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ABSTRACT
While modeling group decision making scenarios, the existence of
a central authority is often assumed which is in charge of amal-
gamating the preferences of a given set of agents with the aim of
computing a socially desirable outcome, for instance, maximizing
the utilitarian or the egalitarian social welfare. Departing from this
classical perspective and inspired by the growing body of literature
on opinion formation and diffusion, a setting for group decision
making is studied where agents are selfishly interested and where
each of them can adopt her own decision without a central coordi-
nation, hence possibly disagreeing with the decision taken by some
of the other agents. In particular, it is assumed that agents belong
to a social environment and that their preferences on the available
alternatives can be influenced by the number of “neighbors” agree-
ing/disagreeing with them. The setting is formalized and studied
by modeling agents’ reasoning capabilities in terms of weighted
propositional logics and by focusing on Nash-stable solutions as the
prototypical solution concept. In particular, a thoroughly computa-
tional complexity analysis is conducted on the problem of deciding
the existence of such stable outcomes. Moreover, for the classes
of environments where stability is always guaranteed, the conver-
gence of Nash dynamics consisting of sequences of best response
updates is studied, too.

1. INTRODUCTION
Understanding how global behavior emerges from local inter-

actions among individuals is a well-established topic of research
in a number of different areas, including economics, finance, epi-
demiology, social psychology, and political science. More recently,
due to the rapid proliferation of social networking services, such
as Facebook and Twitter, which created novel and highly-dynamic
forms of techno-social ecosystems, computer scientists have been
fascinated by the problem, too (see, e.g., [16]).

A social environment can be naturally modeled as network, whose
nodes correspond to the individuals and whose edges encode their
social interconnections which give rise to influence phenomena.
In particular, most of the classical studies on this topic assume
that neighbors communicate by propagating and diffusing “items”,
such as technologies or diseases, because of reasons ranging from
similarity and social ties [3], to conformity [33], and to compli-
ance [14], just to name a few. Well-known diffusion models are the
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cascade [27], the tipping/treshold [23], and the homophilic model [4].
Moreover, in some cases, these models are mixed together (e.g., [13])
or they are extended to accommodate the diffusion of different and
competing information [11, 25, 31, 12, 29].

More recently, richer models of social environments have been
proposed in the literature, which are tailored to study how “im-
material” things, in particular opinions, form and diffuse over the
network. Many of these works [2, 18, 20, 26] build on a basic
model of [17], where each individual is equipped with a real num-
ber (for example, representing a position on a political spectrum
or a probability assigned to a certain belief), which is updated, at
each time step, to be a weighted average of that opinion with the
current opinions of the neighbors. By doing so, the diffusion pro-
cesses will converge to a state of consensus where all individuals
hold the same opinion. A natural extension, first proposed by [19],
is to equip each individual with an innate opinion in addition to the
expressed opinion. At each time step, the expressed opinion is then
updated to minimize the disagreement with the innate opinion and
the opinions expressed by the neighbors—see, e.g., [9, 10, 8, 5].

Enhancing the expressiveness of such models for information
diffusion is an important research issue. Indeed, modeling the rea-
soning capabilities of the individuals as real numbers is a clear
limitation from the knowledge representation viewpoint. However,
proposing and analyzing formalizations where individuals are seen
as thinking entities equipped with their own (in particular, logical)
theories, and where mechanisms are conceived to reason about
how these theories interact within the dynamics of the network is
an avenue widely unexplored in the literature. The goal of the paper
is to fill this gap, by proposing a semantically rich framework for
studying both information diffusion and social influence phenom-
ena based on a group decision-making setting where agents have
their own view of the world modeled in terms of weighted proposi-
tional logics [15]. Indeed, this modeling language is convenient for
our aim, since it has been shown to express all common classes
of utility functions, and it also provides a convenient means to
elicit user’s preferences while balancing expressivity and complex-
ity [34]. Furthermore, it practically enables to exploit SAT-Solvers
to deal with instances involving tens of thousands of variables and
formulas consisting of millions of symbols, today [21].

The proposed framework is reminiscent of a number of earlier
approaches in social choice, where such logic-based agents have
been studied in the context of computing socially desirable out-
comes, for instance, maximizing the utilitarian [34] or the egal-
itarian social welfare [24]. In particular, from this literature we
borrow the notion of goalbase — to associate numerical weights
with goals specified in terms of propositional formulas — but we
depart from the aforementioned approaches by designing a novel
framework where agents are selfishly interested; so, each of them
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can adopt her own decision without a central coordination, hence
possibly disagreeing with the decision taken by some of the other
agents. New problems have been studied accordingly.

Details on the proposed formalization are provided in Section 3,
and natural questions arising therein are addressed in the subse-
quent sections. In fact, we study the complexity of problems related
to the existence of Nash stable profiles, i.e., where no agent finds
convenient to adopt a different decision/opinion (see Section 4), as
well as the convergence of fully-decentralized dynamics consisting
of sequences of best response updates (see Section 5). In particular,
I We first study the computational question of checking whether
a given environment admits a Nash stable profile, i.e., where there
is no agent finding convenient to adopt a different decision. We
show that the problem is intractable, by conducting a fine-grained
analysis w.r.t. the size of the domains on which the theories of the
agents are expressed (and by also considering the related problem
of checking whether a profile given at hand is stable). The reduc-
tions exploited to prove these results shed lights on the expressivity
of the framework, too.
I As a way to circumvent the above bad news, we then focus on
a specific class of social environments where agents’ reasoning ca-
pabilities are suitably bounded—we call them linear agents. Com-
putational problems are reconsidered on this class. In particular,
we identify a number of conditions a-priori guaranteeing the exis-
tence of stable profiles and we show that, whenever these condi-
tions do not hold, checking whether a stable profile exists is still
an intractable problem, formally NP-complete. Therefore, these
results precisely chart the tractability frontier for reasoning about
Nash stable profile.
I Finally, for all the cases where stable profiles are guaranteed
to exist by the conditions mentioned above, we study the question
of whether a dynamics consisting of sequences of best response
moves, without any central coordination, is guaranteed to converge.

2. PRELIMINARIES
Throughout the paper, we assume that a universe V of variables

is given and, for any structure ζ defined on V , we denote by dom(ζ)
the set of all the variables occurring in ζ.

We consider the propositional language L consisting of all for-
mulas built over V by using the Boolean connectives ∧, ∨, and
¬, plus the Boolean constants > (true) and ⊥ (false). Moreover,
given two formulas ϕ1 and ϕ2 in L, we use ϕ1 ⇒ ϕ2 as a short-
hand for ¬ϕ1 ∨ ϕ2, and ϕ1 ⇔ ϕ2 as a shorthand for (ϕ1 ⇒
ϕ2) ∧ (ϕ2 ⇒ ϕ1). An interpretation I is a function assigning a
Boolean value to each variable in its domain, i.e., I: dom(I) →
{>,⊥}. We often describe I extensively, i.e., as the set of literals
{x ∈ dom(I) | I(x) = >}∪{¬x | x ∈ dom(I)∧ I(x) = ⊥}. The
restriction of I to any set V ⊆ dom(I) is denoted by I|V . We deal
with I under the usual semantics for propositional logic, by I |= ϕ
denoting that I satisfies a formula ϕ ∈ L with dom(I) ⊇ dom(ϕ).

A weighted formula is a pair (ϕ,w), where ϕ ∈ L and where
w ∈ Q is its weight [15]. A goalbase G is a finite set of weighted
formulas. For any interpretation I with dom(I) ⊇ dom(G), we
defineG(I) as the sum of the weights over all the pairs (ϕ,w) ∈ G
such that I |= ϕ holds, that is, G(I) =

∑
(ϕ,w)∈G s.t. I|=ϕ w.

3. FORMAL FRAMEWORK
In what follows, we introduce our framework step by step with

the aid of a running example. Later, we are going to trace the
tractability frontier of the main problems about Nash stability and
Nash dynamics.

3.1 Agents and environments
We assume that a set [n] = {1, ..., n} of agents is given. A so-

cial environment is a triple G = ([n], E, κ), which we often trans-
parently view as a graph whose nodes are the agents in [n] and
whose edges in E ⊆ [n]× [n] encode the fact that such agents are
related by some relationship, because of reasons that might range
from physical limitations and constraints to legal banishments and
friendships. The environment G is also equipped with a function κ
storing the knowledge base κ(i) of each agent i ∈ [n], which we
model by using weighted propositional logic.

Formally, every agent i ∈ [n] is characterized by a knowledge
base κ(i) having the form 〈G0

i , ..., G
di
i 〉, where di ≥ 0 is a natural

number, called the degree of i, and where Gδi is a goalbase, for each
natural number δ ∈ {0, ..., di}. To explain the role played by these
goalbases, we start with the simplest kind of agent, whose degree is
0. An agent of this kind is autonomous, as she does not care about
the other agents and acts in the environment as if she were alone.

EXAMPLE 1. Consider an agent, say 1, such that κ(1) = 〈G0
1〉

with G0
1 = {(hil ⇔ dem, 1), (¬dem, 1)}. This goalbase models

the intuition that 1 “will vote for Hillary iff she is a Democrat”
and that actually “she is not a Democrat”. Indeed, G0

1 is meant to
encode the utility of agent 1, ranging between 0 and 2. And, its
maximum value is achieved over the interpretation {¬dem,¬hil}.
That is, based on her innate opinion i.e., based solely on 〈G0

1〉,
agent 1 will not vote for Hillary. �

Higher degrees are meant to encode agents whose reasoning mech-
anisms are influenced by their social relationships. In particular, we
assume that each agent selects her own interpretation and that the
utility of an agent i sums the value returned byG0

i up with a polyno-
mial function, having degree di, in the number of the agents “agree-
ing” on the interpretation selected by i and whose coefficients are
returned by the values of the goalbases Gδi , for δ > 0.

In order to formalize our intuition, let dom(i) denote the set
dom(G0

i ) ∪ · · · ∪ dom(Gdii ), let space(i) be the set of all inter-
pretations over dom(i), and let us define a profile Π as a func-
tion {i 7→ Πi}i∈[n] mapping each agent i ∈ [n] to interpretation
Πi ∈ space(i). Moreover, define the partners of i with respect to
Π as the set

partners(i,Π) = {j | (j, i) ∈ E and Πi|dom(j) = Πj |dom(i)},

that is, as the set of agents j for which there is an edge from j to i in
G and interpretation Πj is “compatible” with Πi. Then, the utility
of agent i with respect to Π is the following rational number:

ui(Π) = G0
i (Πi) +

∑
δ∈{1,...,di}

Gδi (Πi) · |{i} ∪ partners(i,Π)|δ.

With this definition of utility in place, we can now summarize
the main working assumptions of our formal framework: for ev-
ery agent, (1) any influence is restricted to neighboring agents only
(i.e., there is no direct influence from neighbors of neighbors), and
(2) all the neighbors have the same degree of influence. These as-
sumptions are aimed to keep things as simple as possible; relax-
ing them is a part of the future work. Note that when the value
of Gδi (Πi) in the above expression is negative (resp., positive) for
each δ > 0, it is the case that agent i behaves as a dissenter (resp.,
conformist), namely she prefers an interpretation that helps to min-
imize (resp., maximize) the number of her partners in order to max-
imize her utility. (The notions of dissenters and conformists will be
studied more in depth in Section 5.) In the following, we use the
convention that dissenters are graphically represented as nodes la-
beled with the symbol ‘−’, while conformists as nodes labeled with
the opposite symbol ‘+’.
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Figure 1: Knowledge bases and interactions for the social envi-
ronment of Example 2; ∀i ∈ [n], di ≤ 1.

EXAMPLE 2. Let us extend Example 1, by considering the five
agents whose goalbases are as reported in Figure 1. Note that the
knowledge base of agent 1 is modified so that κ(1) = 〈G0

1, G
1
1〉,

where G1
1 = {(dem, 1), (¬dem, 1)}. That is, agent 1 gets an ad-

ditional utility if she agrees with some neighbor on the decision
about being a Democrat.

Assume that agents interact according to the edges depicted in
Figure 1, and consider the profile Π such that Π1 = {hil , dem},
Π2 = {hil , dem}, Π3 = {dem,¬hil}, Π4 = {¬hil}, and Π5 =
{hil}. Note that agent 1 — acting as a conformist — can be influ-
enced only by agents 2 and 3 due to network structure, and that her
current interpretation Π1 is compatible with Π2 only (according to
Π, agent 2 is the only partner of agent 1). Thus, partners(1,Π) =
{2} and u1(Π) =G0

1(Π1)+G1
1(Π1) · |{1}∪{2}|1 = 1+1·2 = 3.

In particular, observe that given her social interconnections with 2
and 3, agent 1 is now inclined to support the Democratic Party and
hence, to vote for Hillary—just check that agent 1 gets a lower util-
ity with any interpretation different from Π1. Hence, the expressed
opinion of agent 1 now differs from her innate one. For the other
agents we have u2(Π) = 2, u3(Π) = 2, u4(Π) = 2, and u5(Π) =
1. (We implicitly assume that G0

4 = ∅. However, alternative equiv-
alent definitions would be, for example,G0

4 = {(hil , 0), (¬hil , 0)}
and even G0

4 = {(hil ∨ ¬hil , 0)}. In any such cases, it holds that
G0

4(Π4) = 0.) �

3.2 Nash stability
We assume hereinafter that a social environment G=([n], E, κ)

is given. For any agent i ∈ [n], the restriction Π−i of a profile Π
to the agents [n] \ {i} is the function {j 7→ Πj}j∈[n]\{i}. Given
a profile Π, an agent i ∈ [n], and an interpretation I ∈ space(i),
the mapping {i 7→ I} is a best response move for i (w.r.t. Π) if
ui(Π−i∪{i 7→ I}) > ui(Π−i∪{i 7→ J}), for each J ∈ space(i).
A profile Π is (Nash) stable in G if each agent is playing one of her
best response moves. That is, for each i ∈ [n] and for each interpre-
tation I ∈ space(i), it holds that ui(Π) > ui(Π−i ∪ {i 7→ I}).

A (Nash) dynamics is a sequence of profiles, where each of them
is either the initial one in the sequence or has the form Π−i ∪{i 7→
I}, with {i 7→ I} being a best response move for some agent i
w.r.t. the previous profile Π.

EXAMPLE 3. The profile Π discussed in Example 2 is the only
stable one. In particular, if we start from any initial profile where
{1 7→ Π1}, any Nash dynamics will converge to Π. Indeed, just no-
tice that agents 2 and 5 are autonomous and converge to Π2 and Π5,
respectively. Moreover, given the weighted formula (dem, 4) be-
longing to G0

3, agent 3 always converges to an interpretation where
she is a Democrat.

Now, concerning the decision about whether to vote for Hillary,
note that agent 3 acts as a dissenter; hence, she converges to Π3

(she does not vote for Hillary, while being a Democrat), because the

maxDomSize(G) IS-NASH ∃-NASH

O(logn) PTIME → Thm. 1 NP-c → Thm. 2

arbitrary coNP-c → Thm. 3 ΣP
2-c → Thm. 4

Table 1: Complexity of the problems IS-NASH and ∃-NASH in
the general case, and in case maxDomSize(G) is bounded loga-
rithmically by n.

majority of her neighbors vote for Hillary: she prefers to minimize
the number of her partners. Instead, agent 4 is a conformist and she
adapts Π4 to the opinion by agent 3.

Consider instead, the modified setting where the goalbase G0
2 is

updated as {(¬dem, 1), (¬hil , 1)}. In this case, agent 1 will be
faced with two contrasting opinions about being a Democrat, so
that she will eventually come back to her innate view by selecting
the interpretation {¬dem,¬hil}. Then, agent 3 will have similarly
one neighbor voting for Hillary and one not voting for her. So, the
decision of 3 depends only on 4, and vice versa. But, these two
agents cannot find an agreement since 3 is a dissenter, while 4 is a
conformist. Hence, no stable profile exists at all. �

4. REASONING ABOUT SOCIAL ENVIRON-
MENTS

After that the framework has been formalized, it is now our
goal to test its expressivity and study analytical and computational
properties related to the convergence of Nash dynamics. And as
promised, we would like to trace the tractability frontier of the main
problems concerning Nash stability and Nash dynamics.

Motivated by Example 3, we start by studying the computational
complexity of the problem ∃-NASH of deciding, given a social en-
vironment as input, whether it admits any stable profile at all. In
addition, it is also sensible to study the problem IS-NASH of decid-
ing where some given profile is actually stable.

A summary of our results is presented in Table 1. Note that the
analysis is provided parametrically w.r.t. the value maxDomSize(G)
of the social environment G, which we define as the maximum car-
dinality of the domain over all the agents. Indeed, a logarithmic
bound on this parameter ensures that the complexity drops down
one level in the polynomial hierarchy (see Table 1). Proofs for
these results are elaborated in the rest of the section.

4.1 “Logarithmic” agents
Consider first the setting where maxDomSize(G) ∈ O(logn).

In this case, for each i ∈ [n], space(i) can contain polynomially-
many interpretations only; therefore, checking whether some agent
has an incentive to deviate from some given profile is clearly feasi-
ble in polynomial time.

THEOREM 1. IS-NASH is in PTIME if maxDomSize(G) be-
longs to O(logn).

PROOF. Consider a social environment G and a profile Π. For
each i ∈ [n] and for each I ∈ space(i), if ui(Π) < ui(Π−i ∪
{i 7→ I}), then reject; otherwise, after this double for-loop, accept.
(Note that, by hypothesis, space(i) may contain only polynomially
many interpretations.)

On the other hand, we shall next show that ∃-NASH is intractable,
formally NP-complete. It is instructive to overview the proof, as it
sheds lights on the expressiveness of our framework. Indeed, we
shall next show that our agents are able to reason about forming
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coalitions, even though this concept does not appear as a first-class
citizen in the framework. In particular, social environments can
simulate anonymous hedonic games, which are games in which the
preferences of each player can be completely summarized as pref-
erences over the coalitions where she is included (see, e.g., [6]).
Formally, a hedonic game H is a pair 〈[n],�〉 where � is a func-
tion associating to each player i ∈ [n] a preference order (complete
and transitive binary relation) �i over {S ⊆ [n] | i ∈ S}. In par-
ticular, H is anonymous if �i is given as a function µi : [n] → Q
such that C1 �i C2 iff µi(|C1|) > µi(|C2|). That is, in anony-
mous games preferences of the agents depend only on the size of
the coalitions where they belong to.

THEOREM 2. ∃-NASH is NP-complete if maxDomSize(G) be-
longs to O(logn).

PROOF. For the hardness, consider an anonymous hedonic game
H on [n]. A coalition in H is any subset of [n]. A configura-
tion C is a set of coalitions that forms a partition of [n]. For each
i ∈ [n], the set coal(i, C) denotes the coalition of C containing
i. Configuration C is stable if, for each i ∈ [n] and C ∈ C ∪ ∅,
µi(coal(i, C)) ≥ µi({i} ∪ C). Deciding whether stable configu-
ration exists for these games is NP-complete [7, 30].

Given H , observe first that µi, for each i ∈ [n], can be always
written (in polynomial time) in the form µi(s) = cn−1

i · sn−1 +
. . . + c1i · s + c0i , via standard interpolation techniques (e.g., [1]).
Then, we can build the social environment G = ([n], E, κ) where:
E = {(i, j) | i, j ∈ [n] and i 6= j} and where, for each i ∈ [n],
κ(i) is such that:
• G0

i = {(
∧
q6dlogne(xq ∨ ¬xq), c

0
i )}, and

• Gδi = (>, cδi ), for each δ ∈ {1, ..., n− 1}.
Note that, over the variables xq , we can encode the natural numbers
in the set [n], which we can univocally use to identify the coalition
each agent belongs to. Then, it can be easily checked thatH admits
a stable configuration if, and only if, G admits a stable profile.

To conclude, note that ∃-NASH is in NP. Indeed, it can be solved
by guessing a profile, and by subsequently checking in polynomial
time whether it is stable (cf. Theorem 1).

4.2 Arbitrary agents
We now analyze the case of arbitrary agents. Contrasted with

Theorem 1, the following shows that a complexity blow-up occurs
moving from the case of “logarithmic” agents.

THEOREM 3. IS-NASH is coNP-complete. Hardness holds even
for n = 1 and d1 = 0.

PROOF. (Membership) Consider a social environment G and a
profile Π. The complementary problem is in NP: (a) Guess an
agent i ∈ [n] and an interpretation I ∈ space(i); (b) Check that
ui(Π) < ui(Π−i ∪ {i 7→ I}). In particular, note that the utility
function can be computed in polynomial time.

(Hardness) Consider the coNP-complete problem of deciding
whether a Boolean formula φ with dom(φ) = {x1, . . . , xm} is
not satisfiable. Based on φ, we construct the social environment
G = ([1], ∅, κ) with κ(1) = 〈G0

1〉 and such G0
1 = {(x0 ∧ φ, 1)}.

Consider the profile Π with Π1 = {¬x0,¬x1, ...,¬xm}, and note
that u1(Π) = 0 since I 6|= x0 ∧ φ. Eventually, Π is stable iff φ is
unsatisfiable.

Similarly, ∃-NASH becomes more difficult; in fact complete for
the second level of the polynomial hierarchy.

THEOREM 4. ∃-NASH is ΣP
2 -complete. Hardness holds even

for n = 5 and di 6 1, for each i ∈ [n].

i G0
i G1

i

1 {(z ⇔ φ(x,y), 3/2)} {(>, 1)}
2 {(x1 ∧ · · · ∧ xp, 0)} ∅
3 ∅ {(z,−1), (¬z,−1)}
4 ∅ {(z, 1), (¬z, 1)}
5 {(z, 1)} ∅

Table 2: Knowledge base κ from the proof of Theorem 4.

PROOF SKETCH. (Membership) Guess a profile Π (in NP), and
then check whether Π is stable (in coNP by Theorem 3).

(Hardness) Deciding whether a quantified formula F =
∃x.∀ y.φ(x,y) with x = x1, ..., xp and y = y1, ..., yq is satis-
fiable is a ΣP

2 -complete problem. Based on F , we build the envi-
ronment G = ([5], E, κ) by keeping the underlying graph of Fig-
ure 1 and where κ is now specified in Table 2. We claim that F is
satisfiable⇔ G admits a stable profile.

(⇒) Let I : x → {>,⊥} be such that, for each J : y →
{>,⊥}, I ∪ J |= φ. Fix any given J̄ : y→ {>,⊥}, construct the
profile Π where Π1 = I ∪ J̄ ∪ {z 7→ >}, Π2 = I , Π3 = Π4 =
{z 7→ ⊥}, and Π5 = {z 7→ >}, which implies u1(Π) = 7/2,
u2(Π) = 0, u3(Π) = −2, u4(Π) = 2, and u5(Π) = 1. By
exhaustively enumerating all possible best response moves for the
agents, it can be checked that Π is stable.

(⇐) We shall show that if F is not satisfiable, then G does not
admit any stable profile. Accordingly, for each I : x → {>,⊥},
let JI : y → {>,⊥} be such that I ∪ JI 6|= φ. By contra-
diction, assume that there is a stable profile Π and take an ar-
bitrary assignment I . First, one can notice that stability implies
Π1 = I∪JI ∪{z 7→ ⊥}, Π2 = I , and Π5 = {z 7→ >}, leading to
u1(Π) = 9/2, u2(Π) = 0, and u5(Π) = 1. Eventually, this makes
either agent 3 or agent 4 “unstable”, which is impossible.

5. CONSTANT DOMAINS AND NASH DY-
NAMICS

In the light of the results of Section 4, in order to isolate tractable
scenarios, we need to further constraint the reasoning capabilities
of the agents. Accordingly, in this section, we study environments
G such that maxDomSize(G) = O(1), i.e., every agent can reason
about a constant number of variables only. In addition, we focus on
the case of linear agents, that is, di 6 1 holds, for each i ∈ [n],
with the question of extending our results to agents that are not lin-
ear being an interesting avenue for further research (see Section 6
for further observations on this issue).

The analysis that follows is parametric w.r.t. some salient fea-
tures of the agents. Formally, consider an agent i ∈ [n]. Then,
the base and the gradient of i are defined by the sets base(i) =
{G0

i (I) | I ∈ space(i)} and grad(i) = {G1
i (I) | I ∈ space(i)},

respectively. Agent i is said:

- autonomous (of gradient 0) if di = 0 or grad(i) = {0};

- conformist (of gradient +) if grad(i) = {c} and c > 0;

- dissenter (of gradient −) if grad(i) = {d} and d < 0;

Moreover, in a completely orthogonal way, agent i is said:

- adaptable (of base 1) if |base(i)| = 1;

- resolute (of base∞) if |base(i)| > 1;

For each fixed natural number h > 0, let us now denote by
Ch[base, grad, graph] the class collecting all the environments G
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base grad graph: sym graph: arb

1

0 ever → Thm. 5 ever → Thm. 5
0/+ ever → Thm. 5 evernc → Thm. 6
0/− ever → Thm. 5 NP-c → Thm. 9
0/± NP-c → Thm. 8 NP-c → Cor. 1

∞

0 ever → Thm. 5 ever → Thm. 5

0/+ ever → Thm. 5
everoc → Thm. 7 (h=1)

NP-c → Thm. 10 (h>1)
0/− ever → Thm. 5 NP-c → Cor. 2
0/± NP-c → Cor. 1 NP-c → Cor. 1

Table 3: Summary of the results for the existence of stable pro-
files in Section 5. For the entries marked as ever, a stable profile
always exists and can be computed in polynomial time; here,
Nash dynamics converge in polynomial time, but for the entries
with superscript nc and oc—where they do not necessarily con-
verge and where this question remains open, respectively.

such that: (1) maxDomSize(G) = h; (2) each agent of G is adapt-
able if base = 1, and resolute if base = ∞; (3) each agent is au-
tonomous if grad = 0; autonomous or conformist if grad = 0/+;
autonomous or dissenter if grad = 0/−; autonomous, conformist
or dissenter if grad is 0/±; (4) G is symmetric (i.e., undirected) if
graph = sym and arbitrary if graph = arb. E.g., C2[1, 0/+, sym]
is the class of environments where the domain of each agent has
at most 2 variables, each agent is adaptable, either autonomous or
conformist, and the underlying graph is symmetric.

A summary of our results is reported in Table 3. There, we sep-
arate all the fragments, defined as discussed above, where stable
profiles are always guaranteed to exist (marked with the label ever),
from those where ∃-NASH is instead an intractable problem (NP-
complete). For the former fragments, we can show that Nash dy-
namics always converges in polynomial time—except in two cases.

5.1 Convergence and tractability
We start by identifying the cases in which a Nash dynamics is

guaranteed to converge, implying that a Nash stable profile always
exists. In particular, in these cases, we show that any dynamics
converges after polynomially many steps.

Given an interpretation I = {l1, . . . , l|I|}, ϕI denotes the for-
mula l1 ∧ . . . ∧ l|I|. An environment G = ([n], E, κ) is in normal
form if, for each i ∈ [n] with κ(i) = 〈G0

i , G
1
i 〉, it holds that: (1)

base(i) ⊂ Q+ ∪ {0} and G0
i = {(ϕI , G0

i (I)) | I ∈ space(i)};
and (2) grad(i) = {gi} ⊂ {−1, 0, 1} and G1

i = {(>, gi)}.
A social environment G = ([n], E, κ) in Ch[∞, 0/+, sym] or in
Ch[∞, 0/−, sym] is in discrete linear form if, for each i ∈ [n] with
κ(i) = 〈G0

i , G
1
i 〉, it holds that: (1) base(i) ⊂ {0, . . . , n · 22h+1}

and G0
i = {(ϕI , G0

i (I)) | I ∈ space(i)}; and (2) grad(i) =
{gi} ⊂ {−2h − 1, 0, 2h + 1} and G1

i = {(>, gi)}.

THEOREM 5. For each fixed h > 0 and for each social envi-
ronment G=([n], E, κ) in Ch[∞, 0, arb], Ch[∞, 0/+, sym], or
Ch[∞, 0/−, sym], any Nash dynamics converges in polynomially
many steps.

PROOF. Any environment in Ch[∞, 0, arb] converges in at most
n steps after the best move of each agent. For the remaining two
cases we provide a more sophisticated argument. First, we con-
struct from G an environment G′ = ([n], E, κ′) in discrete linear
form, sharing with G both the underlying graph and its dynamics.
Intuitively, in κ′ we get rid of fractional or “too large” values, and

of negative values occurring in the bases. Consider an agent i with
grad(i) = {m}. Let κ(i) = 〈G0

i , G
1
i 〉, space(i) = {I1, ..., Ic}

with c 6 2h. For each x 6 c, compute αx = G0
i (Ix). Tuple

τ0(i) = (m,α1, ..., αc) together with space(i) is an alternative
encoding of κ(i). Assume I1, ..., Ic are sorted in a way that x < y
implies αx 6 αy . We build κ′(i) by replacing τ0(i) with the result
τ3(i) of the following transformations (step 1 modifies G to be in
normal form, while the remaining two steps construct G′).

1. Let w = minx αx. Build τ1(i) = (sgn(m), β1, ..., βc) as
follows: if w < 0, then β′x = αx − w, else β′x = αx;
moreover, if m 6= 0, then βx = β′x/|m|, else βx = β′x ;

2. Build τ2(i) = (sgn(m), γ1, ..., γc) as follows: if β1 < n,
then γ1 = β1, else γ1 = n; if βx − βx−1 < n, then γx =
γx−1 + βx − βx−1, else γx = γx−1 + n;

3. Let F = f1, ..., fc be the fractional parts of β1, ..., βc, and
µ : F → {0, ..., c} s.t. µ(0) = 0 and fx < fy implies
µ(fx) < µ(fy). τ3(i) = (sgn(m) · z, δ1, ..., δc) where z =
2h+1 and each δx = z × bγxc+ µ(fx).

Note that each δx is linear in G as it belongs to the set {0, ..., z ·n ·
c+ c}. Consider now a profile Π. Let com(Π) denote the edges of
E connecting agents with compatible interpretations, and ẑ = z in
the case 0/+ or ẑ = −z otherwise. Also, for each i ∈ [n], let δΠ

i

be the weight in τ3(i) associated with interpretation Πi. Consider
now the function

Φ(Π) = ẑ · (|com(Π)|+ 1) +
∑
j∈[n]

δΠ
j .

Assume that agent i with gradient mi 6= 0 is going to move. Let
comi(Π) = {{i, j} ∈ E | j ∈ partners(i,Π)}, and Ei =
{{x, j} ∈ E | x = i}. Function Φ(Π) can be rewritten as

δΠ
i + ẑ · |1 + comi(Π)|+ ẑ · |com(Π) \ Ei|+

∑
j 6=i

δΠ
j .

The term δΠ
i +ẑ ·|1+comi(Π)| is exactly the utility of i in Π, while

the remaining terms do not change after the move of i from Π to Π′.
Hence, Φ(Π′)−Φ(Π) = ui(Π

′)−ui(Π), implying that Φ behaves
as an exact potential function. And, according to our normalization,
Φ is also discrete and its modulus is bounded by O(n2). But it is
not potential any more in the presence of autonomous agents. In
fact, if mi = 0, then ui(Π′)− ui(Π) = δΠ′

i − δΠ
i . Therefore, Φ is

an exact potential function during any sub-dynamic involving non-
autonomous agents only. However, since autonomous agents may
move at most once in any dynamics, the full dynamics converges
in O(n3) steps.

Note that from the above proof, one can observe that the running
time — although polynomial — exponentially depends on h, which
is assumed here to be a fixed parameter. We now consider two
fragments where a stable profile always exists and can be computed
in polynomial time.

THEOREM 6. For each fixed h > 0 and for each social envi-
ronment G=([n], E, κ) in Ch[1, 0/+, arb], a stable profile always
exist and can be computed in polynomial time. Yet, Nash dynamics
do not necessarily converge.

PROOF. Consider any interpretation I : dom(G) → {>,⊥}.
Build from I the profile ΠI = {i 7→ I|dom(i)}i∈[n]. Clearly, the
number of edges incoming to i is exactly |partners(i,Π)|. Hence,
since agents are adaptable, ΠI is stable.

We now provide an environment G = ([n], E, κ) and an ini-
tial profile Π which does not necessarily converge. In particular,
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Figure 2: Gadget in the proof of Theorem 8.

[n] = {i, ai, ..., di | 1 6 i 6 3}; E = {(1, 3), (3, 2), (2, 1)}
∪ {(xi, i) | 1 6 i 6 3 ∧ a 6 x 6 c} ∪ {(1, d1), (d1, 3)} ∪
{(3, d3), (d3, 2)} ∪ {(2, d2), (d2, 1)}. Regarding κ, the domain
of each agent is {p}, implying the possible interpretations I1,I2.
Agents 1, 2, 3, d1, d2 and d3 are adaptable conformists with base
and gradient 1. The remaining agents are adaptable autonomous
with base and gradient 0. Initial profile Π is s.t.: 1, a1, b1 ,d1, c2,
c3 play I1, and the remaining agents play I2. Since there are only
two interpretations, it is sufficient to give the sequence of deviating
agents which ends up with the initial profile: 3, d3, 1, d1, 2, d2, 3,
d3, 1, d1, 2, d2. Since this sequence can repeat indefinitely, it does
not necessarily converge.

THEOREM 7. For each social environment G=([n], E, κ) in
C1[∞, 0/+, arb], a stable profile always exist and can be computed
in polynomial time.

PROOF. From the interpretation I that maps every variable of
dom(G) to>, we build the profile ΠI = {i 7→ I|dom(i)}i∈[n]. Since
each agent i has at most one variable, say x, and since I maximizes
already the number of her partners, we are sure that if i wants to
change the value of x to ⊥, then she will never reconsider this
choice. Hence, we can fix x = ⊥, remove i from the analysis, and
iteratively apply the argument on the reduced environment.

5.2 Hardness for symmetric environments
We now proceed with the cases in which a stable profile might

not exist. In particular, we show that the complexity results in Sec-
tion 5.1 precisely identify the maximal subclass of tractable social
environments. Contrasted with the NP-hardness results exhibited
in Section 4, the results that follow (for symmetric and, later on, for
arbitrary environments) are technically deeper and require more so-
phisticated elaborations. Indeed, it might be even as a surprise that
hardness results can emerge in the settings we shall next analyze,
due to the limited resources made available to the agents therein.

THEOREM 8. For each fixed h > 0, problem ∃-NASH over
Ch[1, 0/±, sym] is NP-complete.

PROOF. (Membership) Inherited from Theorem 2.

(Hardness) We first show the statement for h = 1. Deciding
whether a 3-uniform hypergraph H = (V,E) is 2-colorable is
an NP-complete problem [28]. (A 2-coloring is valid if each (hy-
per)edge contains two distinct vertices mapped to different colors,
namely no edge is monochromatic.) Based onH , we build the envi-
ronment G = ([n], E′, κ) and we claim that H is 2-colorable iff G
admits a stable profile. In particular, (1) [n] = {u, ue, u′e, u′′e | u ∈

Figure 3: Graph G3
e, connecting e = {a, b} and C3

e .

e and e ∈ E}, (2) ue, ve ∈ [n] implies {ue, ve} ∈ E′, (3) ue ∈
[n] implies {ue, u′e} ∈ E′, {u′e, u′′e} ∈ E′, and {u′e, u} ∈ E′, (4)
for each i ∈ [n], formula (x, 0) belongs to G0

i , and (5) for each
i ∈ [n], if i is of the form u′′e , then formula (>, 1) belongs to G1

i ,
else formula (>,−1) belongs to G1

i . Note that dom(κ) = {x}.
See Figure 2 for an example, where red nodes choose {x} and blue
ones choose {¬x}. In particular, each closed triangle is stable iff it
is not monochromatic. Moreover, each gadget of the form {u′e, u′′e}
behaves as a “color propagator”. In fact, to preserve stability, it
“propagates” to node ue the color associated to node u.

To show that the problem remains hard for any fixed h > 1, we
relay on Lemma 2 which requires a more sophisticated construc-
tion, which is given in the remaining part of this proof. (Note that
more variables imply more interpretations, which in turn may sat-
isfy more dissenter agents.)

For any k > 3, let Ckx denote the complete graph on the ver-
tices {x1, ..., xk}. Clearly, Ckx is both k-chromatic1 and (k − 1)-
regular2. Given a k > 3 and an edge e = {a, b}, we define graph
Gke = (V ke , E

k
e ) fromCke = (V,E) as follows: (1) V ke = {a, b}∪

V ; and (2)Eke = {e}∪E∪{{a, ei} | 1 6 i 6 k−1}∪{{b, ek}}.
See Figure 3 for an illustration ofG3

e in case e = {a, b}. Note that,
whenever a and b are colored in the same way, after collapsing the
vertices a and bwe obtain a complete k-regular graph of order k+1
which cannot be k-colorable. (This fact is at the basis of Lemma 1.)
More in general, Gke enjoys the following property.

PROPOSITION 1. For each k > 3 and for each e = {a, b},
Gke is k-chromatic and each vertex of {e1, ..., ek} has exactly k
incident edges.

Fix a k > 3. Consider a graph H = (V,E), and the col-
lection of graphs {Gke = (V ke , E

k
e ) | e ∈ E}. We define the

graph Hk = (V k, Ek) in such a way that V k =
⋃
e∈E V

k
e and

Ek =
⋃
e∈E E

k
e . Of course, Hk can be constructed in polynomial

time. Hereafter, for reasons that will be clear later, Hk is called k-
invalid. Accordingly, given a graph H , kCOL-kINV is the problem
of checking whether Hk is k-colorable.

PROPOSITION 2. kCOL-kINV is NP-complete for any k > 3.

PROOF. Let kCOL be the problem: given a graph, is it k-colorable?
We reduce kCOL to kCOL-kINV, since kCOL is NP-complete for
any given k > 3 [32]. More specifically, a graph H is k-colorable
iff Hk is k-colorable.

(⇒) Fix a k > 3. Let H = (V,E), Hk = (V k, Ek), and
C = {c1, ..., ck} be k colors. By Proposition 1, from a valid k-
coloring γ : V → C of H we obtain a valid k-coloring γk :
1A graph is called k-chromatic if it is k-colorable but it is not
(k − 1)-colorable.
2A graph is called k-regular if the number of edges incident to each
vertex is exactly k.
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Figure 4: Gadgets in the proof of Lemma 2 for k = 4.

V k → C of Hk as follows: (1) u ∈ V implies γk(u) = γ(u);
and (2) e = {a, b} ∈ E implies γk(e1) = γ(b), γk(ek) = γ(a),
and γk restricted to the vertices V ke \ {a, b} is any bijection to
C \ {γ(a), γ(b)}. See Figure 3 (left-hand-side), for an example.

(⇐) This direction is trivial since Ek ⊃ E. Hence, any k-
coloring of Hk is also a k-coloring of H .

The next lemma clarifies the name k-invalid.

LEMMA 1. For any given k > 3, if a graph Hk is not k-
colorable then, for each (invalid) coloring, there exists a vertex
having k incident edges which is colored as one of its neighbors.

PROOF. Fix a k > 3. Let H = (V,E), Hk = (V k, Ek), and
γk : V k → {c1, ..., ck} an invalid k-coloring of Hk. First, we
observe that there is necessarily an edge e = {a, b} ∈ V such that
γ(a) = γ(b). Otherwise, by Proposition 1, it is possible to modify
γk to make it valid. Let us now focus on the vertices {e1, ..., ek}
(recall that each of them has exactly k incident edges). If for some
i 6= j we have that γk(ei) = γ(ej), the statement is true. Con-
versely, since ek is the only one in Cke not connected to a, it must
hold that γk(a) = γk(ek). (See Figure 3, right-hand-side.) But
this implies that γk(ek) = γk(b), which completes the proof.

We are now ready the complete the proof of our main result.

LEMMA 2. For each fixed h > 1, problem ∃-NASH over
Ch[1, 0/±, sym] is NP-complete.

PROOF. Fix some h > 1. Let k = 2h. We provide a reduction
from kCOL-kINV to ∃-NASH where, for each agent i, dom(i) =
{x1, ..., xh}. Consider a k-invalid graph Hk = (V,E), and let D
collect all the vertices of V with k incident edges. We construct
from Hk the social environment G = (V ′, E′, κ) where each u ∈
V is a dissenter, and where each u ∈ D is connected both to the
conformist agent u+ and to the complete graph Ck−2

u = (Vu, Eu)
of dissenters. See Figure 4 for an example. More precisely, (1)
V ′ = V −∪V +, where V − = V ∪

⋃
u∈D Vu and V + = {u+ | u ∈

D}; (2) E′ = E ∪ Ec ∪ {{u, u+} | u ∈ D} ∪
⋃
u∈D Eu, where

Ec = {{u, uj} | u ∈ D and 1 6 j 6 k − 2}; (3) i ∈ V ′ implies
G0
i = {(

∨
j6h xj , 0)}; (4) i ∈ V + implies G1

i = {(>, 1)}, while
i ∈ V − implies G1

i = {(>,−1)}. Let I = {I1, ..., Ik} be all the
interpretations over {x1, ..., xh}. For notational convenience, we
also use I as colors for Hk.

(⇒) From a valid k-coloring γ : V → I of Hk we construct
a stable profile Π for G. For each u ∈ V , Πu = Πu+ = γ(u).
To guarantee stability, for each u ∈ D and for each interpretation
I 6= Πu, at least one of the other 2k − 2 neighbors of u must be
mapped to I . Let J = {γ(v) | {u, v} ∈ E}. In the worst case,
|J | = 1. But since Πu 6∈ J , then the interpretations not already
associated to the neighbors of u are at most k−2. But these can be
safely associated to the agents in Vu. See Figure 4 (left-hand-side).

(⇐) We prove the contrapositive. Since G contains a supergraph
of Hk, any profile Π of G necessarily maps two connected agents

Figure 5: Gadgets of Lemma 2 and Theorem 9 resp., for k = 4.

u and v to the same interpretation. And by Lemma 1 we can as-
sume that the number of edges incident to u in Hk is k. Hence u
has in total 2k − 1 neighbors in G. Assume now that Π is stable.
Necessarily, Πu = Πu+ = Πv . This imposes that, for each inter-
pretation I 6= Πu, at least two of the other 2k − 3 neighbors of u
must be mapped to I . But this is not possible since there are k − 1
interpretations and we would need at least 2k − 2 neighbors. See
Figure 4 (right-hand-side).

This completes the proof of Theorem 8.

5.3 Hardness results for arbitrary environments
We now move to analyze the case where no restriction at all is

considered on the underlying network topologies. In fact, a simple
consequence of the above elaboration is stated below.

COROLLARY 1. For each fixed h > 0, problem ∃-NASH over
Ch[1, 0/±, arb] is NP-complete.

The result can be further strengthened by focusing on autonomous
and dissenter agents only (with gradient 0/−).

THEOREM 9. For each fixed h > 0, problem ∃-NASH over
Ch[1, 0/−, arb] is NP-complete.

PROOF SKETCH. The proof is an adaptation of the one of Theo-
rem 8. Regarding the reduction from the 2-colorability of 3-uniform
hypergraphs, the set [n] is enriched by the set of nodes {u′′′e | u ∈
e and e ∈ E}. Moreover, for each ue ∈ [n], the (undirected) edges
{ue, u′e}, {u′e, u′′e} and {u′e, u} are replaced by the (directed) edges
(ue, u

′
e), (u′e, u

′′′
e ), (u′′′e , u

′′
e ), (u′′e , u

′
e), and (u, u′e). (The edges in

the triangles remain undirected.) Finally, for each i ∈ [n], formula
(x, 0) belongs to G0

i and formula (>,−1) belongs to G1
i . See Fig-

ure 6 for an example. The gadget on the left hand side is extracted
from Figure 2, while the one on the right is the new one. Both gad-
gets admit a stable profile iff node u and ue have the same color.

Regarding the reduction from kCOL-kINV given in the proof of
Lemma 2, we need similar tricks. Consider some k = 2h. For
each node u ∈ D, each agent u+ is replaced by an agent u−, and
k − 1 extra agents, say u1, ..., uk−1, are added. All new agents
are adaptable dissenters. Agents u1, ..., uk−1 form a symmetric
clique. Moreover, for each i ∈ {1, ..., k − 1} we add the extra
directed edges (u, ui) and (ui, u

−). See Figure 5 for an example
when k = 4. The extra agents, as dissenters, try to get different
colors, which force u− to have the same color with u.

COROLLARY 2. For each fixed h > 0, problem ∃-NASH over
Ch[∞, 0/−, arb] is NP-complete.

We conclude our analysis with a reduction from the satisfiability
of 3-CNF Boolean formulas, which proves the following result. In
particular, we construct an environment where, for each i ∈ [n],
dom(i) = {x, y} and agent i is a conformist. Moreover, we exploit
a gadget, inspired by the one given in [31], that is stable if and only
if the given formula is satisfiable.
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Figure 6: Gadget in Theorem 8 vs. gadget in Theorem 9.

THEOREM 10. For each fixed h > 1, problem ∃-NASH over
Ch[∞, 0/+, arb] is NP-complete.

PROOF SKETCH. We reduce 3SAT to ∃-NASH where, for each
i ∈ [n], dom(i) = {x, y} and agent i is a conformist. Given a 3-
CNF formula φ = c1 ∧ ... ∧ cm with dom(φ) = {z1, . . . , zk}, we
construct the social environment G = (V,E, κ) as follows. First,
for each i ∈ V , G1

i = (>, 1). For each variable z ∈ dom(φ), we
add to G the gadget given in Figure 7, where the weighted formulas
refer to the goalbases of degree 0.

This gadget is stable iff the interpretations of vz and v¬z are in-
compatible. For each clause c = `1∨`2∨`3 we add to G the gadget
given in Figure 8 (still weighted formulas refer to the goalbases of
degree 0), inspired by the one given in [31].

Thus, φ is satisfiable iff G admits a stable profile. In particular,
a profile Π of G is stable only if each of the triangles (of vertices
ca, cb and cc) given in Figure 8 is stable, which can happen only if
each Πc maps both x and y to >. But this means that necessarily,
for some ` of c, the value of x in Πv` is true (this intuitively means
that clause c is satisfied) and uc(Π) > 4. Otherwise if, for each `
of c, the value of x in Πv` is false, then uc(Π) = 3 and Πc could
be changed to map x to ⊥ and y to > to have uc(Π) = 5. Finally,
we observe that one can add harmless variables to show that the
statement holds for each h > 2.

Figure 7: First gadget in the proof of Theorem 10.

6. DISCUSSION AND CONCLUSION
We have proposed and studied a setting for analyzing influence

phenomena over social networks, where the reasoning capabilities
of the agents are modeled via weighted propositional logic. More-
over, it shares the perspective of the work by [5], by allowing to
deal with expressed opinions differing from innate ones (see Exam-
ple 2). In fact, the setting studied in that work (adopting generalized
discrete preferences) is very close to our class Ch[∞, 0/+, sym].
Both of them admit convergent Nash dynamics only, and are able to
reason about internal beliefs and social constraints. However, that

Figure 8: Second gadget in the proof of Theorem 10.

approach uses monotone non-decreasing real functions by assum-
ing exactly one belief for agent, while we offer a more logic-based
approach that admits multiple beliefs, even though our utility func-
tions are more specific. Another recent study sharing some features
with our formalization is the one by [22]. There, propositional logic
is used to model the opinions of the agents, but there is no differ-
ence between expressed opinions and innate ones. Indeed, agents
are not associated with utility functions and the diffusion process
does not follow Nash dynamics. In addition, convergence processes
are studied w.r.t. the topologies of the underlying graphs rather than
w.r.t. the knowledge bases of the agents.

Our results include a thorough complexity analysis precisely iso-
lating those scenarios for which Nash equilibria can be easily com-
puted (and Nash dynamics are guaranteed to converge). Avenues
of further research naturally include the study of well-known game-
theoretic concepts in our setting, such as the price of anarchy and
stability. Moreover, our results are mainly focused on linear agents
but it would be interesting to conduct a similar analysis for agents
of degree 2. Indeed, concave functions are powerful functions
which have been already recognized as an important class [34]. In
particular, they can capture autonomous, conformist and dissenter
agents, and may also represent inflation phenomena: the utility of
an agent normally behaving as a conformist can decrease if she gets
too many partners (hence, exceeding the value where the parabola
has its maximum).

Finally, the paper has now precisely charted the tractability fron-
tier for reasoning on social environments. Hence, it would be rele-
vant to focus on the maximal tractable subclass identified in Section
5.1 by pairing our results with machine learning techniques –aimed
to discover the attitudes of linear agents based on their logged in-
teractions. This way, one can assess the ability of these classes to
predict evolutions in (portions of) real-world social environments,
such as Facebook or Twitter.
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