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ABSTRACT
We introduce a 3-valued abstraction technique for alternating-
time temporal logic (ATL) in contexts of imperfect infor-
mation. We introduce under- and over-approximations of
an agent’s strategic abilities in terms of must- and may-
strategies and provide a 3-valued semantics for ATL based
on agents in interpreted systems (IS). We define a relation
of simulation between the agents and prove that it preserves
defined truth values of ATL formulas. Finally, we introduce
a notion of abstraction on IS and show that it simulates the
concrete interpreted system. Under this setting we present
a procedure that enables the direct construction of a finite
abstraction from an infinite-state system.

1. INTRODUCTION
In recent years logic-based formalisms for representing

and reasoning about strategic abilities, both individual and
coalitional, have been a thriving area of research in formal
methods for multi-agent systems [8, 6, 20]. Several multi-
modal logics have been introduced to provide a formal ac-
count of complex strategic reasoning and behaviours for sin-
gle agents and groups, including alternating-time temporal
logic (ATL), coalition logic, and strategy logic [1, 10, 31, 32].

A key issue concerning these logics for strategic reasoning
regards the development of techniques for verifying multi-
agent systems (MAS) with respect to properties expressed
in these rich formal languages. This endeavour is problem-
atic as the typical verification problems for several of these
formalisms, including model checking, are computationally
harder than those for the temporal logics (e.g., CTL, LTL)
that they subsume [15, 35].

Related to formal verification, a crucial distinction oper-
ated in game-theoretic contexts is whether players have per-
fect or imperfect information about other players and the
environment they are interacting in and with. Originally,
most of the logics for strategies mentioned above have been
introduced in contexts of perfect information [1, 10], partly
because this setting exhibits better computational proper-
ties. However, for many applications of interest, including
autonomous agents, distributed computing, and economic
theory, perfect information is either unrealistic as a working
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hypothesis or unattainable [16]. Imperfect information is
known to make the verification task computationally more
costly. As an example, while verifying ATL under perfect
information is polynomial, the corresponding problem for
imperfect information is ∆P

2 -complete [22]. When perfect re-
call is assumed, the problem goes from PTIME-complete to
undecidable [15]. Thus, for logics of strategies to be adopted
as specification languages in contexts of imperfect informa-
tion, efficient verification tools and techniques, supporting
model checking for practical cases of interest, should be de-
veloped.

In this paper we aim at contributing towards this long-
term objective. Specifically, we introduce a novel 3-valued
abstraction technique for the verification of ATL specifica-
tions with respect to (possibly infinite) MAS with imperfect
information. Taking inspiration from [5, 19, 3, 4], we intro-
duce under- and over-approximations of an agent’s strategic
abilities in terms of must- and may-strategies, then provide
a 3-valued semantics for ATL based on agents in interpreted
systems (IS). Next, we define a relation of simulation be-
tween agents and prove that it preserves defined truth val-
ues of ATL formulas. Finally, we introduce a notion of ab-
straction on IS and show that it simulates the corresponding
concrete interpreted system. We illustrate the formal ma-
chinery by means of a toy example based on the Train Gate
Controller [21], and conclude by discussing applications to
the verification of strategic behaviours of agents in multi-
agent systems.

Related work. The literature on abstraction-based tech-
niques applied to the model checking problem has grown
steadily in the past two decades [11, 12]. Here we focus on
the contributions most closely related to the present work.

Multi-valued interpretations of modal logics has since long
appeared in the literature [17, 18]. This approach has also
been applied to the verification of temporal and epistemic
logics [26, 27, 28], including ATL∗ under imperfect informa-
tion [23]. In this line formulas are interpreted on some desig-
nated algebraic structure (possibly infinite) and modal oper-
ators correspond to operations on the values in the structure.

Here we also adopt a multi-valued semantics, 3-valued
specifically, but our approach is essentially different from the
references above, as it is based on the definition of under-
and over-approximations of transition systems [5, 19]. In-
deed, the main inspiration for this paper comes from [3, 34],
which put forward 3-valued abstraction techniques for CTL
and the alternating µ-calculus (AµC), assuming perfect in-
formation nonetheless. Abstractions are shown to preserve

1259



defined truth values of formulas in the relevant logic, then
a notion of pre-order between abstractions, akin to simula-
tion, is introduced. A crucial difference here is that we con-
sider imperfect information. Indeed, in AµC with perfect
information, the ATL operators 〈〈Γ〉〉U , 〈〈Γ〉〉G, and 〈〈Γ〉〉F
are definable in terms of the ‘next’ modality 〈〈Γ〉〉X and the
fixed-point operators µ and ν. Hence, the technique in [3]
deals directly only with the next fragment of AµC, then ap-
plies standard procedures for calculating fixed-points. How-
ever, this method fails when imperfect information is taken
into account, as ATL operators can no longer be expressed
via fixed points [7, 14]. Thus, original techniques have to be
developed. Moreover, the semantics here proposed is agent-
based, and so is the simulation relation and abstraction tech-
nique we develop, again differently from [3].

Recently, other 3-valued abstraction techniques have ap-
peared [29, 30, 4], which differ from our account as regards
the 3-valued semantics for ATL. Notably, here we introduce
original notions of may- and must-strategies and prove that,
differently from [30], our 3-valued semantics conservatively
extends the standard 2-valued semantics for ATL.

Scheme of the paper. The rest of the paper is struc-
tured as follows. In Section 2 we present ATL and pro-
vide it with a semantics in terms of agent-based interpreted
systems, suitable for MAS representation. In Section 3 we
introduce a 3-valued semantics for ATL, based on general
agents and general IS. Then, we show that, differently from
[30], the 3-valued semantics conservatively extends the 2-
valued one. In Section 4 we introduce simulation relations
between agents and between IS, and prove that these indeed
preserve the interpretation of ATL formulas (Theorem 1).
Then, in Section 5 we define agent-based abstractions and
prove that they simulate the original MAS (Theorem 2).
We illustrate the formal machinery with an infinite version
of the Train Gate Controller scenario.

2. INTERPRETED SYSTEMS WITH IMPER-
FECT INFORMATION

In this section we introduce the formal machinery that
will be used throughout the paper. Hereafter we assume a
set Ag = {1, . . . ,m} of indexes for agents and a set AP of
atomic propositions. Given a set U , U denotes its comple-
ment (w.r.t some V ⊇ U). Also, we denote the i-th element
of a tuple v as either vi or v.i.

Definition 1 (Agent). Given a set Ag of agent in-
dexes, an agent is a tuple i = 〈L,Act, P, t〉 such that

• L is the (possibly infinite) set of local states;

• Act is the (finite) set of individual actions;

• P : L→ 2Act is the protocol function;

• t : L×ACT → L is the local transition function, where
ACT = Act1× · · · ×Act|Ag| is the set of joint actions,
s.t. for l ∈ L, a ∈ ACT , t(l, a) is defined iff ai ∈ P (l).

Intuitively, an agent i is situated in some local state l ∈ L,
which represents the information she has about the whole
system, and she can perform some action a ∈ Act, accord-
ing to protocol P . Performing a joint action brings about
a change in the state of the agent, according to transition
function t. Hereafter we often identify an agent index i

with the corresponding agent, the context will disambiguate.
Also, we assume w.l.o.g. that for every local state l ∈ L,
P (l) 6= ∅ by considering a null action skip, enabled in every
local state, such that t(l, a) = l whenever ai = skip. Hence,
the protocol P is a function from L to 2Act \ ∅.

Given a set Ag of agents, a global state s ∈ G is defined
as a tuple 〈l1, . . . , l|Ag|〉 of local states, one for each agent in
Ag. Notice that an agent’s protocol and transition function
depend only on its local state, which might contain strictly
less information than the global state s. In this sense agents
have imperfect information about the system. This is in
marked contrast with [3], where agents are assumed to have
perfect information.

To describe formally the execution of a multi-agent sys-
tem, we introduce the notion of interpreted system.

Definition 2 (IS). An interpreted system is a tuple
M = 〈Ag, I, T,Π〉 such that

• every i ∈ Ag is an agent;

• I ⊆ G is the set of (global) initial states;

• T : G × ACT → G is the global transition function
such that s′ = T (s, a) iff for all i ∈ Ag, s′i = ti(si, a);

• Π : G ×AP → {tt,ff} is the labelling function.

An interpreted system describes the interactions of a group
Ag of agents, starting from some initial state in I, accord-
ing to the transition function T . Atomic propositions are
assigned values true (tt) or false (ff). Notice that the global
transition function T is defined on global state s for joint
action a iff ai ∈ Pi(si) for every i ∈ Ag. Finally, we intro-
duce the set S ⊆ G of global states reachable from set I of
initial states, through the transition function T .

To reason about the strategic abilities of agents in inter-
preted systems, we make use of alternating-time temporal
logic (ATL).

Definition 3 (ATL). Formulas ϕ in ATL are defined
by the following BNF, for q ∈ AP and Γ ⊆ Ag:

ϕ ::= q | ¬ϕ | ϕ ∧ ϕ | 〈〈Γ〉〉Xϕ | 〈〈Γ〉〉(ϕUϕ) | 〈〈Γ〉〉Gϕ

As customary, a formula 〈〈Γ〉〉Φ is read as ‘the agents in
coalition Γ have a (collective) strategy to achieve Φ’. The
meaning of LTL operators ‘next’ X, ‘until’ U , and ‘always’ G
is standard. For a set Γ ⊆ Ag of agents, we define Γ-formulas
as the formulas where Γ is the only coalition appearing in
ATL modalities.

Since the behaviour of agents in interpreted systems de-
pends only on their local state, to provide an interpretation
of ATL formulas on IS it is appropriate to consider a notion
of strategy that takes into account local states only.

Definition 4 (Uniform Strategy). A (uniform, mem-
oryless) strategy for agent i ∈ Ag is a function fi : Li →
Acti such that for every local state l ∈ Li, fi(l) ∈ Pi(l).

Intuitively, Def. 4 prescribes that in all global states s, s′,
in which the local state of agent i is the same, i.e., si = s′i, a
uniform strategy fi returns the same action fi(si) = fi(s

′
i),

in line with the standard account on uniform strategies [24].
Notice that we focus on memoryless (positional) strategy,
for which only the current local state is relevant to select
the action. The results below can in principle be extended
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to memoryfull (perfect recall) strategies, but the technical
details are more cumbersome. We leave this extension for
future work.

Given an IS M , a path p is any infinite sequence s1s2 . . .
of global states, in which pi denotes the i-th element si.
Further, for a set FΓ = {fi | i ∈ Γ} of strategies, a path p
is FΓ-compatible iff for every j ≥ 1, pj+1 = T (pj , a) holds
for some joint action a ∈ ACT such that for every i ∈ Γ,
ai = fi(p

j .i). Let out(s, FΓ) be set of all FΓ-compatible
paths starting from s.

We can now assign a meaning to ATL formulas on IS.

Definition 5 (Satisfaction). The 2-valued satisfac-
tion relation |=2 for an IS M , state s ∈ S, and ATL formula
φ is defined as follows (clauses for propositional connectives
are immediate and thus omitted):

(M, s) |=2 q iff Π(s, q) = tt
(M, s) |=2 〈〈Γ〉〉Xϕ iff for some FΓ, for all p ∈ out(s, FΓ),

(M,p2) |=2 ϕ
(M, s) |=2 〈〈Γ〉〉Gϕ iff for some FΓ, for all p ∈ out(s, FΓ),

for all k ≥ 1, (M,pk) |=2 ϕ
(M, s) |=2 〈〈Γ〉〉ϕUϕ′ iff for some FΓ, for all p ∈ out(s, FΓ),

for some k ≥ 1, (M,pk) |=2 ϕ′, and
for all j, 1 ≤ j < k ⇒ (M,pj) |=2 ϕ

A formula ϕ is true in an IS M , or M |=2 ϕ, iff for all
initial states s ∈ I, (M, s) |=2 ϕ.

Definition 6 (Model Checking). Given an IS M and
an ATL formula φ, the model checking problem amounts to
determining whether M |=2 φ.

Observe that the semantics provided in Def. 5 is in line
with similar proposals for interpreting ATL in contexts of
imperfect information [24, 6]. In particular, the strategies
generating paths are uniform, i.e., they only take into ac-
count the local state of agents and provide the same action
in indistinguishable states. Further, here we adopt the ob-
jective interpretation of ATL with imperfect information, as
opposed to the subjective interpretation whereby ATL oper-
ators are evaluated at state s against paths p ∈ out(s′, FΓ),
for all states s′ indistinguishable from s for the agents in Γ,
i.e., outs(s, FΓ) =

⋃
i∈Γ,s′i=si

out(s′, FΓ) [33]. Hereafter we

deal primarily with the objective interpretation and discuss
briefly the necessary modification concerning the subjective
semantics.

The features of the above semantics entail that well-known
principles, which are valid under perfect information, fail
under imperfect information. Notably, the fixed-point char-
acterisations of ATL operators 〈〈Γ〉〉G, 〈〈Γ〉〉F , and 〈〈Γ〉〉U do
not hold (see [20] for counterexamples), thus making the
model checking procedures based on them unusable and the
verification task strictly more complex. In particular, ATL
with imperfect information is not subsumed by the alternat-
ing µ-calculus [7, 14], as it is the case for perfect information,
and therefore the techniques developed in [3] do not apply
to the present setting. An original methodology will be de-
veloped in the next section.

We conclude this formal presentation with a toy example,
whose unique purpose it to illustrate the machinery above.

2.1 The Train Gate Controller Scenario
We discuss a variant of the Train Gate Controller (TGC)

scenario [21]. In the version we consider two trains, T0 and
T1, try to access a tunnel, whose entrance is managed by
controller C. Controller C allows only one train in the tunnel
at any time and keeps track of how many times each train
has accessed the tunnel by using counters c0 and c1. In case
the trains are both requesting access, controller C grants it
to the train with smaller count. If c0 = c1, then the choice
is non-deterministic. By doing so, controller C tries to keep
a fair access to the tunnel.

The formal specification for each train can be given as
detailed in Def. 1, as follows:

Definition 7 (Train). For i ∈ {0, 1}, each train Ti =
〈Li, Acti, Pi, ti〉 is defined as

• Li = {away,wait, tunnel}
• Acti = {approach, enter, leave, skip}
• Pi(away) = {approach, skip}
Pi(wait) = {enter}
Pi(tunnel) = {leave}
• ti(away, a) = wait if ai = approach
ti(away, a) = away if ai = skip
ti(wait, a) = tunnel if ai = enter and aC = enteri
ti(tunnel, a) = away if ai = leave and aC = leavei

By Def. 7 each train tries to access the tunnel in an exe-
cution loop. In particular, the entering and exiting from the
tunnel are synchronised with controller C.

To model controller C we make use of four variables:
status, with values green g and red r, counters c0 and c1
with range N, and variable q with values 0, 1, and 2. Here-
after we use primed variables to denote their values at the
next state. Variables not explicitly mentioned remain un-
changed.

Definition 8 (Controller). Controller C = 〈LC ,
ActC , PC , tC〉 is defined as

• LC is the set of tuples (status, c0, c1, q) s.t. Ran(status) =
{g, r}, Ran(c0) = Ran(c1) = N, and Ran(q) = {0, 1, 2}
• ActC = {enter0, leave0, enter1, leave1}
• for every l ∈ LC and i ∈ {0, 1},
PC(l) = {enteri} if status = g, q = 2 and ci < c1−i

PC(l) = {enter0, enter1} if either status = g and q 6=
2, or status = g, q = 2 and c0 = c1
PC(l) = {leave0, leave1} if status = r

• tC(l, a) = l′ holds whenever status = g, aC = enteri,
ai = enter, status′ = r, c′i = ci + 1, and q′ = q− 1; or
status = r, aC = leavei, ai = leave, status′ = g; or
status = g, ai = approach, and q′ = q + 1.

By Def. 8, controller C manages the entrance to the tun-
nel with semaphore status, which is synchronised with the
entering and exiting of trains. Also, counters c0 and c1 keep
track of how many times each train has accessed the tun-
nel. Finally, variables q (for queue) registers the number
of trains in state wait. Notice that, since counters c0 and
c1 take values in N, controller C has infinitely many local
states.

We now introduce the IS corresponding to this TGC sce-
nario. In the following we consider a set AP containing
atoms c0 < c1, c0 > c1, c0 = c1, in tunnel0, and in tunnel1,
to be interpreted below.
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Definition 9 (IS). The IS for the Train Gate Con-
troller scenario is the tuple MTGC = 〈Ag, I, T,Π〉 such that

• Ag = {T0, T1, C};
• I contains only the tuple (away, away, (g, 0, 0, 0)), i.e.,

both trains are away at the beginning, the semaphore
is green, both counters are equal to 0, and no train is
waiting;

• T is the composition of the local transition functions
ti, for i ∈ Ag, as per Def. 2;

• the labelling function Π is such that a comparison c0?c1
is true at state s iff the corresponding relation holds
between the counters. Also, Π(s, in tunneli) = tt iff
si = tunnel.

We remark that, since controller C has infinitely many
local states, the IS MTGC is an infinite-state system.

Then, we can check, for instance, that in state s = (wait,
wait, (g, 0, 0, 2)), for enabled joint action a = (enter, enter,
enter0), we have transition T (s, a) = (tunnel, wait, (r, 1, 0, 1)).
Therefore, we can already check that in state s controller C
can (has a strategy to) let train T0 into the tunnel, thus
making c0 greater than c1:

(M, s) |=2 〈〈C〉〉X(c0 > c1 ∧ in tunnel0)

Moreover, in ATL we can specify various behaviours and
strategic abilities of controller C and trains T0 and T1. As
an example, we might state that, whenever the counter for
train T0 is smaller, she has a strategy to eventually make
the counters equal.

AG((c0 < c1)→ 〈〈T0〉〉F (c0 = c1)) (1)

where AG is shorthand for 〈〈∅〉〉G.
Further, we can ask whether train T0 has a strategy to

engage the tunnel “infinitely often”:

〈〈T0〉〉G〈〈T0〉〉F in tunnel0 (2)

Finally, we can express that, whenever the counters are
equal, train T0 and controller C have a strategy so that at
the next step train T1 has a strategy to make the counters
equal:

AG((c0 = c1)→ 〈〈C, T0〉〉X〈〈T1〉〉X(c0 = c1)) (3)

Intuitively, formula (2) is true by the strategy whereby
train T0 keeps on engaging the tunnel; while the same strat-
egy is not sufficient to make formula (1) true. Indeed, (1)
is false in general. Also, (3) is true whenever controller C
grants T0’s request, and then T1 engage the tunnel.

In this TGC scenario we checked formulas (1)-(3) manu-
ally. However, we aim at developing an automated verifica-
tion procedure capable of dealing with infinite-state systems,
such as the IS MTGC , for which standard model checking
techniques cannot be immediately applied.

3. 3-VALUED SEMANTICS FOR ATL WITH
IMPERFECT INFORMATION

This section is devoted to introducing a generalisation of
the notion of agent in Def. 1 in terms of over- and under-
approximations of their strategic abilities. Then, we present
a 3-valued semantics for ATL, and show that this conserva-
tively extends the 2-valued version in Section 2.

Definition 10 (Generalised Agent). A (generalised)
agent is a tuple i = 〈L,Act, Pmay , Pmust , tmay , tmust〉 such
that

• sets L of local states and Act of actions are given as
in Def. 1;

• Pmay and Pmust are protocol functions from L to 2Act;

• tmay and tmust are local transition relations defined on
L × ACT × L such that, for x ∈ {may ,must}, l ∈ L,
and a ∈ ACT , transition tx(l, a, l′) is defined for some
l′ ∈ L iff ai ∈ P x(l).

By Def. 10 generalised agents have the same components
of standard agents, but differently from Def. 1, we now dis-
tinguish between may and must protocols and transitions.
This distinction can be understood in terms of approxima-
tions of the agents’ abilities. Intuitively, the may proto-
col and transitions represent an over-approximation of these
abilities, while must components can be seen as an under-
approximation. Here the distinction between must and may
components and related terminology derive from the liter-
ature [5, 19]. The intutive meaning will become apparent
in Section 5, where we define agent abstractions. More-
over, the standard agents in Def. 1 are the limit case in
which under- and over-approximations coincide, or formally,
Pmay = Pmust and tmay = tmust is a function.

Hereafter we simply refer to agents, the context will dis-
ambiguate between generalised and standard agents. Fur-
ther, we introduce a generalisation of the interpreted sys-
tems in Def. 2, in which atoms can be assigned a third
truth value uu for ‘undefined’. In what follows, for x = may
(resp. must), x = must (resp. may).

Definition 11 (Generalised IS). A (generalised ) in-
terpreted system is a tuple M = 〈Ag, I, T,Π〉 such that

• Ag and I are given as in Def. 2;

• T : G × ACT → G is the global transition function
such that s′ = T (s, a) iff for all i ∈ Ag, either s′i =
tmay
i (si, a) or s′i = tmust

i (si, a);

• Π : G ×AP → {tt,ff, uu} is the labelling function.

The undefined value uu can be interpreted in various ways,
for instance, unknown, unspecified, or inconsistent, depend-
ing on the application in hand. We do not discuss this mat-
ter further, as it is not relevant for our technical contribu-
tion. We say that the truth value τ is defined whenever
τ 6= uu. If every agent in Ag is standard and the truth value
of every atom is defined, then we say that the IS is standard
as well, and we are back to Def. 2.

Given an IS M and a coalition Γ ⊆ Ag of agents, we define
an indexed global transition relation TΓ ⊆ G × ACT × G so
that TΓ(s, a, s′) holds iff (i) for all i ∈ Γ, tmust

i (si, a, s
′
i); and

(ii) for all i ∈ Γ, tmay
i (si, a, s

′
i). Intuitively, the transition re-

lation TΓ exhibits a conservative stance on the strategic abil-
ities of coalition Γ (by considering the under-approximation
tmust), and an optimistic view of the abilities of adversar-
ial Γ. Finally, we introduce the set S ⊆ G of global states
reachable from set I of initial states, through the transition
relation T .

Next, as it was the case for must and may protocols and
transitions, we introduce also must- and may-strategies.
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Definition 12 (Uniform x-Strategy). For x ∈ {may ,
must}, a (uniform, memoryless) x-strategy for agent i ∈ Ag
is a function fx

i : Li → Acti such that for every local state
l ∈ Li, f

x
i (l) ∈ P x

i (l).

Here we distinguish between may and must strategies to
over- and under-approximate the strategic abilities of agents.
Again, the distinction collapse in the case of standard agents.
Moreover, these notions can be extended to the case of mem-
oryfull (perfect recall) strategies; again, we leave this for
future work.

For a set Fmust
Γ = {fmust

i | i ∈ Γ} of strategies, a path p is
Fmust

Γ -compatible iff for every j ≥ 1, TΓ(pj , a, pj+1) holds for
some joint action a ∈ ACT such that for every i ∈ Γ, a.i =
fmust
i (pj .i). Symmetrically, a path p is Fmay

Γ -compatible if
for every j ≥ 1, TΓ(pj , a, pj+1) holds for some joint action
a ∈ ACT such that for every i ∈ Γ, a.i = fmay

i (pj .i). For x ∈
{may ,must}, let out(s, F x

Γ ) be the set of all F x
Γ -compatible

paths starting from s.

Definition 13 (Satisfaction). The 3-valued satisfac-
tion relation |=3 for an IS M , state s ∈ S, and ATL formula
φ is defined as in Fig. 1. In particular, in all other cases the
value of φ is undefined (uu).

Observe that, in the clauses for ATL operators, must-
strategies are used to make formulas true, while may-strategies
are used to falsify them. Further, we can introduce a 3-
valued, subjective interpretation of ATL by defining in Def. 13
the set outs(s, F x

Γ ) of outcomes as
⋃

i∈Γ,s′i=si
out(s′, F x

Γ ), for

x ∈ {may ,must}. Finally, (M |=3 ϕ) = tt (resp. ff) iff for all
(resp. some) s ∈ I, ((M, s) |=3 ϕ) = tt (resp. ff). Otherwise,
(M |=3 ϕ) = uu.

We conclude the presentation of the 3-valued semantics
with the following result, which shows that for standard IS
it coincides with the 2-valued version. This is in contrast
with recent proposals in this area [30, 29].

Proposition 1. In every standard IS M , for every state
s ∈ S and ATL formula φ, the truth value ((M, s) |=3 φ) is
always defined and

((M, s) |=3 φ) = tt iff (M, s) |=2 φ

((M, s) |=3 φ) = ff iff (M, s) 6|=2 φ

Proof. The proof is by induction on φ. If φ is an atom
p, then ((M, s) |=3 p) is defined as Π(s, p) is. Further,
((M, s) |=3 p) = tt iff Π(s, p) = tt, iff (M, s) |=2 p. The case
for ((M, s) |=3 p) = ff is similar. The cases for propositional
connectives are immediate by the induction hypothesis. As
for φ = 〈〈Γ〉〉Xψ, since for every i ∈ Ag, Pmay = Pmust and
tmay = tmust is a function, the distinction between may- and
must-strategies collapse. Hence, ((M, s) |=3 〈〈Γ〉〉Xψ) = tt
iff for some strategy FΓ, for all p ∈ out(s, FΓ), ((M,p1)
|=3 ψ) = tt. By induction hypothesis we obtain that for
some FΓ, for all p ∈ out(s, FΓ), (M,p1) |=2 ψ, that is,
(M, s) |=2 φ. The case for ((M, s) |=3 〈〈Γ〉〉Xψ) = ff is sim-
ilar. To prove that the truth value of φ is defined, suppose
that ((M, s) |=3 〈〈Γ〉〉Xψ) 6= tt. That is, for every strategy
FΓ, for some p ∈ out(s, FΓ), ((M,p1) |=3 ψ) 6= tt. By in-
duction hypothesis, the truth value of ψ is defined at each
p1, therefore ((M,p1) |=3 ψ) = ff. As a consequence of the
satisfaction clause for falsehood, ((M, s) |=3 φ) = ff. The
case for ((M, s) |=3 〈〈Γ〉〉Xψ) 6= ff is symmetric. The proofs
for operators G and U are similar and therefore omitted.

By Proposition 1 the 3-valued semantics for ATL is a con-
servative extension of the 2-valued semantics. Also, with
minor modifications we can show that this result holds for
the subjective interpretation of ATL as well.

4. SIMULATIONS
In this section we introduce a notion of simulation based

on (generalised) agents that induces a simulation on (gen-
eralised) interpreted systems. Then, we show that simula-
tions on IS preserve defined truth values of formulas in ATL.
We begin by presenting simulation relations on local states.
Here the crucial observation is that, since we aim at compar-
ing interpreted systems where agents are defined on possibly
different sets of local states and actions, simulations have to
account for both these components.

Definition 14 (Local Simulation). A local simula-
tion for agent i is a pair (Σi, Hi) of relations Σi ⊆ Li × L′i
and Hi ⊆ Acti ×Act′i such that Σi(l1, l

′
1) and Hi(ai, a

′
i) im-

ply

1. if ai ∈ Pmust
i (l1) then a′i ∈ P ′must

i (l′1);

2. if a′i ∈ P ′may
i (l′1) then ai ∈ Pmay

i (l1).

Moreover, provided relations Hi as above for every i ∈ Ag,
we write H(a, a′) for Hi(ai, a

′
i) for every i ∈ Ag. Then,

H(a, a′) implies

3. for all l2 ∈ Li, if tmust
i (l1, a, l2) then for some l′2 ∈ L′i,

t′must
i (l′1, a

′, l′2) and Σi(l2, l
′
2);

4. for all l′2 ∈ L′i, if t′may
i (l′1, a

′, l′2) then for some l2 ∈ Li,
tmay
i (l1, a, l2) and Σi(l2, l

′
2).

We say that local state l′ H-simulates l, or l �H l′, iff
Σ(l, l′) holds for some local simulation (Σ, H). Notice that,
according to Def. 14 and by using standard terminology in
reactive systems [25], if l �H l′ then l′ ‘simulates’ must-
transitions from l, while l ‘simulates’ may-transitions from
l′. Hereafter, we assume the various Hi fixed for all agents
i ∈ Ag, and, with an abuse of terminology, talk simply of
simulation.

Given an agent i = 〈L,Act, Pmay , Pmust , tmay , tmust〉, we
consider its primed version i′ = 〈L′, Act′, P ′may , P ′must , t′may ,
t′must〉 defined on possibly different local states, actions, pro-
tocols, and transitions. We now introduce simulation rela-
tions on agents. Often, when clear by the context, we omit
the prime, particularly in indexes of ATL operators.

Definition 15 (Agent Simulation). The primed agent
i′ must-simulates agent i ∈ Ag w.r.t. H, or i �must

H i′, iff

1. for every a ∈ Acti, Hi(a, a
′) for some a′ ∈ Act′i;

2. for every a′ ∈ Act′i, Hi(a, a
′) for some a ∈ Acti;

3. for every l ∈ L, l �H l′ for some l′ ∈ L′.

Further, agent i′ may-simulates i w.r.t. H, or i �may
H i′, iff

(1) and (2) above hold, and

3’. for every l ∈ L, l′ �H l for some l′ ∈ L′.

Intuitively, agent i′ must-simulates agent i (w.r.t. H) if i′

has ‘more’ must-transitions and ‘less’ may-transitions than
i. Symmetrically for may-simulations. Clearly, both �must

H
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((M, s) |=3 q) = τ iff Π(s, q) = τ , for τ ∈ {tt,ff}
((M, s) |=3 ¬ψ) = tt iff ((M, s) |=3 ψ) = ff
((M, s) |=3 ¬ψ) = ff iff ((M, s) |=3 ψ) = tt
((M, s) |=3 ψ ∧ ψ′) = tt iff ((M, s) |=3 ψ) = tt and ((M, s) |=3 ψ′) = tt
((M, s) |=3 ψ ∧ ψ′) = ff iff ((M, s) |=3 ψ) = ff or ((M, s) |=3 ψ′) = ff
((M, s) |=3 〈〈Γ〉〉Xψ) = tt iff for some Fmust

Γ , for all p ∈ out(s, Fmust
Γ ), ((M,p2) |=3 ψ) = tt

((M, s) |=3 〈〈Γ〉〉Xψ) = ff iff for every Fmay
Γ , for some p ∈ out(s, Fmay

Γ ), ((M,p1) |=3 ψ) = ff
((M, s) |=3 〈〈Γ〉〉Gψ) = tt iff for some Fmust

Γ , for all p ∈ out(s, Fmust
Γ ), for all k ≥ 1, ((M,pk) |=3 ψ) = tt

((M, s) |=3 〈〈Γ〉〉Gψ) = ff iff for every Fmay
Γ , for some p ∈ out(s, Fmay

Γ ), for some k ≥ 1, ((M,pk) |=3 ψ) = ff
((M, s) |=3 〈〈Γ〉〉ψUψ′) = tt iff for some Fmust

Γ , for all p ∈ out(s, Fmust
Γ ), for some k ≥ 1, ((M,pk) |=3 ψ′) = tt,

and for all j, 1 ≤ j < k implies ((M,pj) |=3 ψ) = tt
((M, s) |=3 〈〈Γ〉〉ψUψ′) = ff iff for every Fmay

Γ , for some p ∈ out(s, Fmay
Γ ), for all k ≥ 1, ((M,pk) |=3 ψ′) = ff,

or for some j, 1 ≤ j < k and ((M,pj) |=3 ψ) = ff

Figure 1: The 3-valued satisfaction relation |=3 for an IS M , state s ∈ S, and ATL formula φ.

and �may
H are partial orders, i.e., reflexive and transitive re-

lations, whenever H is such. Further, since agents in Def. 1
are a particular case of generalised agents (for which may-
and must- protocols and transitions coincide), Def. 15 de-
fines a relation of simulation for (non-generalised) agents
as well. Hereafter, given a set Γ ⊆ Ag of agents, we use
Ag′Γ = {i′ | i �must

H i′, i ∈ Γ} ∪ {i′ | i �may
H i′, i ∈ Γ} to

refer to the set of must- and may-simulating agents i′, ex-
actly one for each i ∈ Ag. Finally, a global state s′ defined
on Ag′Γ simulates s on Ag (w.r.t. H), or s �Γ

H s′, iff (i) for
every i ∈ Γ, si �H s′i; (ii) for every i ∈ Γ, s′i �H si.

Definition 16 (IS Simulation). Given a set Γ ⊆ Ag
of agents, an IS M ′ = 〈Ag′Γ, I ′, T ′,Π′〉 Γ-simulates IS M =
〈Ag, I, T,Π〉 (w.r.t. H), or M �Γ

H M ′ , iff

1. Ag′Γ defined as above is the set of simulations for agents
in Ag;

2. for every s ∈ I, s �Γ
H s′ for some s′ ∈ I ′;

3. for every s ∈ S, s′ ∈ S ′, if s �Γ
H s′ and Π′(s′, p) = t,

for t ∈ {tt,ff}, then Π(s, p) = t.

By Def. 16, if M ′ Γ-simulates M then every initial state
in M is Γ-simulated by some initial state in M ′, and defined
truth values of atoms are preserved from M ′ to M . Clearly,
IS simulations are also partial orders, provided that H is.
We observe that simulations for interpreted systems are in-
dexed to sets of agents. Indeed this is normally the case for
alternating simulations, as studied for instance in [2, 3].

The main result of this section shows that IS simulations
preserve defined truth values of ATL formulas. To prove
this, we need the following auxiliary lemma.

Lemma 1. If s �Γ
H s′ then

1. for every strategy F ′must
Γ′ , there exists strategy Fmust

Γ

such that for all p ∈ out(s, Fmust
Γ ), there exists p′ ∈

out(s′, F ′must
Γ′ ) such that pk �Γ

H p′k for every k ≥ 1;

2. for every strategy Fmay
Γ , there exists strategy F ′may

Γ′

such that for all p′ ∈ out(s′, F ′may
Γ′ ), there exists p ∈

out(s, Fmay
Γ ) such that pk �Γ

H p′k for every k ≥ 1.

Proof. As regards (1), suppose that s �Γ
H s′ and let

F ′must
Γ′ be a strategy for primed coalition Γ′. We inductively

define Fmust
Γ on the length n of paths, and prove that it sat-

isfies the statement of the lemma. For n = 1, for i′ ∈ Γ′,
consider f ′must

i (s′i) ∈ P ′must
i (s′i) and ai ∈ Pmust

i (si) such that
Hi(ai, f

′must
i (s′i)): the existence of such ai is guaranteed by

Def. 14.2 and 15.2. We set fmust
i (si) = ai for i ∈ Γ. Fur-

ther, if TΓ(s, a, p2) for a extending Fmust
Γ (sΓ), then (i) for

all i ∈ Γ, tmust
i (si, a, p

2
i ); and (ii) for all i ∈ Γ, tmay

i (si, a, p
2
i ).

Then, by definition of local simulation, if tmust
i (si, a, p

2
i ) for

i ∈ Γ, then for some v′i ∈ L′i, t′must
i (s′i, a

′, v′i) for a′ extend-
ing F ′must

Γ′ (s′Γ′) in particular. Moreover, s �Γ
H s′ implies

s′i �H si for every i ∈ Γ. Again, by definition of local sim-
ulation, if tmay

i (si, a, p
2
i ) for i ∈ Γ, then for some u′i ∈ L′i,

t′may
i (s′i, a

′, u′i). Finally, let p′2 = (vΓ′ , uΓ
′). In particular,

by construction we have that T ′Γ′(s′, a′, p′2) and p2
i �Γ

H p′2i
for every i′ ∈ Ag′Γ. The inductive case is dealt with similarly.
The proof for (2) is symmetric.

Intuitively, Lemma 1 says that in Γ-similar states, a must-
simulation i′ ∈ Γ′ simulates may-strategies of i ∈ Γ, while
her must-strategies are simulated by i. This can appear
counterintuitive, but notice that in order to simulate may-
strategies an agent must be capable of simulating must-
transitions. Symmetrically for may-simulations and must-
strategies.

By Lemma 1 we can prove our main preservation result.

Theorem 1. If M �Γ
H M ′, s �Γ

H s′ and τ ∈ {tt,ff}, then
for every Γ-formula φ,

((M ′, s′) |=3 φ) = τ implies ((M, s) |=3 φ) = τ

Proof. The proof is by induction on the structure of φ.
The base case for atoms follows by Def. 16.3 of IS simulation.
The cases for propositional connectives are immediate. As
regards ATL operators, we consider the case for φ = 〈〈Γ〉〉Xψ
being true. If ((M ′, s′) |=3 φ) = tt then for some strategy
F ′must

Γ′ , for all q′ ∈ out(s′, F ′must
Γ′ ), ((M ′, q′2) |=3 ψ) = tt. By

Lemma 1.1, there exists strategy Fmust
Γ such that for all p ∈

out(s, Fmust
Γ ), for some p′ ∈ out(s′, F ′must

Γ′ ), pk �Γ
H p′k for

every k ≥ 1. In particular, since for all q′ ∈ out(s′, F ′must
Γ′ ),

we have that ((M ′, q′2 |=3 ψ) = tt, by induction hypothesis
we obtain that for all q ∈ out(s, Fmust

Γ ), ((M, q2) |=3 ψ) = tt
as well. As a result, ((M, q2) |=3 φ) = tt. The case for
φ = 〈〈Γ〉〉Xψ being false follows by Lemma 1.2.

The inductive steps for formulas 〈〈Γ〉〉Gψ and 〈〈Γ〉〉ψUψ′
are proved similarly, also by means of Lemma 1.
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By Theorem 1 we immediately obtain the following corol-
lary.

Corollary 1. If M �Γ
H M ′, then for every Γ-formula

φ,

(M ′ |=3 φ) = tt implies (M |=3 φ) = tt

By Corollary 1 a positive answer to the model checking
problem for simulating IS M ′ entails a positive answer for
simulated IS M as well. On the other hand, if φ is false in
M ′, nothing can be derived about M .

We conclude this section by briefly discussing the modi-
fications necessary to account for the subjective interpreta-
tion. Specifically, we require that s �Γ

H s′ implies (i) for
every v ∈ S, if si = vi for some i ∈ Γ, then s′i = v′i for
some v′ ∈ S ′ such that v �Γ

H v′; and (ii) for every v′ ∈ S ′,
if s′i = v′i for some i ∈ Γ, then si = vi for some v ∈ S such
that v �Γ

H v′. We state without proof that this modification
is sufficient to prove Lemma 1, and then Theorem 1, for the
subjective interpretation. The proofs follow similar lines of
reasoning.

In the next section we apply the results above to derive
finite, 3-valued abstractions of (possibly infinite) interpreted
systems that preserve the defined truth value of ATL formu-
las.

5. ABSTRACTION
In this section we define an agent-based notion of abstrac-

tion for interpreted systems, indexed to a set Γ of agents.
Then, we prove that abstractions Γ-simulate the original,
concrete IS. Hence, they can be used in the verification
procedure to make specific model checking instances more
amenable.

To begin with, for every agent i ∈ Ag, let ≈i be an equiv-
alence relation on Li, and [l] = {l′ ∈ Li | l′ ≈i l} be the
equivalence class of l according to ≈i. We first introduce
abstractions for agents.

Definition 17 (Abstract Agent). Given an agent i =
〈L,Act, Pmay , Pmust , tmay , tmust〉 in Γ, the abstract agent i′ =
〈L′, Act′, P ′may , P ′must , t′may , t′must〉 is defined such that

1. L′ = {[l] | l ∈ L};

2. Act′ = Act;

3. t′may(l′1, a, l
′
2) iff for every l1 ∈ l′1, tmay(l1, a, l2) for

some l2 ∈ l′2; and t′must(l′1, a, l
′
2) iff for some l1 ∈ l′1,

l2 ∈ l′2, tmust(l1, a, l2);

4. for every l′ ∈ L′, P ′may(l′) = {a′ ∈ Act | t′may(l′, a′, l′2)
for some l′2 ∈ L′} and P ′must(l′) =

⋃
l∈l′ P

must(l).

On the other hand, if i ∈ Γ, then i′ is defined such that (1)
and (2) holds and

3’. t′may(l′1, a, l
′
2) iff for some l1 ∈ l′1, l2 ∈ l′2, tmay(l1, a, l2);

and t′must(l′1, a, l
′
2) iff for every l1 ∈ l′1, tmust(l1, a, l2)

for some l2 ∈ l′2;

4’. for every l′ ∈ L′, P ′may(l′) =
⋃

l∈l′ P
may(l) and P ′must(l′) =

{a′i ∈ Act | t′must(l′, a′, l′2) for some l′2 ∈ L′}.

By Def. 17 the local states of abstract agent i′ are the
equivalence classes of local states for i; while the set of ac-
tions is the same. For i ∈ Γ, the may (resp. must) pro-
tocol in an abstract local state l′ includes all actions that

are enabled in some (resp. all) concrete states l ∈ l′; while
a may (resp. must) transition holds between abstract lo-
cal states l′1 and l′2 iff from some (resp. all) concrete states
l1 ∈ l′1, there is a transition to some l2 ∈ l′2. The definition
for agent i ∈ Γ is symmetric. Observe that Def. 17 fulfills
the conditions on generalised agents in Def. 10. Moreover,
whenever i ∈ Γ is a standard agent with Pmay = Pmust

and tmay = tmust a function, we obtain that for the ab-
stract agent i′, P ′must ⊆ P ′may and t′must ⊆ t′may ; sym-
metrically for i ∈ Γ. This remark motivates the terminol-
ogy of under- and over-approximations for must- and may-
components. In particular, the role played by under- and
over-approximations is symmetric for abstractions in Γ′ and

in Γ
′
: when evaluating a Γ-formula we adopt a pessimistic

stance of the strategic abilities of i ∈ Γ and an optimistic
view of j ∈ Γ. Finally, notice that the abstraction i′ of a
standard agent i is not standard in general.

Hereafter, we do not make any specific assumption on the
equivalence relation ≈i for agent i. In many cases of inter-
est methodologies can be put forward to identify suitable
equivalences. In the example below we briefly consider a
simple form of predicate abstraction [13], by which states
are equivalent iff they satisfy the same chosen predicates.

Next we prove that abstraction defines a simulation rela-
tion.

Lemma 2. For i ∈ Γ, the abstract agent i′ must-simulates
i. For i ∈ Γ, the abstract agent i′ may-simulates i.

Proof. Since conditions (1) and (2) in Def. 15 are triv-
ially satisfied by the identity relation, we show that (3) and
(3’) hold as well. As regards (3) and must-simulations, we
prove that the mapping (l, a) 7→ ([l], a) is a state simulation
such that, for every l ∈ Li, l � l′ for l′ = [l]. Remember
that Hi be the identity relation for every i ∈ Ag. Then,
ai ∈ Pmust

i (l) implies ai ∈ P ′must
i (l′) =

⋃
l∈l′ P

must
i (l), and

a′i ∈ P ′may
i (l′) implies that t′may

i (l′, a′, l′2) for some l′2 ∈ L′,
that is, for every l ∈ l′, a′i ∈ Pmay

i (l). Next, suppose that
tmust
i (l1, a, l2) for some l2 ∈ L. Clearly t′must

i ([l1], a, [l2]) and
(l2, a) 7→ ([l2], a). On the other hand, if t′may

i (l′1, a, l
′
2) and

(l1, a) 7→ (l′1, a), then for some l2 ∈ l′2, tmay
i (l1, a, l2) and

(l2, a) 7→ (l′2, a). Thus, the mapping (l, a) 7→ ([l], a) wit-
nesses the agent must-simulation i 7→ i′. The proof for
may-simulating agents is similar, this time by showing that
(l′, a) 7→ (l, a), for l ∈ l′, is a state simulation.

Notice that the simulation relationH on actions in Lemma 2
is the identity relation, as concrete and abstract agents are
defined on the same set Act of actions. This remark will
simplify considerably the notation. In particular, we omit
referring to H in simulations.

We can now introduce the notion of abstract interpreted
system.

Definition 18 (Abstract IS). Given an IS M = 〈Ag,
I, T,Π〉 and a set Γ of agents, the abstract IS MΓ = 〈AgΓ, IΓ,
TΓ,ΠΓ〉 is defined as

• AgΓ is the set of abstractions of agents in Ag;

• IΓ = {〈[l1], . . . , [l|Ag|]〉 | 〈l1, . . . , l|Ag|〉 ∈ I};

• for τ ∈ {tt,ff} and p ∈ AP , ΠΓ(〈[l1], . . . , [l|Ag|]〉, p) =
τ iff for all l′i ∈ [li], Π(〈l′1, . . . , l′|Ag|〉, p) = τ ; otherwise,

ΠΓ(〈[l1], . . . , [l|Ag|]〉, p) = uu.
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By Def. 18 an atom p receives value true (resp. false) in an
abstract state s′ iff it receives such value in all corresponding
concrete states s. Since the equivalence relations ≈i are not
assumed to respect the assignment Π, some atoms might
become undefined in some abstract states. Thus, the ab-
straction of a standard IS is not necessarily standard itself.
However, here the aim is to trade definiteness with a smaller
state space in MΓ in comparison to M .

We can now prove the main result of this section.

Theorem 2. The abstraction MΓ Γ-simulates the inter-
preted system M .

Proof. By Lemma 2, every abstract agent i′ ∈ AgΓ sim-
ulates agent i ∈ Ag. Further, for every s ∈ I, s �Γ s′ for s′ =
〈[s1], . . . , [s|Ag|]〉. Finally, for s ∈M , s′ ∈M ′, if s �Γ s′ and
Π′(s′, p) = τ , then for every li ∈ s′i, Π(〈l1, . . . , l|Ag|〉, p) = τ .
In particular, Π(〈s1, . . . , s|Ag|〉, p) = τ .

As an immediate consequence of Theorem 1 and 2, we
obtain the following result.

Corollary 2. If MΓ is the abstraction of IS M , s ∈ s′,
and τ ∈ {tt,ff}, then for every Γ-formula φ,

((M ′, s′) |=3 φ) = τ implies ((M, s) |=3 φ) = τ

By Corollary 2, under specific conditions, we can transfer
the (defined) verification result from abstraction M ′ to con-
crete IS M . This result is of particular interest in all cases
where M is infinite, while M ′ is finite, as in the following toy
example. We conclude by stating that, with minor modifi-
cations, the abstraction procedure above can be applied to
the subjective semantics as well.

5.1 The Abstract Train Gate Controller
Here we show how we can define a 3-valued abstraction for

the infinite IS MTGC in Section 2.1 that has the interesting
feature of being finite. Specifically, by borrowing ideas from
predicate abstraction for IS [30], we say that local states
l and l′ for agent i are equivalent iff they both satisfy the
same local predicates. Then, notice that the only infinite
component of the TGC scenario is the controller C herself,
while both trains are finite. Further, in specifications (1)
and (2) only train T0 appears in ATL modalities, and there-
fore we set Γ = {T0}. Now notice that each agent must- and
may-simulates herself and both T0 and T1 are finite. Hence,
we only need to define an abstract controller CA that may-
simulates C. To do so, we observe that the relevant predi-
cates, appearing in the protocols and specifications, concern
the values of c0 and c1 being either equal (c0 = c1) or one
greater than the other (c0 < c1 and c0 > c1). Then, we in-
troduce abstraction CA for controller C in Def. 8, according
to Def. 17, as follows:

Definition 19 (Abstraction CA). The abstract con-
troller CA = 〈LA

C , Act
A
C , P

A
C , t

A
C〉 is given as

• LA
C is the set of tuples (status, comp, q) such that status

and q are defined as for controller C, while Ran(comp) =
{c0 < c1, c0 > c1, c0 = c1}
• the actions are the same as for controller C: ActAC =
ActC ;

• the may- and must-protocol coincide: for every l ∈ LA
C

and i ∈ {0, 1},

PAmay
C (l) = {enteri} if status = g, q = 2 and comp =

(ci < c1−i);

PAmay
C (l) = {enter0, enter1} if either status = g and
q 6= 2, or status = g, q = 2 and comp = (c0 = c1);

PAmay
C (l) = {leave0, leave1} if status = r;

• we noticed that for abstractions of standard agents we
have t′must ⊆ t′may . Hence, for every must-transition
hereafter there is a corresponding may-transition (omit-
ted):
tAmay
C ((g, c0 < c1, q), (enter, a1, enter0), (r, c0 < c1, q − 1))

tAmay
C ((g, c0 < c1, q), (enter, a1, enter0), (r, c0 = c1, q − 1))

tAmay
C ((g, c0 > c1, q), (a0, enter, enter1), (r, c0 > c1, q − 1))

tAmay
C ((g, c0 > c1, q), (a0, enter, enter1), (r, c0 = c1, q − 1))

tAmust
C ((g, c0 = c1, q), (enter, a1, enter0), (r, c0 > c1, q− 1))

tAmust
C ((g, c0 = c1, q), (a0, enter, enter1), (r, c0 < c1, q− 1))

tAmust
C ((r, comp, q), (leave, a1, leave0), (g, comp, q))

tAmust
C ((r, comp, q), (a0, leave, leave1), (g, comp, q))

tAmust
C ((g, comp, q), (approach, a1, aC), (g, comp, q + 1))

tAmust
C ((g, comp, q), (a0, approach, aC), (g, comp, q + 1))

The key remark here is that, while the original IS MTGC

has infinitely many states, its abstraction MA
TGC defined

over trains T0, T1 and abstract controller CA is finite with
|L0 × L1 × LA

C | = 162 global states. Hence, we can model
check formulas (1)-(3) in Section 2.1, for instance, and then,
in case we obtain a defined answer, transfer the result on
the original IS MTGC by means of Corollary 2.

6. CONCLUSIONS
In this paper we have introduced a 3-valued abstraction

technique for infinite-state imperfect-information MAS spec-
ified via ATL. As discussed in the paper, and as it is to be
expected in 3-valued abstraction, the technique cannot al-
ways resolve the value of a specification. To address this
issue, in future work we plan to investigate refinement tech-
niques [11] in contexts of imperfect information. Further,
we plan to adapt the technique to support more powerful
logics for strategic reasoning under incomplete information
(e.g. Strategy Logic [9]. Finally, we envisage to implement
the developed procedure in a model checking tool for the
verification of strategic behaviours of agents.
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