
MATe: Multiagent Architecture for Taming e-Devices

(Extended Abstract)
Vladimir Rocha
Escola Politécnica

University of São Paulo
vmoreira@ime.usp.br

Anarosa Alves Franco Brandão
Escola Politécnica

University of São Paulo
anarosa.brandao@usp.br

ABSTRACT
In recent years, an explosive growth has been observed in
the use of wireless devices, mainly due to the decrease in
cost, size, and energy consumption. Researches in the Inter-
net of Things have focused on how to continuously monitor
these devices in different scenarios, such as vehicle, weather,
and biodiversity tracking, considering both scalability and
efficiency while searching and updating their information.
For this, current alternatives use a combination of a widely
recognized method, called data aggregation, and a widely
adopted distributed structure, called Distributed Hash Ta-
ble, which minimize the number of transmissions and save
energy. However, scalability is still a key challenge when the
group comprises a large number of devices. In this paper,
we propose a scalable architecture that distributes the data
aggregation responsibility to the devices of group frontier,
and creates agents to manage groups and the interaction
among them. Experimental results showed the viability of
adopting this architecture if compared to the most widely
used approaches.

Keywords
Multiagent System, IoT, Data Aggregation, DHT

1. INTRODUCTION
The Internet of Things (IoT) is an emerging paradigm for

integrating things (real world devices) to create new value-
added applications [1]. A wide range of value-added tracking
applications (such as in environmental [11], vehicle [9], bio-
diversity [7], and people [2] scenarios) requires continuously
monitoring a large number of devices deployed in some area
of interest.

Current alternatives combine a widely recognized method,
called data aggregation (DA) [4], and a widely used dis-
tributed structure, called Distributed Hash Table (DHT) [10]
to monitor these devices. The method consists in choosing
one device for collecting and managing information from a
group of devices, minimizing the information transmission
and saving energy. The DHT is used for efficiently retriev-
ing the chosen device. However, scalability in the chosen

Appears in: Proc. of the 16th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS 2017),

S. Das, E. Durfee, K. Larson, M. Winikoff (eds.),

May 8–12, 2017, São Paulo, Brazil.
Copyright c© 2017, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

device is still an open issue when the group is composed of
a large number of devices.

In this paper, we propose MATe, a scalable architecture
for discovering and for updating the location for a group of
devices. Negotiation and autonomy are capabilities explored
by the proposed architecture. In that, a multiagent layer was
built above the device layer to deal with scalability while
maintaining the efficiency of current alternatives. In such a
layer, each agent has a goal to improve the global scalability.
For this, we added capabilities to an agent for negotiating
mergings with other agents, for perceiving if it is necessary
to create new agents, and for monitoring the behavior of
devices it is responsible.

2. PROPOSED ARCHITECTURE
The overall architecture, composed of two layers, is shown

in Figure 1. In the device layer, a group of devices forms
a swarm, the devices that bound it are the border, and the
devices at a certain distance from the border are the fron-
tier. Devices in the frontier establish connections1 among
them to decide which ones are responsible for aggregating
and for sending the swarm information to the agent that
manages it (devices d1 and d2 ∈ border B1, and d1, d2 and
d3 ∈ swarm of B1). In the multiagent layer, each agent is
responsible for monitoring the border behavior and inter-
acting with other agents to exchange information about the
borders they monitor. Borders’ behaviors can be of three
types: neutral, splitting or merging. We say that a bor-
der is splitting when it is disconnected (agent a4 interacting
with agent a2 and a3 about B4 border split). On the other
hand, a border is merging when two borders are intersecting
(agent a2 interacting with agent a3 about B2 and B3 bor-
ders merge). A border is neutral if it is neither splitting nor
merging.

In the device layer, to support scalability, only devices di
belonging to the frontier are responsible for executing the
following processes: (D1) updating the location of the bor-
der; (D2) perceiving if the border is splitting; (D3) updating
the connections with other devices; (D4) agentifying the de-
vice.

In D1, each device di is responsible for collecting and
storing the location of its neighbors, and for sending this
information to the agent. Then, this responsibility is rotated
among devices in the frontier. In D2, each device di is
responsible for maintaining the border connected. If some
disconnection occurs, di tries to reconnect the border from

1Channel established when they are in a transmission range.

1716

Figure 1: Overall Architecture.

its neighbors and, if it could not do it, di will notify the
agent that there is a border split. In D3, each device di
must find the devices, located at the swarm, that will be its
neighbors. In D4, when an agent perceives that scalability is
being compromised, it decides that some device it monitors
must be agentified. Note that agentifying a device means
that it remains running as such in the device layer, but it
also acts as an agent in the multiagent layer because it was
empowered with agent capabilities such as negotiation and
autonomy.

In the multiagent layer, each agent a is responsible for ex-
ecuting the following processes: (A1) receiving the location
of the frontier; (A2) perceiving and negotiating about merg-
ings; (A3) perceiving splitting and requesting the device to
agentify; (A4) perceiving scalability issues, requesting the
device to agentify and splitting.

In A1, when the frontier location is received (from D1),
agent a updates the area covered by its swarm’ frontier. In
A2, if the result of interaction between agents ai and aj in-
dicates some frontier intersection, they negotiate and decide
by consensus which one will be responsible for managing the
frontier resulting from the merge. Then, the elected agent
updates its frontier and the other agent is eliminated from
the multiagent layer. In A3 when agent a receives notifica-
tions about the frontier splitting (from D2), it inspects its
frontier in order to evaluate which device must be agentified
(i.e., converted into agent). When the device is agentified
into agent ai (using D4), agents a and ai negotiate about
which one will be responsible for each of the swarms result-
ing from the split. In A4 when agent a perceives that its
scalability is compromised by the number of update requests
(from D1), it decides about splitting its swarm into two in
the same way as A3 does.

3. EXPERIMENTAL RESULTS
We evaluated the efficiency and scalability of the pro-

posed architecture using simulations and measured in terms
of number of messages exchanged by the layers to retrieve
an information. The layers were implemented in Java, us-
ing PeerSim [3] as the simulation framework to evaluate the
protocols developed for the Multiagent and Device layers.

The efficiency experiment measures the system efficiency
when a device is joining it. It compares one of the most
efficient structured solution for distributed systems (DHT)
with MATe. Figure 2(a) shows the number of agents needed
to find a swarm when a device performs a join request. We
observe that, with 300000 agents, our system reaches 9.57
agents, which is approximately the same number of nodes
reached by DHT (9.2 nodes). Note that these numbers are

the same as those theoretically obtained in several DHT im-
plementations [10, 8], which is O(log n). Therefore, MATe
performed as efficient as DHT.

 0

 2

 4

 6

 8

 10

1k 100k 300k 500k

#
 r

e
a
c
h
e
d

agents

DHT
MATe

(a) Efficiency on finding an
agent.

 0

 2000

 4000

 6000

 8000

 10000

100 2k 4k 6k 8k 10k

#
 r

e
q
s
.
s
e
n
t

agents

DHT
MATe

(b) Scalability on using the
frontier.

Figure 2: Efficiency and scalability results.

The scalability experiment measures the system scala-
bility while comparing the number of messages exchanged
among the swarm and the agent using one of the most scal-
able structured solution for distributed systems (DHT) with
MATe. In the experiment, in order to have the frontier of
a swarm, we analyze different swarm shapes, obtained from
running the 2D flocking model defined by Craig Reynolds [5].
In Figure 2(b) we observe that, using the frontier decreases
the number of messages received by the MATe’ agent if com-
pared with current alternatives in which all the devices of
the swarm send the messages to a DHT node. For example,
in a swarm of 10000 devices, our architecture outperforms
other work, just sending 2839 messages instead of 10000 (one
message for each device), which represents a reduction of ap-
proximately 71%, improving scalability.

4. CONCLUSIONS
We presented MATe, a layered architecture that deals

with scalability issues raised in a specific class of distributed
systems whose better solution adopts a combination of dis-
tributed hash table structure and data aggregation method.
For such, MATe gives agent capabilities to DHT nodes to al-
low negotiation and autonomy for addressing the aforemen-
tioned problem. In addition, MATe’s device layer improves
the data aggregation scalability by limiting the responsibil-
ity for collecting, aggregating and sending neighbors infor-
mation to the swarm frontier.

According to the experimental results, using the frontier of
a swarm decreases the number of messages sent to the agent,
increasing its scalability. Also, adding agent responsibili-
ties to a DHT node maintains the efficiency of the structure
while increasing its scalability. We implemented the archi-
tecture in a Video-on-Demand domain [6] and in a moni-
toring flocking behavior environment [7]. Currently, we are
implementing the architecture in an intensive group location
displacement, such as vehicle tracking.

REFERENCES
[1] E. Borgia. The Internet of Things vision: Key

features, applications and open issues. Computer
Communications, 54:1–31, 2014.

[2] K. Li, C. Yuen, and S. Kanhere. SenseFlow: An
Experimental Study of People Tracking. In
Proceedings of the 6th ACM Workshop on Real World

1717

Wireless Sensor Networks, RealWSN ’15, pages 31–34,
New York, NY, USA, 2015. ACM.

[3] A. Montresor and M. Jelasity. PeerSim: A scalable
P2P simulator. In Proc. of the 9th Int. Conference on
Peer-to-Peer (P2P’09), pages 99–100, Seattle, WA,
Sept. 2009.

[4] F. Ren et al. Attribute-Aware Data Aggregation Using
Potential-Based Dynamic Routing in Wireless Sensor
Networks. IEEE Transactions on Parallel and
Distributed Systems, 24(5):881–892, May 2013.

[5] C. W. Reynolds. Flocks, Herds and Schools: A
Distributed Behavioral Model. SIGGRAPH Comput.
Graph., 21(4):25–34, Aug. 1987.

[6] V. Rocha and A. A. F. Brandão. Towards
conscientious peers: Combining agents and peers for
efficient and scalable video segment retrieval for VoD
services. EAAI, 45:180 – 191, 2015.

[7] V. Rocha and A. A. F. Brandão. A Scalable
Multiagent Architecture for Monitoring Biodiversity
Scenarios. In D. Adamatti, editor, Multi-Agent Based
Simulations Applied to Biological and Environmental
Systems, chapter 4. IGI Global, Hershey, PA, 2016.

[8] A. I. T. Rowstron and P. Druschel. Pastry: Scalable,
Decentralized Object Location, and Routing for
Large-Scale Peer-to-Peer Systems. In Proceedings of
the IFIP/ACM International Conference on
Distributed Systems Platforms Heidelberg, Middleware
’01, pages 329–350, London, UK, UK, 2001.
Springer-Verlag.

[9] H. Soleimani and A. Boukerche. SLA: Speed and
Location Aware LTE Scheduler for Vehicular Safety
Applications. In Proceedings of the 13th ACM
International Symposium on Mobility Management
and Wireless Access, MobiWac ’15, pages 13–19, New
York, NY, USA, 2015. ACM.

[10] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-to-peer
Lookup Service for Internet Applications. In
Proceedings of the 2001 Conference on Applications,
Technologies, Architectures, and Protocols for
Computer Communications, SIGCOMM ’01, pages
149–160, New York, NY, USA, 2001. ACM.

[11] A. Zenonos, S. Stein, and N. R. Jennings.
Coordinating Measurements for Air Pollution
Monitoring in Participatory Sensing Settings. In
Proceedings of the 2015 International Conference on
Autonomous Agents and Multiagent Systems, AAMAS
’15, pages 493–501, Richland, SC, 2015. International
Foundation for Autonomous Agents and Multiagent
Systems.

1718

