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ABSTRACT
Various voting rules (or social choice procedures) have been
proposed to select a winner from the preferences of an en-
tire population: Plurality, veto, Borda, Minimax, Copeland,
etc. Although in theory, these rules may yield drastically
different outcomes, for real-world datasets, behavioral so-
cial choice analyses have found that the rules are often in
perfect agreement with each other! This work attempts to
give a mathematical explanation of this phenomenon.

We quantify the gap between the outcomes of two vot-
ing rules by the pairwise margin between their winners. We
show that for many common voting rules, the gap between
them can be almost as large as 1 when the votes are unre-
stricted. As a counter, we study the behavior of voting rules
when the vote distribution is a uniform mixture of a small
number of multinomial logit distributions. This scenario
corresponds to a population consisting of a small number of
groups, each voting according to a latent preference rank-
ing. We show that for any such voting profile on g groups,
at least 1/2g fraction of the population prefers the winner
of a Borda election to any other candidate.
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1. INTRODUCTION
A common and natural way to aggregate preferences of

agents is through an election. In a typical election, we have
a set of candidates and a set of voters, and each voter re-
ports his preference about the candidates in the form of a
vote. We will assume that each vote is a ranking of all the
candidates. The purpose of voting, especially in the con-
text of democratic forms of government, is to aggregate the
preferences or opinions of individuals and process them to
produce a single opinion, which purportedly will be an ac-
curate reflection of the views of the electorate. A voting rule
selects one candidate1 as the winner once all voters provide

1In this work, we focus throughout on single-winner voting
systems, although aggregation rules that produce an entire
ordering is also of course extensively studied.
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their votes. Determining the “best” possible voting rule is
the fundamental question.

The issue of course is what one means by the “best”. The
trouble was first formally pointed out by Marquis de Con-
dorcet in 1785 through the following example. Suppose there
are three candidates A,B,C. One can construct a situation
where 2/3 of the voters prefer A over B, 2/3 prefer B over
C, and 2/3 prefer C over A. This issue of intransitivity
is often called a ‘social choice paradox’, because no matter
which candidate is elected, a majority of voters will be dis-
appointed. Thus, in a precise sense, no good voting rule
exists!

However, it turns out that there is almost no empirical ev-
idence of the Condorcet paradox in actual survey or ballot
data [12, 13]! This is in spite of results from social choice
theory [5, 7, 15, 6, 9, 20] which conclude that intransitiv-
ity is very likely in the impartial culture distribution. The
impartial culture distribution is a voting profile where all
possible rankings among the candidates are present in equal
proportions. In other words, if there are m candidates, 1/m!
fraction of the population vote π where π is any ranking
among the candidates. The aforementioned empirical stud-
ies clearly imply that this widely studied assumption in the
theoretical literature must not be close to being true in re-
ality.

A different stream of results in social choice theory show
that there exist no voting rule (except dictatorship) which
simultaneously satisfies a set of desired axioms. Examples
of such results are Arrow’s celebrated Impossibility Theorem
[2] and the Gibbard-Satterthwaite Theorem [8, 18]. These
are rather pessimistic results which rule out a priori benign
assumptions about the voting rules. Naturally, researchers
were led to comparative analysis of different voting rules in
an axiomatic framework. It is known that different voting
rules satisfy different subsets of axioms, and in fact, voting
rules can often be characterized by the axioms they satisfy.
In particular, there exist preference profiles for which differ-
ent voting rules produce different winners. Saari has shown
that in there is a voting profile over 10 candidates such that
over 84 million different rankings can be generated just by
using scoring rules! In some of these rankings, a candidate
is a winner whereas in others, the same candidate is in the
last position.

But again, behavioral social choice analyses have found
that in many real-world datasets, all the common rules very
often agree with each other in their outcome! As Regenwet-
ter et al discuss in their survey [14], “the theoretical liter-
ature may promote overly pessimistic views about the like-
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lihood of consensus among consensus methods. Axiomatics
highlight that competing methods cannot universally agree
with each other.” They posit that more study needs to be
done to understand the properties of real-world distributions
of preferences.

2. OUR CONTRIBUTION
We ask how different can the outcomes of two voting rules

be when applied on the same preference profile. The natural
way to compare two outcomes a and b is to look at their
pairwise margin i.e., the fraction of the population who vote
for a over b. For randomized voting rules (lotteries), we look
at the expected margin between the two outcomes.

Our first contribution is to determine that if the preference
profile is allowed to be arbitrary, then the margin between
the outcomes of common voting rules may reach nearly 1.
Almost all of the population can side with one voting rule
versus another. Thus, at least among common voting rules,
no rule beats another over the set of all profiles.

Our second contribution is to examine the outcomes of
voting rules when the voter preferences are generated by a
latent preference model [17]. The population is viewed as
consisting of distinct groups, and an individual in group i
votes independently according to a probability distribution
Di on votes. Subsequently, the preference of the population
as a whole can be associated with a distribution over votes.
Analogous to the “low rank” assumption made in inferential
statistics, we assume that the number of groups is small.
More precisely, the votes are drawn i.i.d. from a mixture
of multinomial logit (MNL) models. An MNL model on m
candidates is described by a non-negative real vector param-
eter w = (w1, . . . , wm) called the score vector and outputs
a profile as follows. Make candidate i the top-ranked with
probability wi/(

∑m
j=1 wj). Let i1 be the chosen candidate.

Then, if i 6= i1, candidate i is the second-ranked with prob-
ability wi/(

∑
j 6=i1

wj), and so on. The MNL model was

introduced independently by Thurstone [19], Bradley and
Terry [4] and by Zermelo [21] (see also [10]). The mixture
of MNL models has been studied previously in the context
of inference and learning [1, 11].

We show that if the population is a mixture of two groups,
then Condorcet cycles cannot exist, no matter the score vec-
tors. This result is false for 3 groups. We then examine the
behavior of common voting rules on mixtures of multinomial
logits. We find that if the number of groups is constant, then
no matter the score vectors, there will always be a constant
fraction of the population who prefers the Borda winner to
any other candidate. In particular, if the number of groups
is g, then the margin between the Borda winner and any
other candidate is at least 1/2g. The same holds for Plural-
ity, Minimax and Copeland voting rules. In contrast, even
over profiles generated according to MNL on 2 groups and 3
candidates, some candidate other than the 2-approval voting
rule winner can be preferred by almost all of the population.

We also look at the margin between winners of various
voting rules on on real election data. We used a slice of
the Netflix Prize [3] dataset containing only those instances
that do not contain a Condorcet winner. We obtained this
from the ED-00029 dataset at http:///www.preflib.org.
The non-existence of Condorcet winners means that we are
able to obtain non-trivial gaps between Condorcet consistent
rules also. We find that in this data, the winner of a deter-
ministic variant of the maximal lottery rule (see [16]) beats

all others. Schulze and Minimax always agree, and they beat
Borda, Copeland and Plurality. Borda beats Copeland and
Plurality, and Copeland beats Plurality.

3. COMPARING VOTING RULES OVER AR-
BITRARY PROFILES

We define the gap between voting rules R1 and R2 with
respect to a preference profile Π as:

Definition 1.

GapΠ(R1, R2) = E[M(R2(Π), R1(Π))]

where the expectation is over the randomness of the voting
rule and M is the margin matrix. If C is a collection of
voting profiles, the gap between voting rules R1 and R2 over
C is: GapC(R1, R2) = maxΠ∈C GapΠ(R1, R2)

Though for any particular profile Π, GapΠ(·, ·) is anti-
symmetric, there may not be such symmetry in GapC(·, ·).
For a collection of voting profiles C, we informally say that
rule R2 beats rule R1 over C ifGapC(R1, R2) > GapC(R2, R1).

We determined that the gap value is close to 1− 2
m

(where
m is the number of candidates) between common voting
rules like Plurality, Borda, Copeland, Minimax and Schulze.

4. MIXTURE OF MULTINOMIAL LOGITS

4.1 Condorcet Winners
Theorem 1. For any uniform mixture of two MNL mod-

els with score vectors (x1, . . . , xm) and (y1, . . . , ym), there
are no Condorcet cycles.

The uniform mixture among three groups with score vectors
(0.42, 0. 161, 0.477),(0.42, 0. 161, 0.477) and (0.308, 0.377,
0.103) has a Condorcet cycle among the three candidates.
However, heuristically speaking, cycles seem to be less com-
mon (over random score vectors) in the mixture of MNL
model than in the impartial culture model.

4.2 Loss of voting rules
For a voting rule R, we quantify the worst possible gap

between R and another rule as its loss. Precisely:

Definition 2. The Loss of a voting rule R with respect
to a preference profile Π is defined as:

LossΠ(R) = max
x

(M(x,R(Π))

where R is deterministic voting rule and R(Π) denotes the
winner of voting rule R. The Loss of the voting rule R over
C is LossC(R) = max

Π∈C
LossΠ(R).

In contrast to our findings in Section 3, for voting profiles
generated over a uniform distribution of MNL models, the
loss of many common voting rules is bounded away from 1.

Theorem 2. For voting profiles generated from a uni-
form mixture of g MNL models, the Loss of the Plurality,
Borda, Minimax, Copeland voting rules is at most 1−1/(2g).

However, even with the distributional assumption, the gap
can be close to 1 for other voting rules.

Lemma 1. For voting profiles generated from a uniform
mixture of 2 MNL models, the Loss of the 2-approval voting
rule is 1.
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