalized the prices to range from 5
pence to 35 pence (removing extreme outliers), which resulted in an
average price of 12 pence/kWh. The price points are half hourly so
that also in the study, prices changed every 30 minutes.6 While the
calculation of the heating cost was personalized to every user, the
prices were the same for all users. A sample price profile is shown in
Figure 7. The prices are low during the night and increase to about
the average price level between 8 am and 4 pm. A roughly two-hour
long price peak is found between 4 pm and 8 pm, where the price
increases around three times compared to the base price. Overall,
the price data shows enough variation (intra-day, intra-week, as well
as between weekdays and weekends) that we expected the users to
face challenging decisions regarding their heating during the study.

4.3 Data Collection
During the study, we gathered both quantitative and qualitative

data. We recorded the actual indoor temperature as well as the
setpoints every five minutes. In addition to that, we logged all of the
users’ interactions with the web UI. After the study, we conducted
semi-structured interviews with the users. Furthermore, the users
filled out a questionnaire with six Likert-scale questions that asked
the users to indicate their agreement with a selection of statements
on a scale from 1 (“Strongly disagree") to 7 (“Strongly agree").

We analyzed the data in two ways. First, we considered all 30
users. Second, we excluded all users that had fewer than 5 setpoint
changes on the home page, leaving us with 21 users (6 in the indirect
group, 7 in the direct group, and 8 in the manual group). We call
the remaining 21 users the “active" users. Whenever it makes sense,
we report the results for all users as well as the active users.

5. RESULTS
We now discuss our findings based on the quantitative and quali-

tative data we collected during the experiment.

5.1 User Experience Analysis
In this section, we first study the user experience of our partic-

ipants. We ask the following three questions: (1) Did the smart
thermostat enable the end-users to handle real-time prices? (2) Did
the machine learning algorithm improve the usability of the system?
(3) Which of the two learning-based user interfaces worked better?
5https://www.bmreports.com/
6We initialized the study in such a way that the day of the week the
prices were taken from corresponded to the day of the week during
the study. For example, January 1, 2014 was a Monday; thus, the
users saw the prices from this day on a Monday as well.
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Overall Satisfaction. Analyzing the interaction logs revealed
that all but 3 users interacted with the system at least up to the last
week of the study, demonstrating a good level of engagement. The
majority of the users seemed relatively happy to delegate control
over their heating system to an autonomous system. This is reflected
by the average agreement of 5.2 with the sentence: “I trust the
thermostat to set the right temperature for me." Users felt in control
of their heating and were confident that the system worked correctly.
Furthermore, most users seemed satisfied regarding how well they
could communicate their heating preferences to the smart thermostat,
given the average agreement of 5.4 with the statement “The smart
thermostat enables me to express my preferences regarding how to
trade off comfort and cost." Overall, the data supports our finding
that the smart thermostat achieved its primary goal – to enable users
to successfully handle real-time prices. Note that for five out of the
six Likert-scale questions, we did not find a statistically significant
difference between the three user groups. The only statistically
significant result we found was regarding the usability of the system,
as we will discuss in the next paragraph.

Usability. We now analyze whether using a machine learning
algorithm had a positive effect on usability. Towards this end, we
compare the two learning UIs with the manual UI (the control group)
regarding the users’ average agreement with the statement “The
smart thermostat was easy to use.” For all 30 users, the averages are
4.9 for learning direct, 5.7 for learning indirect, and 4.0 for manual.
A one-way ANOVA finds no significant differences between the
three groups (p = 0.14). However, for the restricted set of active
users, the values are 5.5 for direct, 6.2 for indirect, and 3.3 for
manual, and here an ANOVA finds a significant difference between
the three groups (p = 0.01). Post-hoc comparisons using the Tukey
test show that both learning UIs were rated significantly easier to
use than the manual UI. This supports our original idea of using
hidden market design, and in particular to use machine learning, to
simplify the interaction with the thermostat.

Comparison of the two Learning UIs. After having seen that
the learning feature had a positive effect on the usability, we now
compare the two learning UIs and discuss which learning UI was
more successful at mediating between the user and the machine
learning algorithm (there was no statistically significant difference
regarding the users’ usability rating of the two UIs). It is impor-
tant to understand that the two UIs use very different interaction
paradigms. Recall that the indirect learning UI temporarily over-
rides the machine learning output with the user’s current setpoint
input. This way, the user can easily set the setpoint to any desired
temperature - however, after one hour, the setpoint will go back to
the learned temperature. In contrast, the direct learning UI always
uses and displays the learned setpoint. At the beginning, this may
lead to a more “immediate” interaction between the user and the
thermostat, because there are not two different temperatures, like
with the indirect learning UI. However, after many setpoint inputs
have been collected, the learning algorithm starts to converge to a
particular setpoint - a natural consequence of the Bayesian updating
algorithm. At that time, the +/− buttons on the home page become
less reactive. Eventually, if a user provides many inputs (e.g., more
than 10), he might need to press the +/− buttons many times until
the setpoint changes by 0.5 °C. This might be a source of user frus-
tration. Given this, our hypothesis is that the learning indirect UI
was more successful at mediating between the user and the learning
algorithm than the learning direct UI. In the following, we present
two findings that support this hypothesis.

The first piece of evidence concerns the use of the learning fea-
ture. Recall that users of the two learning UIs had two options to
change their setpoint preferences: either change the setpoint on the

home page, which triggers a Bayesian update, or manually manipu-
late the sliders on the settings page. Our intention was that people
would mostly use the home page to change the setpoint, and only
users not satisfied with the learned settings would go to the settings
page. To analyze the relative frequency of each setpoint change
method, for each user, we measure the ratio Nhome/Nsettings,
where Nhome is the total number of setpoint changes on the home-
page, and Nsettings is the total number of setpoint changes on the
settings page. We remove those users that had zero interactions on
the settings page because it would result in a division by zero (two
users in each group). Then, the average ratio is 2.6 for learning
direct, and 12.9 for learning indirect. A two-sided t-test shows that
this difference is statistically significant (p = 0.02). Thus, the users
of the indirect group used the learning feature much more than the
preference changes on the settings page, compared to the users of
the direct group.

The second piece of evidence comes from the user interviews.
There are at least two users in the direct learning group who com-
plained about the thermostat not changing the setpoint when pressing
the +/− buttons:

P3: “[...] trying to turn the temperature down. Some-
times you‘d go down, down, down, down, down, and
it doesn‘t register. And you‘re going, I pressed down.
I pressed down. [...] Wow it needs four presses per
half degree or something. [...] So, that was a little bit
frustrating [...]"

P10: “It [the thermostat] was more. . . temperamental.
You know you press it sometimes it didn’t work"

Summarizing, we state the three main findings of this section.
First, users were happy to delegate control over their heating to an
autonomous system, which enabled them to successfully handle
real-time prices. Second, the learning UIs were rated significantly
easier to use than the manual UI, which confirms our hypothesis
that hidden market design principles are a valuable tool to design
smart grid applications. Third, we presented some evidence that the
learning indirect UI was the more successful of the two learning UIs,
since it was used as intended and led to a smoother user experience.
However, regarding the third point: more research is needed to
investigate the optimal design of user interfaces that can effectively
mediate between end-users and machine learning algorithms.

5.2 Economic Behavior Analysis
In this section, we discuss our results related to the question how

real-time pricing affected the users’ economic decision making. In
particular, we answer four questions: (1) How did users react to
prices changes? (2) Were they willing to reduce their comfort to
save money? (3) How much money could they save, and what is
the impact of their settings on their comfort? (4) Can we induce a
significant amount of demand response during peak hours?

5.2.1 How Do Users React to Price Changes?
Recall that the user model underlying the learning algorithm as-

sumes that people will react to price changes in an “economically
rational” way, i.e., when the price increases they will weakly de-
crease (but not increase) their temperature. Using the real behavior
observed in our study, we wanted to verify whether this assump-
tion was ever violated – essentially a sanity check on the model
underlying the learning algorithm.

To this end, we analyzed all of the users’ setpoint inputs they
provided to the system during the study. Each of these data points
is a pair (p, T set), where p is the price at which the setpoint T set

was saved. We performed the following analysis: given all inputs of
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Figure 8: Example setpoint inputs from one particular user, together
with best linear fit from linear regression

a user, we ran a linear regression to check for a linear trend in the
temperature adjustments. Figure 8 shows an example setpoint cloud
from a rational user (each point is a setpoint provided by the user),
together with the fitted regression line.

Table 1 summarizes the results of this regression analysis. For 6
out of all 30 users, we find a statistically significant negative slope
(p < 0.05), which means that their inputs confirm our assumption
that people will reduce the temperature if the price increases. For
the remaining 24 users, we find slopes that are not statistically
significantly different from 0, and thus these users neither confirm
nor violate the assumptions of the model (note that the relatively
large number of statistically insignificant slopes is largely due to the
fact that most users did not provide enough setpoint inputs for the
regression to generate statistically significant results). Summarizing,
there was no user that violated the rationality assumption of our
model, whereas 6 users adjusted the setpoints in a way as predicted
by the model. Of course, this does not show that all users acted
fully rationally. But it provides us with a certain level of confidence
that, at least on average, the basic assumption underlying our model
(i.e., that users make trade-offs between comfort and costs) seems
reasonable and that our experiment design thus makes sense.

Slope Direct Indirect Manual Total
Negative (p < 0.05) 0 3 3 6
Flat 10 7 7 24
Positive (p < 0.05) 0 0 0 0
Total 10 10 10 30

Table 1: “Rationality” Analysis

5.2.2 User Preferences
In the previous section, we have analyzed the stream of individual

setpoint inputs at different prices and at different points in time. In
contrast, we now look at the resulting slope of the users’ optimal
temperature lines (whether learned or set manually) at the end of
the 30 days, since this slope indicates by how much the users were
willing to reduce their temperature when prices were high.

Table 2 shows the users’ average slopes; once for all users, and
once for all active users, separated by the three groups. None of
the differences between the averages are statistically significant.
However, the variance of the slopes between the users is notewor-
thy, varying between -0.31 and 0, which demonstrates the large
heterogeneity in the users’ preferences.

Slope of T opt Direct Indirect Manual min / avg / max
All users -0.11 -0.09 -0.1 -0.31 / -0.1 / 0
Active users -0.06 -0.11 -0.09 -0.23 / -0.09 / 0

Table 2: The slopes of the optimal temperature lines

Figure 9: Average optimal temperature line

To visualize what these slopes mean, Figure 9 shows the optimal
temperature line for an average user with slope m = −0.1. The
x-axis denotes the price, while the y-axis denotes the optimal tem-
perature. On average, the users’ optimal setpoint at 5 pence/kWh
was 20.1 °C, and (on average) they were willing to reduce their
setpoint to 17.1 °C at 35 pence/kWh, which is a reduction of 3 °C
during the price peak. Compare this to the most price-sensitive user,
who had a slope of m = −0.31. Thus, he was willing to reduce his
temperature by 9.3 °C during the price peak. Note, however, that
this particular user had a very high “most preferred temperature” of
T ∗ = 26.5 °C. Thus, when prices were low, he was heating to a
very high setpoint, but when prices were high, then this user was
willing to radically reduce his temperature – in theory to 17.2 °C.

However, as we will discuss in the next section, even though some
users had a very large willingness to reduce their temperature when
prices were high, the actual temperature drop during price peaks
was much smaller, due to the thermal inertia of most homes.

5.2.3 Comfort-Cost Trade-off
We have seen that, on average, the users’ thermostat settings

suggest that they were willing to sacrifice some of their thermal
comfort to save some money. The questions that follow from this
observation are: how much money did they actually save, and how
did their settings actually influence the temperature in their homes?

Cost Analysis. Table 3 summarizes the total cost data. On aver-
age, the users’ heating costs (over 30 days) were £47. Thus, at the
end of the study, they had an average of £53 left from the £100 heat-
ing budget. While the learning indirect group had lower costs than
the other two groups, this difference is not statistically significant
(p = 0.06). The most likely explanation for this difference is a dif-
ference in the heating schedules. The learning indirect users heated
least (6.4 hours per day on average, weighted over work days and
weekends), while the learning direct and the manual users heated
more (9.3 and 9.2 hours per day, respectively). Note, however, that
this difference is also not statistically significant (p = 0.17), but
still big enough to have an observable impact on the costs.

Total cost Direct Indirect Manual min / avg / max
All users £55 £32 £55 £14 / £47 / £100

Table 3: Participants’ total heating cost over 30 days

Comfort Analysis. Note that, even though the users allowed the
smart thermostat to decrease the setpoint by 3 °C on average during
price peaks, the actual temperature drop was much smaller due to
the thermal inertia of a home and the limited duration of the peak.
In the context of our study, we define a peak to be an event during
which the price stays above twice the average price of 12 pence/kWh
for at least 2 hours. A duration of 2 hours is interesting because only
if the peak is long enough, then the users are expected to experience
the impact of the temperature settings on their comfort. Using this
definition, we identify four price peaks in our study.
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Clearly, the greatest impact on users’ comfort happens during
these four price peaks. However, when we analyze the temperature
data (focusing on the active users), we see that even during these
peak events, the comfort loss was within acceptable bounds. Only
in 2 (10%) of the homes the temperature fell by 1 °C during the
peaks, while in 13 homes (62%), the temperature did not change.
The temperature in the remaining 6 homes (28%) increased by 1 °C
during the peaks.7 This indicates that most users did not suffer from
big temperature drops even during price peaks.8

5.2.4 Demand Response Analysis
When designing a smart thermostat to enable demand-side man-

agement, it is important to note that the overall goal of demand-side
management is to reduce the demand during peak hours, i.e., during
price peaks that last a significant amount of time [3]. This can be
looked at from two perspectives: the users’ perspective and the
network operator’s perspective. We have already covered the user’s
perspective in the previous sections, i.e., how much they are willing
to decrease the setpoint during price peaks, and, importantly, how
much actual comfort loss they will suffer for doing so.

For the network operators, the goal is to reduce the demand for
energy during peak hours. A common metric used for evaluating de-
mand response programs is the normalized actual demand reduction
which measures the percentage reduction in energy consumption
during price peaks [3], and is defined as

DR =
Coffpeak − Cpeak

Coffpeak
,

where Cpeak is the consumption that was actually measured during
the peak, and Coffpeak is the hypothetical (baseline) consumption that
would have been measured had there been off-peak prices instead.9

We use the same definition of peak as in the previous section. As
the baseline (i.e., Coffpeak), we take the consumption that would have
occurred if the price had stayed at 12 pence/kWh instead. Since
only Cpeak is observed, Coffpeak must be estimated. However, due
to the relatively short duration of the study and the high variation
in each user’s settings and occupancy patterns, it was not possible
to reliably estimate the counterfactual “off-peak demand” from the
experimental data. For this reason, we used our simulation model for
this estimation. To this end, for every user, we use the thermal model
of the user’s house, the user’s setpoint preferences and his schedule
at the time of the peak, to estimate what this users’s consumption
would have been at the same time when the price peak occurred, but
assuming a constant price of 12 pence/kWh instead.

Using this approach, we estimate the average demand reduction
to be DR = 38% (Table 4 provides additional results). Interestingly,
when considering the set of active users, we obtain 50% of demand
response via the indirect UI, and this is almost twice as large as the
demand response achieved by the direct UI (27%). However, this
difference is not statistically significant (p=0.097).

Comparison to other Trials. Compared to other demand re-
sponse trials from the literature, the amount of demand response
we found (DR=38%) is relatively large. A meta-study by Strom-
back et al. [28] found that, using automation technology, an average
7The temperature can increase during a price peak for multiple
reasons. For example, for users with zero slope, prices have no effect.
But even for price-sensitive users, their heating may coincidentally
be scheduled such that it happens to start heating in the middle of a
price peak, and then the boiler may be on despite high prices.
8Note that the precision of the thermostat is 1 °C and therefore, we
cannot present more exact data.
9An alternative measure that is used in the context of real-time
pricing is the price-elasticity of demand [29]. We do not use it
because we are interested in the actual reduction during price peaks.

Demand response Direct Indirect Manual min / avg / max
All users 34% 47% 36% 0% / 38% / 100%
Active users 27% 50% 35% 0% / 36% / 100%

Table 4: Demand response analysis

reduction of 21% can be achieved. The study evaluated 85 field
pilots conducted in the US, Canada, Europe, and Japan. Apart from
real-time pricing, these pilots also tested times-of-use tariffs and
critical peak pricing. The study found that critical peak pricing
generally leads to the highest amount of demand response (31% on
average). A notable example is Gulf Power’s residential service vari-
able pricing pilot in Florida [7]. Their customers could program their
thermostats to automatically react to the current electricity price,
similarly to our smart thermostat. The average demand response
during critical price periods (where the price was approximately 5
times the average price) was estimated to be 41%. This matches
our finding that high amounts of demand response can indeed be
achieved in the residential sector with automation technology.

6. LIMITATIONS
Our work has a number of limitations. First, we use the indoor

temperature as a proxy for a user’s comfort, although thermal com-
fort is a complex phenomenon that depends on many variables [4].
We decided to use the indoor temperature as a proxy for comfort
because it is a very important factor influencing comfort and because
it is simple and robust to measure. A second limitation concerns the
thermal heating model that we employed. While this model has been
validated by prior research [21], it is a relatively simple model, and
there do exist more complex models, capturing the thermal proper-
ties of buildings and the physical process of heating more accurately.
However, the purpose of using a thermal model in our study was not
to provide the most accurate 30-day cost prediction possible, but to
create enough realism such that the users could immerse themselves
into the scenario of heating with real-time prices.

7. CONCLUSION
The goal of this research project was to design a smart thermostat

that enables users to handle home heating in a real-time pricing
regime. We followed the hidden market UI design approach and
built an autonomous heating system that automates the heating by
responding to price signals on a user’s behalf and learns a user’s
comfort-cost trade-off over time. We tested two designs of the
learning thermostat against a non-learning, manual, baseline in a
field experiment in the UK with 30 users over a period of 30 days.

Our results show that the smart thermostat enabled users to deal
with real-time prices, leading to a large amount of demand response
while keeping users’ comfort within acceptable bounds even during
price peaks. Furthermore, the learning UIs were rated significantly
easier to use than the manual one, which confirms the value of
hiding some of the interaction complexity from the user.

Overall, we conclude that it is possible to induce a large amount
of demand response even with a small amount of interaction. This
suggests that smart (learning) thermostats could provide a viable
alternative for users that prefer less complex user interactions.
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