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ABSTRACT
The Blindingly Simple Protocol Language (BSPL) is a novel
information-based approach for specifying interaction proto-
cols that can be enacted by agents in a fully decentralized
manner via asynchronous messaging. We introduce Splee,
an extension of BSPL. The extensions fall into two broad
categories: multicast and roles. In Splee, a role binding is
information that is dynamically generated during protocol
enactment, potentially as the content (payload) of commu-
nication between two agents. Multicast communication is
the idea that a message is sent to a set of agents. The two
categories of extensions are interconnected via novel features
such as set roles (the idea that a role binding can be a set
of agents) and subroles (the idea that agents playing a role
must be a subset of agents playing another role). We give
the formal semantics of Splee and give small model char-
acterizations of the safety and liveness of Splee protocols.
We also introduce the pragmatic idea of query attachments
for messages. Query attachments take advantage of Splee’s
information-orientation, and can help restrict the informa-
tion (parameter bindings) communicated in a message.

1. INTRODUCTION
A protocol is a first-class abstraction for specifying multi-

agent systems [4, 19, 31]. Work in multiagent protocols ad-
dresses two important concerns: the (normative) meanings
of the operations performed by the participants and the or-
dering and occurrence constraints on the operations, which
we refer to together as operational constraints. To see the
distinction between meanings and operational constraints,
consider the familiar setting of buyer-seller interactions. An
operational constraint in this setting would be that a quote
for an item cannot be sent by a seller unless a request for
quotes for that item has been received from the buyer. The
meaning of the quote message in this setting would be that it
commits the seller to delivering the item to the buyer if the
buyer pays the quoted price. In decentralized settings, the
operations would correspond to communicative acts realized
via asynchronous messaging between agents.

Meaning-based protocols, especially commitment proto-
cols [22, 35, 39, 42], have been extensively studied in mul-
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tiagent systems. In contrast to previous approaches, we
are concerned primarily with the specification of operational
protocols, that is, protocols that specify operational con-
straints. Below, we use the term protocol to mean opera-
tional protocols. An important challenge is designing pro-
tocol languages that can capture common interaction pat-
terns and support the decentralized enactment of those pat-
terns by asynchronous messaging between agents. We ad-
dress interaction patterns involving subtleties of roles and
multicast communication that have not been systematically
addressed in protocol languages that support decentralized
enactments.

We take the Blindingly Simple Protocol Language (BSPL)
[36, 37, 38] as our point of departure. In contrast to other
protocol languages (discussed in Section 6), BSPL is a for-
mal, declarative, and information-based approach for spec-
ifying protocols. It naturally supports correct decentral-
ized enactments of protocols via asynchronous messaging
between agents. Although BSPL represents an important
innovation in interaction protocol languages, it lacks the ex-
pressiveness for specifying certain common interaction pat-
terns. One, in a BSPL protocol, roles are not information
parameters. The effect is that BSPL does not support dy-
namic role bindings. Further, in a BSPL protocol, a role may
not be played by more than one agent. Two, BSPL supports
only point-to-point communication between agents; it does
not support multicast, where an agent may send the same
message instance to a set of agents.

To highlight the need for more sophisticated models, let us
consider auctions as an illustrative application. In any en-
actment (instance) of an auction protocol, multiple agents
may play bidder (not supported in BSPL), specifically, the
winner must be selected dynamically from among the bid-
ders (not supported in BSPL). Further, the winner is the
bidder who has bid the highest (not supported in BSPL).
Integrity requires that in a particular (single-item) auction
enactment, the same item information is multicast to all bid-
ders (not supported in BSPL). Analogous challenges would
arise in specifying the Contract Net [18] (more than one
agent may play contractor) as well as protocols for insur-
ance claims, where the claims adjuster is determined on the
fly from among multiple inspectors [10].

This paper seeks to overcome the shortcomings of BSPL
by proposing an extended language that we dub Splee. The
following are the main novel ideas in Splee.

Roles as information parameters. Role bindings are dy-
namically produced during protocol enactment.
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Set roles. A role is adopted by a set of agents.

Subroles. One role may be a subrole of another, indicat-
ing that any agent who plays the first also plays the
second.

Multicast. An agent may send a message to the set of
agents playing a role.

Mapping keys. A protocol’s key consisting of two or more
parameters may be mapped into a key of one parame-
ter. This mapping facilitates natural specification and
composition.

Query attachments. A query restricts the binding gener-
ated for a parameter to specific values.

Our contributions are the syntax of Splee along with char-
acterizations of important correctness properties, namely,
liveness and safety, for Splee protocols. Notably, for a BSPL
protocol, these properties may be determined from its spec-
ification alone. However, this is not necessarily so for Splee,
as role bindings are dynamic and effectively require consider-
ation of infinitely many universes of discourse. To overcome
this challenge, we propose a “small model” characterization
of these properties.

2. BACKGROUND: BSPL
BSPL is declarative: it has no control-flow abstractions.

A BSPL protocol is a bag of protocols, which bottom out
in messages. Instead of specifying control flow, in BSPL,
one specifies information flow. Specifically, a BSPL pro-
tocol (and messages, since they are protocols as well) has
information parameters and causality is explicitly specified
in terms of information flow (via messaging) between agents.
In other words, the messages an agent may send at any point
in an enactment depend on the parameter bindings known
to that agent at that point. Notably, an agent can receive
any message at any point. Two, BSPL supports integrity
constraints via explicit key parameters that functionally de-
termine [23] other parameters and capture the idea that in
any protocol enactment, an agent may not send or receive
conflicting information. Causality and integrity form the
bases for safety and liveness [38], which are important cor-
rectness properties pertaining to decentralized enactments
of BSPL protocols.

2.1 Illustrating BSPL
Listing 1 illustrates BSPL’s main concepts.

• The listing declares Request Quote as the name of
the protocol; two roles (both public, in this case): M
(merchant) and C (customer); and three parameters
(all public, in this case): ID, item, and price. Parame-
ter ID is annotated key, meaning that ID functionally
determines the other parameters. All parameters are
adorned poutq, meaning that their bindings are gener-
ated by enacting the protocol, i.e., enacting the mes-
sages declared in it. The public parameters of a pro-
tocol serve as its interface and facilitate composition.

• Request Quote declares two message schemas (the or-
der of their listing is irrelevant). By convention, any
key parameter of the protocol is a key parameter for
any message in which it appears, though a message

may have additional key parameters. Thus, request is
directed from customer to merchant and its key is ID.

• The message request has two parameters ID and item,
each annotated poutq, meaning that a customer can
generate bindings for them when it sends an instance
of request. In quote, ID and item are pinq, meaning
that a merchant may send an instance of quote with
some bindings for ID and item, only if it has received
an instance of request with those bindings.

• Bindings for ID identify enactments of Request Quote.
That is, distinct tuples of bindings as allowed by the
key constraints correspond to distinct enactments. A
complete enactment of Request Quote corresponds to
a tuple of bindings for all its public parameters.

Listing 1: A simple quote protocol in BSPL.

Request Quote {
roles M, C //Merchant, Customer
parameters out ID key, out item, out price

C 7→ M: request [out ID, out item]
M 7→ C: quote [ in ID, in item, out price ]
}

Singh [38] formalizes liveness and safety for BSPL and
gives verification techniques. A protocol is live iff every en-
actment can complete and there is at least one enactment.
Request Quote is live (there is only one enactment). A pro-
tocol that cannot be enacted is not live.

A protocol is safe iff it is not possible to produce conflict-
ing bindings for a parameter for a given key binding in any
enactment. A trivial safety violation would be if a customer
sent request with ID “1” and item “flower,” and then sent
ID “1” and item “phone.” This violation is trivial because
it can be avoided by the customer based solely on its local
knowledge. (Resending 〈“1”, “flower”〉 though would not be
a violation.) A message is viable iff sending it does not cause
any local violation. Safety is characterized as there being no
violation assuming each message emission is viable. Request
Quote is safe. Request Quote Unsafe in Listing 2, which
modifies Request Quote by adding message desire from C
to M (indicating the price the customer desires the item
for), is unsafe. Both merchant and customer can concur-
rently produce bindings for price; that is, a nonlocal conflict
exists.

Listing 2: An unsafe protocol in BSPL.

Request Quote Unsafe{
. . .
C 7→ M: desire [ in ID, in item, out price ]
}

In BSPL, roles are not parameters: they are adopted ex-
ternally, not during enactment. In effect, Request Quote de-
fines a multiagent system of two agents, whose names might
as well be M and C.

We use auctions as our running example. A seller requests
that an auctioneer put up an item for auction. The auction-
eer sends a call for bids including item and starting amount
(samt) to a set of bidders. One or more bidders may submit
bids. The auctioneer announces the highest bidder as the
winner.

The BSPL Call for Bids in Listing 3 is inadequate because
B can be played by at most one agent in any enactment.
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Listing 3: A call for bids in BSPL.

BSPL Call for Bids {
roles S, A, B //Seller , Auctioneer , Bidders
parameters out aID key, out item, out samt

S 7→ A: request [out aID, out item]
A 7→ B: cal l [ in aID, in item, out samt]
}

2.2 Decentralization
BSPL realizes LoST (Local State Transfer) [37], which is a

decentralized architecture style for multiagent systems. We
summarize the basic requirements of LoST. Agents interact
via asynchronous messaging; in particular, there is no global
repository of state (shared-nothing setting). Each agent has
a local (public) state that consists of the messages it has sent
and received. Further, agents are autonomous, meaning that
they may or may not send messages. An agent can send any
message for which it has the requisite information.

LoST requires that no assumptions be made about mes-
sage delivery order. LoST requires being able to work over
lossy infrastructures that support message retransmission.
In such a loosely coupled architectural setting, LoST im-
poses the correctness requirement that agents should have
a consistent view of their interactions. Safety for BSPL, as
described above, in effect, captures the consistency require-
ments. Liveness ensures that consistency is not maintained
trivially, that is, by not acting at all.

3. SPLEE SYNTAX AND MOTIVATION
The formal syntax of Splee is given next. A superscript

of + indicates one or more repetitions, and b and c delimit
expressions, which are optional when without a superscript.

L1. A protocol declaration consists of a name, public pa-
rameters, optional private parameters, and references
to constituent protocols or messages. Public parame-
ters are adorned. Both public and private parameters
may have one or more optional qualifiers. The public
parameters marked key form this declaration’s key. In
Splee, roles are parameters; qualifier role indicates if a
parameter is a role.
Protocol −→ Name { Public bPrivatec Reference+ }

L2. Public parameters are adorned with information flow
constraints and qualifiers.
Public −→ public bAdorned bQualifiercc+

L3. Private parameters are not adorned as they are not
part of a protocol’s interface.
Private −→ private bName Qualifierc+

L4. A reference to a protocol (from a declaration) may con-
sist of the name of the protocol appended by as many
parameters as it declares.
Reference −→ Name ( Adorned+ )

L5. A reference may be a message schema, and consists of
exactly one name, sending role and receiving roles, and
one or more parameters. The receiving role is adorned.
Reference−→Name 7→Adorned : Name[Adorned ]+

L6. Adorned −→ Adornment Name
L7. Qualifiers indicate if a parameter is a key, a singleton

role (role but not set), a nonsingleton role (role and
set), if an agent playing a role is a member of a set
of agents playing another role (subrole), and whether
a parameter has a map constraint. The order of the
qualifiers is irrelevant.

Qualifier −→ bkeycbrolecbsetcbsubrole Namec
bmap(Name+)c

L8. An adornment is usually either pinq or poutq; pnilq in-
dicates an unknown parameter.
Adornment −→ in | nil | out

We gradually work our way up to a desirable specification of
an auction protocol. Below, we use X → Y to mean that the
set of parameters X functionally determines each parameter
in the set Y [23]. We highlight five innovations below.

First innovation: roles as information. Supporting multi-
ple bidders implies being able to bind multiple agents (i.e.,
their identifiers) with the role B, in essence, treating B as a
parameter. Multiple Bidders in Listing 4 treats all roles as
parameters. Bindings for A and S are generated by enacting
Multiple Bidders; moreover, they are both key parameters of
the protocol (in addition to aID). Role B is a private role pa-
rameter of the protocol. The sender is not adorned because
its binding must be fixed when the message is sent. Notice
the presence of pinq S in call: since {S,A, aid} → {item}, it
cannot be omitted.

The reason Multiple Bidders supports multiple bidders is
that B is a key parameter for call (following the convention
that a message parameter that is a key parameter for the
protocol is a key parameter for the message). Or, given an
enactment of Multiple Bidders—by specifying for A, S, and
aID–there can be many bindings for B, and therefore many
call messages (one to each bidder).

Listing 4: An attempt to support multiple bidders by treat-
ing roles as information parameters.

Multiple Bidders {
public out aID key, out item, out samt, out S role

key, out A role key
private B role key

S 7→ out A: request [out aID, out item]
A 7→ out B: cal l [ in aID, in S, in item, out samt]
}

Second innovation: key mapping functions that preserve
functional dependencies. We represent a mapping function
as an injective function map : 2String → String that has
the property that if X → Y , then {map(X)} → Y . String
concatenation and perfect hashes are examples of mapping
functions. Listing 5 uses key mapping to transform {A, S,
aID} to {nID}. That is, {nID} →{A, S, aID, item}. Key map-
ping facilitates specification and composition, and may help
obscure the bindings involved (e.g., to hide the seller’s iden-
tity from bidders). Notice that in Listing 5, S and A are no
longer annotated as key parameters because nID suffices.

Listing 5: Applying a dependency-preserving key map.

Key Mapping {
public out nID key map(S, A, aID) , out item, out samt,

out S role , out A role
private B key role

S 7→ out A: request [out aID, out item, out nID]
A 7→ out B: cal l [ in nID, in item, out samt]
}

Third and fourth innovation: set roles and multicast. List-
ing 5 has an important shortcoming: the auctioneer can send
different bindings for samt to different bidders, which would
be wrong in a (single-item) auction enactment. Different
bindings are possible because B is a key parameter in call;
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that is, {nID, B}→ {samt}. Recall that we made B key for the
express purpose of supporting multiple bidders. So how can
we have multiple bidders but prevent different samt bindings
from being communicated to them? The solution is to treat
the binding of B as a set of agents, as in Listing 6. In effect,
because B is no longer key, {nID}→{samt,B}.

Listing 6: call is a multicast message; B is set, meaning that
it can take a set of more than one agent as its binding.

Multicast {
public out nID key map(S, A, aID) , out item, out samt,

out S role , out A role
private B role set

S 7→ out A: request [out aID, out item, out nID]
A 7→ out B: cal l [ in nID, in item, out samt]
}

Fifth and sixth innovations: role binding selection, in which
an agent performs a role binding and communicates it to
other agents, and subroles. Listing 7 introduces bidding and
selection of a winner. Any agent playing an individual bid-
der (I) is indicated to belong to the set of agents playing B.
Such agents may send instances of bid with an amount bamt,
which may be different for each bidder. The auctioneer se-
lects the winner (W) in wins; an agent playing W must also
be a member of B. Recall that in the actor model of compu-
tation, an actor may send another actor a third actor’s name
[25]. In contrast, in Splee, an agent may not only send an
agent’s name to another but may also send a role binding,
in essence changing the type of the agent.

Listing 7: Bidding and selecting winner. For brevity, we
omit the qualifier role when subrole is present.

Winner {
public out nID key map(S, A, aID) , out item, out samt,

out S role , out A role , out W subrole B, out wamt
private B role set , I key subrole B //Individual bidder

S 7→ out A: request [out aID, out item, out nID]
A 7→ out B: cal l [ in nID, in item, out samt]
I 7→ in A: bid [ in nID, in item, out bamt]
A 7→ in B: wins [ in nID, out W, out wamt]
}

Splee protocols are subject to certain well-formedness cri-
teria. Only role parameters may be set; if a role X is subrole
of role Y, then both X and Y are role and Y is set; the sender
and receiver roles in any message declaration are both role,
the sender is not a set, and receiver is not adorned pnilq; and
at least one public parameter is declared key. Further, be-
cause nonkey parameters have no meaning when separated
from their key, the key (or its mapped form) with which
the binding of a parameter is produced must be used in any
reference where the parameter is used.

4. SEMANTICS
We formalize the above intuitions, enhancing Singh’s [38]

semantics. The significant difference in our treatment arises
from the following fact. For a BSPL protocol, the relevant
universe of discourse consists of roles and messages in the
protocol. In contrast, for a Splee protocol, there are in-
finitely many universes of discourse, each including a finite
set of agents and the roles each agent plays in the protocol.

We give a brief overview of the formalization before lay-
ing out its details. First, we formalize the structure of a

protocol. We explain how a message schema is itself an ele-
mentary protocol. We then relate a message instance to its
schema. This enables us to define the history of an agent
as a set of message instances. Then we define a viable mes-
sage for a history as one that satisfies causality, integrity,
role, and map constraints. A multiagent enactment is mod-
eled by a history vector whose components are histories of
individual agents. Viable history vectors are those that sat-
isfy the physical constraint that a message must have been
sent before it is received. To capture enactments for specific
roles, message schemas, agents, and the roles they play, we
introduce the idea of a universe of discourse (UoD). This en-
ables us to define the universe of enactments of a UoD. This
enables us to define enactments (instances) of a protocol,
the enactment of a message schema being the base case.

For convenience, we fix the symbols by which we refer to
finite lists (mostly, treated as sets) of public parameters (~p),

public key parameters (~k ⊆ ~p), private parameters (~q), pri-

vate key parameters (~l ⊆ ~q), public roles (~x ⊆ ~p), private
roles (~y ⊆ ~q), roles that are qualified set (~z ⊆ ~x ∪ ~y), sub-
role and mapping constraints (~c), pinq parameters ( ~pI ⊆ ~p),
poutq parameters ( ~pO ⊆ ~p), pnilq parameters ( ~pN ⊆ ~p),
and parameter bindings (~v, ~w). Here, ~p = ~pI ∪ ~pO ∪ ~pN ,
~pI ∩ ~pO = ∅, ~pI ∩ ~pN = ∅, and ~pN ∩ ~pO = ∅. And, p refers
to an individual parameter. For brevity, we rename private
parameters to be distinct in each protocol, and the public
parameters of a reference to match the declaration in which
they occur. Throughout, we use ↓g to project a list to those
of its elements that belong to g.

Definition 1 states that a Splee protocol (via any of its pa-
rameters) may reference another protocol (via its public pa-
rameters). The references bottom out at message schemas.

Definition 1: A protocol P = 〈n, ~p,~k, ~q,~l, ~x, ~y, ~z,~c, F 〉 is a

tuple, where n is a name; ~p, ~k, ~q, ~l, ~x, ~y, ~z, and ~c are as above;
and F is a finite set of f references, {F1, . . . , Ff}. (∀i : 1 ≤
i ≤ f ⇒ Fi = 〈ni, ~pi, ~ki〉, where ~pi ⊆ ~p ∪ ~q, ~ki = ~pi ∩ (~k ∪~l),
and 〈ni, ~pi, ~ki〉 is the public projection of a protocol Pi (with
parameters renamed). The public projection of a protocol

P = 〈n, ~p,~k, ~q,~l, ~x, ~y, ~z,~c, F 〉, is given by the tuple 〈n, ~p,~k〉.
We treat a message schema with name m, parameters ~p,

sender role (s ∈ ~p), singleton receiver role (r ∈ ~p), key pa-

rameters ~k, and constraints ~c as an atomic protocol with
exactly two public roles (sender and receiver) and no refer-

ences: 〈m, ~p,~k, ∅, ∅, {s, r}, ∅, ∅,~c, ∅〉. If the receiver is quali-

fied set, then we write it as 〈m, ~p,~k, ∅, ∅, {s, r}, ∅, {r},~c, ∅〉.
For brevity, we write them as pm : ~p(~k, s 7→ r)~cq and

pm : ~p(~k, s Z⇒ r)~cq, respectively. Also, where we do not
care whether the role takes a singleton set, we simply write

pm : ~p(~k, s ; r)~cq. Usually, ~k and ~c are understood from
the protocol in which the schema is referenced. Specifically,
~k equals the intersection of ~p with the key parameters of the
protocol declaration and ~c contains any subrole constraints
that pertain to either s or r and relevant map constraints.

Below, let roles(P) = ~x ∪ ~y ∪
⋃
i roles(Fi); params(P) =

~p∪~q∪
⋃
i params(Fi); msgs(P) =

⋃
i msgs(Fi) and msgs(pm :

~p(~k, s ; r)~cq) = {m}. Definition 2 assumes that message
instances are unique up to the key, as in their schema.

Definition 2: A message instance m[~p,~v] associates a mes-

sage schema pm : ~p(~k, s ; r)~cq with a list of values, where
|~v| = |~p|, ~v ↓s is a singleton set of agents, and ~v ↓r is a set of
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agents, and ~v ↓p= pnilq iff p ∈ ~pN . If the schema specified
7→, then ~v ↓r would be a singleton set as well. For conve-
nience, we may make more schema elements explicit, e.g.,

by writing m[~p(~k), ~v] or m[~p(s, r,~k,~c), ~v], as necessary.
Definition 3 captures the idea of a history of an agent

as a sequence (equivalent to a set in our approach) of all
and only the message instances emitted or received by the
agent. Thus, Hα captures the local view of agent α during
a protocol enactment. A history may be infinite in general.
However, we assume each enactment in which a tuple of pa-
rameter bindings is generated is finite. Notice that the emis-
sion of a message instance that has more than one receiver
corresponds to the emission of a set of physical message to-
kens of identical contents, one to each receiver. We assume
infrastructure supports sending such message tokens.

Definition 3: A history of an agent α, written Hα, is given
by a sequence of zero or more message instances m1◦m2◦. . .
(◦ means sequence). Each mi is of the form m[~p(s, r), ~v] and
either α ∈ ~v ↓s or α ∈ ~v ↓r.

Definition 4 captures the idea that what an agent knows
at a history is exactly given by what the agent has seen so
far in terms of incoming and outgoing messages. Here, 2(i)
ensures that the message instance under consideration does
not violate the uniqueness of the bindings; 2(ii) ensures that
the agent knows the binding for each pinq parameter and
not for any poutq or pnilq parameter; 2(iii) ensures that the
instance satisfies map constraints; and 2(iv) ensures that the
subrole constraints are satisfied.

Definition 4: A message instance m[~p(s, r,~k,~c), ~v] is viable
at Hα iff (1) α ∈ ~v ↓r (reception) or (2) α ∈ ~v ↓s (emission)

and (i) (∀mi[~pi, ~vi] ∈ Hα if ~k ⊆ ~pi and ~vi ↓~k= ~v ↓~k then
~vi ↓~p∩~pi= ~v ↓~p∩~pi), (ii) (∀p ∈ ~p : p ∈ ~pI iff (∃mi[~pi, ~vi] ∈ Hα

and p ∈ ~pi and ~k ⊆ ~pi)), (iii) every map constraint in ~c
is satisfied in ~v, and (iv) (for every constraint s subrole g
in ~c, ∃mi[pi, vi] ∈ Hα such that α ∈ ~vi ↓g), and (for
every constraint r subrole g in ~c, ∃mi[pi, vi] ∈ Hα such that
~v ↓r⊆ ~vi ↓g).

Definition 5 captures that a history vector for a protocol
is a vector of histories of agents that together are causally
sound: a message instance is received only if it has been
emitted [30].

Definition 5: A history vector for a finite set of agents A is
[H1, . . . , H |A|] such that (∀a ∈ A : Hα is a component in the
vector and (∀m[~p(s, r), ~v] ∈ Hα: if α ∈ ~v ↓r, β ∈ ~p ↓s, then
m[~p(s, r), ~v] ∈ Hβ)).

A history vector records the progression of a protocol en-
actment. Under the above causality restriction, a vector
that includes a reception must have progressed from a vec-
tor that includes the corresponding emission. Further, we
avoid the FIFO assumption about message delivery. The
viability of the messages emitted by any agent ensures that
the progression is epistemically correct with respect to each
agent.

Definition 6: A history vector for a finite set of agents A ,
[H1, . . . , H |A|], is viable iff either (1) each of its component
histories is empty or (2) it arises from the progression of a
viable history vector through the emission or the reception of
a viable message instance by one of its agents, i.e., (∃i,mj :

Hi = H ′i ◦mj and [H1, . . . , H ′i, H |A|] is viable).
Definition 7 introduces a universe of discourse (UoD).

Definition 8 defines viable history vectors relative to a UoD.

The heart of our formal semantics is the intension of a pro-
tocol, defined relative to a UoD, and given by the set of
viable history vectors, each corresponding to its successful
enactment. Given a UoD, Definition 8 specifies a universe
of enactments, based on which we express the intension of
a protocol. We restrict attention to viable vectors because
those are the only ones that can be realized under our as-
sumptions. We include private parameters in the intension
to support compositionality. In the last stage, we project
the intension to the public parameters.

Definition 7: A UoD is a tuple 〈R ,M ,A ,X 〉 where R is
a set of roles; M is a set of message names; each message
specifies its parameters along with its sender and receiver
from R ; A is a finite set of agents; and X ⊆ R × A . Tuple
(ρ, a) ∈ X means that agent a plays role ρ.

Definition 8: A viable history vector for a UoD 〈R ,M ,A ,X 〉
is a viable history vector [H1, . . . , Hj ] such that (1) exactly
j distinct agents appear in X and each such agent has a
history in the vector, and (2) each message instance in any
history in the vector instantiates a schema in M . The uni-
verse of enactments for that UoD, UR ,M ,A,X , is the set of
viable history vectors for that UoD.

Definition 9 states that the intension of a message schema
is given by the set of viable history vectors on which that
schema is instantiated, i.e., an instance of the schema occurs
in both its sender and each receiver’s histories.

Definition 9: The intension of a message schema is given
by: [[pm : ~p(s ; r)q]]R ,M ,A,X = {H|H ∈ UR ,M ,A,X and
(∃α,~v, i : Hα

i = m[~p(s, r), ~v] and α ∈ ~v ↓s and (∀β ∈ ~v ↓r
∃j : Hβ

j = m[~p(s, r), ~v]))}.
As for BSPL, a Splee protocol completes when all its pub-

lic parameters are bound. A (composite) protocol completes
if one or more of subsets of its references completes. Infor-
mally, each such subset contributes all the viable interleav-
ings of the enactments of its members, i.e., the intersection
of their intensions. Definition 10 captures the cover as an
adequate subset of references of a protocol, and states that
the intension of a protocol equals the union of the contribu-
tions of each of its covers.

Definition 10: Let P = 〈n, ~p,~k, ~q,~l, ~x, ~y, ~z,~c, F 〉 be a proto-
col. Let cover(P, G) ≡ G ⊆ F |(∀p ∈ ~p : (∃Gi ∈ G : Gi =
〈ni, pi, ki〉 and p ∈ ~pi)); and P’s intension, [[P]]R ,M ,A,X =

(
⋃

cover(P,G)(
⋂
Gi∈G[[Gi]]R ,M ,A,X ))

y
~x
.

Definition 11 define the notion of a UoD of a protocol as
involving only P’s roles and messages (including its refer-
ences recursively). A protocol UoD would vary with the set
of agents and the roles they play in the protocol.

Definition 11: A UoD of a protocol P, written UoD(P), is a
UoD 〈R ,M ,A ,X 〉, where R = roles(P) and M = msgs(P).
By allUoD(P), we refer to the set of all UoD(P).

4.1 Naïve Properties
Safety means that for any key value, we cannot produce

a history vector that generates more than one binding for
any parameter. Liveness means that we cannot produce a
history vector that deadlocks. Definitions 12 and 13 char-
acterize these properties weakly—meaning they require only
the existence of an appropriate UoD (i.e., an appropriate set
of agents and their roles bindings).

Definition 12: A protocol P is weakly safe iff (∃U : U ∈
allUoD(P) and each history vector in [[P]]U 6= ∅ is safe). A
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history vector is safe iff all key uniqueness constraints apply
across all histories in the vector.

Definition 13: A protocol P is weakly live iff (∃U : U ∈
allUoD(P) and each history vector in UU can be extended
through a finite number of message emissions and receptions
to a history vector in UU that is complete).

Ideally, we would prefer strong characterizations where
satisfaction did not depend upon a UoD. Definition 14 gives
a strong version of liveness, with safety being analogous.

Definition 14: A protocol P is strongly live iff (∀U : U ∈
allUoD(P) implies each history vector in [[P]]U can be ex-
tended through a finite number of message emissions and
receptions to a history vector in UU that is complete).

However, the strong versions would be too strong : clearly,
there exists a UoD for any protocol in which it is not live.
For example, the auction protocol in Listing 7 is not live if
no agent plays auctioneer.

Because for any protocol P, allUoD(P) is an infinite set,
we employ model abstraction techniques to make the prob-
lem of verifying safety and liveness for the protocol tractable.
Next, we describe a method for statically verifying Splee pro-
tocols for liveness and safety.

4.2 Distinct UoDs
In general, an agent may adopt more than one role in a

protocol. Liveness and safety of a protocol should not rely
upon the same agent adopting two or more roles. In a proto-
col, if any two roles were meant to be adopted by one agent,
then the protocol is ill-conceived (we should simply merge
the two roles into one). A distinct UoD is one where each
role is played by a distinct agent except when the roles are
connected by a subrole relationship. Formally, for any UoD
of a protocol, we can generate a distinct UoD by substi-
tuting new agent identifiers for every agent that agent that
plays multiple roles in the original UoD, none of which are
connected by a subrole relationship. For example, if agent a
plays both roles ρ1 and ρ2, we generate new agent identifiers
aρ1 and aρ2 for the distinct UoD and substitute them for
the original agent by binding them to the roles in its place:
aρ1 with ρ1 and aρ2 with ρ2.

4.3 Canonical UoDs
Informally, our strategy is the following. For modularity,

we consider only distinct UoDs for a protocol. Later we show
how to handle the case where agents play multiple roles.

The first step is to reduce arbitrary (distinct) UoDs to
UoDs with a canonical structure. We define a large UoD for
P as one where every role is played by some agent and if
the protocol has set roles, then at least one of the roles is
played by three or more agents. A canonical UoD for P is
one where every role is played by some agent and every set
role is played by exactly two agents. The intuition behind
every set role played by two agents (not fewer) in a canonical
UoD is that if correctness relied upon fewer than two agents
adopting a set role, then it would be pointless to declare it
a set role. Since agent identities are not important, we can
generate a unique canonical UoD for a protocol where for
any nonset role ρ, its agent identifier is aρ and for set role
ρ′, its agent identifiers are a0ρ

′ and a1ρ
′.

Theorem 1: A protocol P is safe in a large UoD for P iff P
is safe in the canonical UoD for P.

Proof. In the forward direction, we set up an inductive ar-

gument: essentially we show that an additional agent play-
ing a role preserves unsafety. The base case is that of a
canonical UoD UC . Let some role ρ in UC be played by
agents a0 and a1. Let U+

C be identical to UC except that
a3 plays ρ as well. Let’s assume UC is unsafe, which means
there is a minimal history vector H of P in UC that is un-
safe. We construct a history vector H ′ that is identical to H
except that a3’s history consists only of receipts of messages
(a3 does not send any message) and some other agent sends
all the messages that a3 sent in H. H ′ would be unsafe
as well. By induction over additions, any large UoD for P
would be unsafe as well.

In the converse direction, we set up an analogous inductive
argument, but this time for deletions from large UoDs. Let
UL be a large UoD of P. Let P be unsafe in UL. Then there
must be some role ρ that is played agents a0, a1, . . . , an for
n ≥ 3. We construct U−L that is identical to UL, except that
an does not play ρ in U−L . If P is unsafe in UL, then there
must be a minimal history vector that must be unsafe. In
U−L , there will be a corresponding history vector such that
some a(n−1) would have received the same information as an
and therefore is enabled to act as an did. Hence that history
vector will be unsafe as well.

Theorem 2: Let P be safe. Then P is live in a large UoD for
P iff P is live in the canonical UoD for P.

Proof. In the forward direction, we consider UL and U−L
as usual. Then every maximal (no messages can be sent
or received) viable history vector of P in UL is complete.
In U−L (which differs from UL in that an does not play ρ),
let’s assume there is a maximal history vector H that is not
complete. Then it must be because an does not play ρ. How-
ever, any message that was received and sent by an can be
received and sent by a(n−1). In fact, an’s history can be in-
terleaved with a(n−1) as long as the interleaving is consistent
with the individual histories. This is because the protocol is
assumed safe: there were no nonlocal conflicts and merging
histories cannot produce local conflicts, which would block
the enactment short of completion. Therefore, our assump-
tion that H is a maximal incomplete history vector must be
incorrect. By induction over deletions, the canonical UoD is
live as well.

In the converse direction, we consider a canonical UoD
UC and U+

C . Let us assume that UC is live but U+
C is not

live, that is, there exists a maximal viable history H of P
in U+

C that is not complete. Then, it must be incomplete
because of a3 (the additional agent) playing ρ. That means
a3 has sent or received a message that is causing the agents
to block. However, any message that a3 can send or receive,
a2 can send or receive as well because of our assumption
of safety. That means our assumption that U+

C is not live
must be false. By induction, any larger UL must be live as
well.

Finally, we discharge our assumption of using only distinct
UoD in the above theorems.

Theorem 3: P is safe in a UoD iff it is safe in the UoD’s
distinct UoD.

Proof. Let U be a UoD. Let U ′ be U ’s distinct UoD. In
the forward direction, we are essentially splitting (project-
ing) each agent’s history in any enactment in U to multiple
histories in an enactment in U ′ (one for each role it plays in
U), which will not introduce a new safety violation. In the
converse direction, if U is distinct we are done. If U is not
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distinct, then there is an agent a that plays two roles ρ and
ρ′ that were played by distinct agents in U ′. Combining his-
tories can only reduce conflicts; so if there were no conflicts
in any history vector of P in U ′, then there are no conflicts
in any history of P in U .

Theorem 4: Assume P is safe in a UoD U . P is live in U iff
it is live in U ’s distinct UoD U ′.

Proof. In the forward direction, the projection to multi-
ple histories (as described above) will preserve information
flow. Hence liveness will be preserved. In the converse di-
rection, if U is distinct we are done. If U is not distinct,
then there is an agent a that plays two roles ρ and ρ′ that
were played by distinct agents in U ′. If P is live in U ′ but
not live in U , that means upon combining the agents into
one in U , some nonlocal choice that was causing the conflict
is now manifesting as a local choice in the combined history.
However, according to our assumption, P is safe in the UoD;
therefore there cannot be such a nonlocal choice. Hence, our
assumption that P is not live in U must be false.

4.4 Reducing Splee to BSPL
In BSPL, the UoD for a protocol that contains R roles and

M messages is given by 〈R ,M 〉 [38]. Notably, a BSPL-UoD
does not refer to agents, which makes static checking of live-
ness and safety possible for BSPL protocols. For Splee, we
have mapped the problem of checking liveness and safety for
arbitrary UoDs to distinct “small-model” canonical UoDs.
However, we cannot yet perform static checking for Splee
protocols because their canonical UoDs refer to agents. We
now give a method for mapping a protocol’s canonical UoD
to a BSPL-UoD. Recall that the canonical model has one
agent for every nonset role and two agents for every set role.
Let U be P’s canonical model. For a Splee protocol P, we
construct a BSPL protocol B that is identical to P except
that each occurrence of a set role in P is substituted by two
new roles in P. The idea is that each of the new roles iden-
tifies an agent playing the original role in U . For a message
in P, where the set role occurs, this means we replace it by
two copies of the message (with distinct names) in B, one for
each of the new roles. The BSPL-UoD of B contains only
the roles and messages that occur in B. We refer to this
construction as Splee-to-BSPL mapping.

Theorem 5: A protocol P is live (analogously, safe) in a
canonical UoD iff its Splee-to-BSPL mapping B is live (anal-
ogously, safe).

Proof. By the construction above, which gets rid of agents
but in doing so introduces a role for each agent and suitably
modifies the messages as well so that they refer to the new
roles. Hence, the set of viable history vectors in both UoDs
is identical.

With this step (Theorem 5), we have given a method for
statically verifying the liveness and safety of a Splee protocol
in large UoDs by mapping it to a BSPL verification prob-
lem. Verification for strictly smaller UoDs (e.g., one where
a set role is adopted by only one agent) can be performed
by reduction to BSPL verification problems, as described
above. However, smaller UoDs are oddities in the sense that
set roles would have only singleton bindings or nonset roles
would have no bindings.

5. QUERY ATTACHMENTS
Listing 7 does not constrain how the winner is determined—

in our auction, the binding for W must be the highest bidder
and the binding for wamt must be its bid. This constraint
could be captured as a norm specification, e.g., the auction-
eer commits to choosing the bindings as described [13]. That
is, at the Splee level, the auctioneer may announce anyone as
the winner; however, at the meaning-level, the auctioneer’s
commitment could be violated. Such a formulation would
expand agent autonomy but diminish error checking.

Alternatively, to enhance error checking, we can constrain
the bindings of poutq parameters via query attachments.
Since each message schema corresponds to a database rela-
tion, the parameters could be bound based upon the result
of queries on message instances an agent has recorded in its
(local) database [37]—any other bindings would be illegal.
The queries can be written in a language compiles easily
into SQL or another practical language. In Listing 8, wamt

is constrained to be maximum bamt and W is constrained to
the bidder who bid wamt in the SQL-like query attachment.

Listing 8: Building upon Listing 7, an auction protocol in
Splee; winner is determined via a query attachment.

Auction {
. . . /∗ All of Winner (Listing 7) up to and including

schema bid∗/
A 7→ in B: wins [ in nID, out W, out wamt]
: : select this .wamt = ifnul l (max(bamt) , ‘No bid ’) ,

this .W= ifnul l (I , ‘No bid ’)
from bid where nID = this .nID
group by nID;

}

This tension between autonomy and error checking is the
tension between regulation and regimentation [28], with er-
ror checking representing a higher degree of regimentation.
The degree of regimentation is a design choice for protocol
designers. In some situations, a designer may find it appro-
priate to introduce Splee query attachments so that certain
kinds of errors are ruled out and desirable implementations
are more easily constructed.

Notice that wins can be sent when no bids have been re-
ceived. In such a case, the query binds both W and wamt to
the value No bid. Query attachments are not a way to con-
trol the flow of message instances. Instead, they should be
regarded as a way to narrow the set of possible bindings for
message instances an agent is allowed to emit. Intuitively,
query attachments affect the viability of messages (Defini-
tion 4) in the same way that map constraints do. However,
a formalization of attachments is out of our present scope.

6. CONCLUSION
Splee is a generalization of BSPL in the direction of dy-

namic role bindings and multicast. A fundamental enhance-
ment is to make roles themselves information parameters
that take agents as values. We introduced associated en-
hancements such as set roles and subroles, without which
specifying important interaction patterns such as auctions
would be impossible. We emphasize that although auctions
have been specified and implemented in various multiagent
languages and approaches e.g., [20, 33, 35], those are not
protocol languages that support decentralized enactment.
Finally, we introduced the idea of query attachments in or-
der to constrain generated parameter bindings to specific
values. The benefit of attachments is to simplify and make
explicit the computation that agent developers would oth-
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erwise specify in every agent implementation. The queries
here could be applied automatically in protocol adapters.

Splee is a significant enhancement of BSPL. Whereas, in
BSPL, roles are the locus of causality and integrity, in Splee,
agents are the locus of causality and integrity (see Defini-
tion 4). This generalization, however, makes static verifi-
cation of liveness and safety of Splee protocols challenging.
The challenge arises from the fact that information about
agents and their bindings to roles is not part of the protocol
specification. To address this challenge, we introduced small
model characterization of liveness and safety for Splee pro-
tocols and gave a mapping from these to the liveness and
safety of BSPL protocols, which can be verified statically.
Small model abstractions have been studied for other multi-
agent verification problems [29, 32] but not for operational
protocols.

Splee treats multicast messages instances as an integral
unit. Following BSPL, Splee’s declarative semantics and
the use of poutq captures Austin’s [5] idea of the constitu-
tive meaning of a communicative act by “declaring” a spec-
ified parameter binding. Under Austin’s doctrine, a copy of
a message or its information content carries a different and
weaker meaning than the original message. As such, mul-
ticast cannot be properly simulated by generating message
copies because only the first would have constitutive force.

An agent’s state may be considered as consisting of two
distinct components: internal and local (“public”) [19, 37].
The local component consists of an agent’s communications,
both sent and received. A query attachment may refer only
to the local component; thus computing it does not consti-
tute an agent’s internal reasoning. For example, calculating
the winner involves aggregating over bids, which are com-
munications. Referring to any element of internal state in a
query would be unsound as it would introduce false coupling
between the protocol and specific agent implementations,
not only making the protocol nonreusable but also making
the determination of compliance impossible.

Operational protocols. AUML [33], Message Sequence
Charts [26], RASA [31], HAPN [41], and WS-CDL [40]
are all languages for specifying operational protocols. In
these languages, a protocol specification takes the form of
a control-flow specification. Correctly enacting a protocol
specified in terms of control flow is challenging in decentral-
ized settings with multiple loci of control. Therefore, these
languages may only be used to specify highly synchronous
protocols. AUML notably supports annotations of cardinal-
ity of a role or a message; however, the annotations, like the
rest of AUML, are informal.

Alternative approaches for specifying protocols—in logic
[2, 21], process algebras [3], organization-oriented languages
[20], and AOSE methodologies such as Prometheus [34]—
typically do not address decentralization, as Splee does.

Meaning-based protocols. Operational protocols and
meanings are distinct concerns. To see this, we need only
realize that the same operations may feature in multiple
meaning-based protocols. For example, a price message
may mean an offer to sell in e-commerce or last price in
stock markets. Operational protocols specify causality and
integrity constraints whereas meaning-based protocols spec-
ify how operations progress meanings. Traditional work on
meaning-based protocols mixes concerns of operation and
meaning in the same specification (e.g. [7, 35, 42]). Recent
work on meaning though [12, 11, 13] has begun to consider

operational aspects as outside its scope, effectively modular-
izing meaning-based protocols with respect to operational
protocols. BSPL and Splee provide declarative bases for
operations to enable declarative meaning-based protocols.

Baldoni et al. [6] present a platform that has a central
commitment store for coordination among agents. Chopra
and Singh [12] present a decentralized architecture for enact-
ing commitments. An important direction is to understand
how decentralized meaning-based protocols may be realized
via Splee protocols.

Orchestration. An alternative to protocol-based coor-
dination of agents is orchestration. In these approaches,
an agent orchestrates its interactions with other agents to
achieve some desired outcome. Examples of such approaches
include Reo [16] and Orc [15]. Orchestration is conceptu-
ally different from protocols. Orchestration is grounded in
agents whereas protocols, especially as we model them, ab-
stract away from agents entirely. Another way to look at the
difference is that in protocol-based approaches, the units of
composition are protocols, whereas in orchestration-based
approaches, the units of composition are agents (potentially
complex, representing entire organizations). In general, com-
posing protocols leads to enhanced reusability.

Agents and roles. The idea of a role being adopted
by multiple agents is supported in a number of multiagent
specification languages, e.g., [20]. However, these languages
do not address decentralized enactment.

Some works [1, 17, 24, 27] formalize compliance between
agent specifications and role, protocol, or organizational spec-
ifications. Although valuable, verifying compliance is out-
side our present scope. Notice though that protocols modu-
larize verification since agents need not be verified with each
other; each agent need only be verified with the protocol.

Programming. Ultimately, specifying protocols makes
the development of agents easier. This is because for any
application, the protocol abstracts out the interactive part
of the application logic that would otherwise have to be im-
plemented in each agent in that application. For instance,
in the absence of dynamic role bindings, agent developers
would have to either hard code them in each agent or rely
on some external discovery mechanism. In the absence of
multicast support in protocol languages, developers would
have to implement multicast correctly in each agent. Mod-
eling applications via protocols is the essence of Interaction-
Oriented Software Engineering (IOSE) [14].

In programming frameworks such as JaCaMo [8], agents
communicate via a shared CArtAgo environment. Splee by
contrast is shared nothing ; it conceptually avoids entities
such as an environment. In decentralized settings with one
CArtAgo component per agent with asynchronous messag-
ing, one would need Splee to specify how those components
interoperate. Supporting Splee in frameworks such as Ja-
CaMo, potentially by incorporating a middleware in the
form of protocol adapters [37], would considerably enhance
the capabilities of the frameworks.
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