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1. INTRODUCTION
Multi-armed bandit (MAB) algorithms [3] are widely used

in sequential decision making where the decisions are mod-
eled as arms. Mechanism design has been applied in the
context where the arms are controlled by strategic agents,
leading to stochastic MAB mechanisms. An immediate ex-
ample is sponsored search auctions (SSA). In SSA, there
are several advertisers who wish to display their ads along
with the search results generated in response to a query
from an internet user. There are two components that are
of interest to the planner or the search engine, (1) stochas-
tic component : click through rate (CTR) of the ads or the
probability that a displayed ad receives a click (2) strategic
component : valuation of the agent for every click that the
agent’s ad receives. The search engine wants to allocate a
slot to an ad which has the maximum social welfare (prod-
uct of click through rate and valuation). However neither
the CTRs nor the valuations of the agents are known. This
calls for a learning algorithm to learn the stochastic compo-
nent (CTR) as well as a mechanism to elicit the strategic
component (valuation).

For single slot SSA, it is known that any truthful, de-
terministic MAB mechanism suffers a regret of Ω(T 2/3) [2]
where T is the time horizon. We observe that the character-
ization provided by Babaioff et al. [2] targets the worst case

scenario. In particular, in the lower bound proof of Ω(T 2/3),
they consider an example scenario where the separation, ∆̄,
between the expected rewards of the arms is a function of
T . We note that when a similar example (∆̄ = T−1) is used
with the popular UCB algorithm [1], the number of pulls to
the sub-optimal arm is linear, even in the non-strategic case.
Hence, learning algorithms targeting such worst case scenar-
ios are restrictive for a practical implementation, even when
the arms are non-strategic. Motivated by this, our contri-
butions are as follows.

Contributions
(1) We observe that in most MAB scenarios, the separation
between the agents’ rewards is rarely a function of T , and
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when the rewards of the arms are arbitrarily close, the re-
gret contributed by such sub-optimal arms is negligible. We
exploit this fact to allow the center to specify the resolution,
∆, with which the agents must be distinguished. We intro-
duce the notion of ∆-Regret to formalize this regret.
(2) Using SSA as a concrete example, we propose a domi-
nant strategy incentive compatible (DSIC) and individually
rational (IR) MAB mechanism with a deterministic alloca-
tion and payment rule, based on ideas from the UCB fam-
ily of MAB algorithms. The proposed mechanism ∆-UCB
achieves a ∆-regret of O(log T ).

2. THE MODEL: SINGLE SLOT SSA
Let [K] be the set of agents or arms with cardinality K.

Each of the K arms, when pulled, give rewards from distri-
butions with unknown parameters. In SSA, the rewards of
the arms correspond to clicks. The clicks for the advertise-
ments are assumed to be generated from Bernoulli distribu-
tions with unknown parameters µ1, µ2, . . . , µK where µi is
the CTR of ad i. Our notations are provided in Table 1.

A mechanism M = 〈A, P 〉 is a tuple containing an allo-
cation rule A and a payment rule P . At every time step t,
the allocation rule acts on a bid profile b of the agents as
well as click realization ρ and allocates the slot to one of
the K agents, say i. Then A(b, ρ, t) = i. The payment rule
P t = (P t

1 , P
t
2 , . . . , P

t
K). The allocation as well as payments

in round t only depends on the click histories till t. The
reader may refer to [2] for more details on click realization.

Let i∗ be the arm with the largest social welfare, that

is, i∗ = arg maxi∈[K]{Wi
∆
= µivi}, W∗ = maxi∈[K] Wi. We

denote by It the agent chosen at time t as a shorthand for
A(b, ρ, t). For any given ∆ > 0, define the set S∆ = {i ∈
[K] : W∗ −Wi < ∆}. S∆ is the set of all agents separated
from the best arm i∗ with a social welfare less than ∆. Being
indistinguishable, these arms contribute “zero” to the regret.
The center fixes ∆ based on the amount in dollars he is
willing to tradeoff for choosing sub-optimal arms, given he
has only a fixed time horizon T to his disposal. To capture
this more practical notion of regret, we introduce the metric
∆-regret.

∆-regret =

T∑
t=1

(W∗ −WIt)1 [It ∈ [K] \ S∆] (1)

The center suffers a loss only when an agent with a social
welfare greater than ∆ away from W∗ is chosen. ∆-regret
captures this loss. The goal of our mechanism is to select
agents to minimize the ∆-regret.
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Symbol Description
K, [K] No. of agents and agent set
µi CTR of agent i
vi Valuation of agent i for each click
Wi Social welfare when agent i is allocated
ρi(t) Click realization of agent i at time t
vmax Maximum valuation over all agents
bi Bid of agent i
b Bid profile of all agents
b−i Bid profile of all agents except agent i
Ni,t No. of times agent i has been selected till time

t
A(b, ρ, t) Allocation at time t for bid profile b and click

realization ρ
i∗ Agent with maximum social welfare, ideally

must be allocated at every time step
W∗ Social welfare when agent i∗ is allocated
∆ Input parameter by center to indicate the level

at which the agents must be distinguished
S∆ Set of agents whose social welfare is less than ∆

away from i∗. These agents do not contribute
to ∆-regret.

µ̂+
i,t UCB index corresponding to µi at time t

µ̂−i,t LCB index corresponding to µi at time t

µ̂i,t Empirical CTR of agent i estimated from sam-
ples up to time t

P t
i Payment charged to agent i if he is allocated a

slot at time t and he gets a click

Table 1: Notations for the single slot SSA setting

3. OUR MECHANISM: ∆-UCB
The idea in our mechanism ∆-UCB is to explore all the

arms in a round-robin fashion for a fixed number of rounds,
without any payments from the agents. The number of ex-
ploration rounds is fixed based on the desired ∆, specified
by the planner. At the end of exploration, with high prob-
ability, we are guaranteed that the arms not in S∆ are well
separated from the best arm i∗ with respect to their social
welfare estimates.

Further on, for all the remaining rounds, the best arm as
per the UCB estimate of social welfare is chosen. However in
the exploitation rounds, the chosen agent pays an amount
for each click he receives. The amount to be paid by the
agent is fixed based on the well known Vickrey Clark Grove
(VCG) scheme [4]. Note that no learning place in these
rounds and the UCB, LCB indices don’t change thereafter.
We present our mechanism in Algorithm 1.

4. PROPERTIES OF ∆-UCB
We now state the properties satisfied by ∆-UCB regarding

truthfulness and regret. (Proofs are omitted due to space)
At any time step, every agent obtains some utility by par-

ticipating in the mechanism. Let Θi denote the space of bids
of agent i. Let Θ−i = Θ1 × . . . ,×Θi−1 × Θi+1 × . . . × ΘK

denote the space of bids of all agents other than agent i.
We denote by ui(bi, b−i, ρ, t; vi) the utility to agent i at time
t when his bid is bi, his valuation is vi, the bid profile of
the remaining agents is b−i and the click realization is ρ.
All agents are assumed to be rational and are interested in
maximizing their own utilities.

In our setting the utility to an agent i is computed as,

ui(bi, b−i, ρ, t; vi) = (vi − P t
i (b, ρ))Ai(bi, b−i, ρ, t)ρi(t) (2)

Definition 1. Dominant Strategy Incentive Compatible

Algorithm 1 ∆-UCB Mechanism

Input:
T : Time horizon, K: number of agents
∆ : parameter fixed by the center
vmax : Maximum valuation of the agents

Elicit bids b = (b1, b2, . . . , bK) from all the agents
Initialize µ̂i,0 = 0, Ni,0 = 0 ∀i ∈ [K]

u = 8Kv2
max log T/∆2

for t = 1, . . . , u do . Exploration rounds
It = ((t− 1) mod K) + 1 . Round-robin exploration
NIt,t = NIt,t−1 + 1
A(b, ρ, t) = It . Allocate slot to agent It and observe ρIt (t)
µ̂It,t = (µ̂It,t−1NIt,t−1 + ρIt (t))/NIt,t

εIt,t =
√

2 log T/NIt,t

µ̂+
It,t

= µ̂It,t + εIt,t , µ̂−It,t = µ̂It,t − εIt,t
µ̂+
i,t = µ̂+

i,t−1, µ̂
−
i,t = µ̂−i,t−1 ∀i ∈ [K] \ {It}

P t
i (b, ρ) = 0 ∀i ∈ [K] . Free rounds

end for
î∗ = arg maxi∈[K] µ̂

+
i,ubi

j = arg maxi∈[K]\{̂i∗} µ̂
+
i,ubi

P = µ̂+
j,ubj/µ̂

+

î∗,u
for t = u+ 1, . . . , T do . Exploitation rounds
A(b, ρ, t) = î∗
P t
î∗

(b, ρ) = P × ρî∗ (t) . Agent pays only for a click

P t
i (b, ρ) = 0 ∀i ∈ [K] \ {̂i∗}
µ̂+
i,t = µ̂+

i,u, µ̂−i,t = µ̂−i,u ∀i ∈ [K] . No more learning

end for

(DSIC) [2]: A mechanism M = 〈A, P 〉 is said to be dom-
inant strategy incentive compatible if ∀i ∈ [K], ∀bi ∈ Θi,
∀b−i ∈ Θ−i, ∀ρ, ∀t, ui(vi, b−i, ρ, t; vi) ≥ ui(bi, b−i, ρ, t; vi).

Definition 2. Individually Rational (IR): A mechanism
M = 〈A, P 〉 is said to be individually rational if ∀i ∈ [K],
∀b−i ∈ Θ−i, ∀ρ, ∀t, ui(vi, b−i, ρ, t; vi) ≥ 0.

Theorem 3. ∆-UCB mechanism is dominant strategy in-
centive compatible (DSIC) and individually rational (IR).

Lemma 4. Social Welfare UCB index: For an agent i, we
define the social welfare UCB indices for agent i as,

Ŵ+
i,t = µ̂i,tvi + εi,tvi = µ̂i,tvi +

√
2v2

i log T/Ni,t (3)

Ŵ−i,t = µ̂i,tvi − εi,tvi = µ̂i,tvi −
√

2v2
i log T/Ni,t (4)

Then, ∀t P
({
ω : Wi /∈ [Ŵ−i,t(ω), Ŵ+

i,t(ω)])
})
≤ T−4.

Lemma 5. For an agent i and time step t, let Bi,t be

the event Bi,t = {ω : Wi /∈ [Ŵ−i,t, Ŵ
+
i,t]}. Define the event

G =
⋂
t

⋂
i∈[K]

Bc
i,t, where Bc

i,t is the complement of Bi,t. Then

P (G) ≥ 1− 1/T 2.

Theorem 6. Suppose at time step t, Nj,t > 8v2
max log T/∆2

∀j ∈ [K]. Then ∀i ∈ [K] \ S∆, Ŵ+
i∗,t > Ŵ+

i,t with high prob-

ability (= 1− 2/T 4).

Theorem 7. If the ∆-UCB mechanism is executed for a
total time horizon of T rounds, it achieves an expected ∆-
regret of O(log T ).
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