
A Game Theoretic Approach to Strategy Generation for
Moving Target Defense in Web Applications

Sailik Sengupta, Satya Gautam Vadlamudi∗, Subbarao Kambhampati
Yochan Group, School of CIDSE

Arizona State University
sailiks@asu.edu, gautam.vadlamudi@capillarytech.com, rao@asu.edu

Adam Doupé, Ziming Zhao, Marthony Taguinod, Gail-Joon Ahn
SEFCOM Lab, School of CIDSE

Arizona State University
{doupe, zmzhao, mtaguino, gahn}@asu.edu

ABSTRACT
The present complexity in designing web applications makes
software security a difficult goal to achieve. An attacker can
explore a deployed service on the web and attack at his/her
own leisure. Moving Target Defense (MTD) in web appli-
cations is an effective mechanism to nullify this advantage
of their reconnaissance but the framework demands a good
switching strategy when switching between multiple config-
urations for its web-stack. To address this issue, we pro-
pose the modeling of a real world MTD web application as
a repeated Bayesian game. We formulate an optimization
problem that generates an effective switching strategy while
considering the cost of switching between different web-stack
configurations. To use this model for a developed MTD sys-
tem, we develop an automated system for generating attack
sets of Common Vulnerabilities and Exposures (CVEs) for
input attacker types with predefined capabilities. Our frame-
work obtains realistic reward values for the players (defend-
ers and attackers) in this game by using security domain ex-
pertise on CVEs obtained from the National Vulnerability
Database (NVD). We also address the issue of prioritizing
vulnerabilities that when fixed, improves the security of the
MTD system. Lastly, we demonstrate the robustness of our
proposed model by evaluating its performance when there is
uncertainty about input attacker information.

1. INTRODUCTION
Present day web applications are widely used by busi-

nesses to provide services over the Internet. Oftentimes, sen-
sitive business data is managed by these applications. Vul-
nerabilities in these systems pose serious threats to the con-
fidentiality and integrity of both businesses and users [17].

There exist numerous static (white-box) and dynamic (black-
box) analysis tools for identifying vulnerabilities in a sys-
tem [2, 6]. These have become less effective in present times
due to the increasing complexity of web applications, their

∗Author presently with Capillary Technologies

Appears in: Proceedings of the 16th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2017), S. Das, E. Durfee, K. Larson, M. Winikoff
(eds.), May 8–12, 2017, São Paulo, Brazil.
Copyright c© 2017, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Figure 1: A moving target defense web application
system requires an effective switching strategy.

dependency on downstream technologies, and the limited
development and deployment time [24]. Worse yet, the at-
tackers, with time on their side, can perform reconnaissance
and attack. To address this challenge, we consider a Moving
Target Defense (MTD) based approach [4], which comple-
ments the existing vulnerability analysis techniques through
a defense-in-depth mechanism.

The MTD based approach dynamically shifts a system
over time to increase the uncertainty and complexity for
the attackers to perform probing and attacking [26], while
ensuring that the system is available for legitimate users.
As the window of attack opportunities decreases, the effort
in finding and successfully executing an attack increases.
Moreover, if an attacker succeeds in finding a vulnerability
at one point in time, it may not be exploitable at another
time because of the moving defense system, making the web
application more resilient [19].

Various aspects that support Moving Target Defense ap-
proach such as, using multiple implementation languages,
multiple database instances with synchronization, etc. are
considered in different layers of web application architec-
ture, along with ways to switch between them. However, the
design of good quality switching strategies itself is left as an
open problem (Figure 1). This is key to effectively leverage
various move options—thereby maximizing the complexity
for the attacker and minimizing the damage for the defender.

Our aim in this paper is to design effective switching poli-
cies for movement in the MTD system that maximize the
security of the web application, given the set of compo-

178

nents and configurations of the system which can be “moved
around”, while simultaneously considering realistic costs for
“moving them around”. In web applications, the defender
(leader) deploys a system up-front. The attacker observes
(or follows) the system over time before choosing an attack.
These characteristics motivated us to formulate the MTD
system as a repeated Bayesian Stackelberg Game (BSG)
[20]. For this formulation to be meaningful in real-world ap-
plications, we use real world attack data for our model. We
propose a framework to define attacker types for our game
and automatically generate attack options for each of them
by mining and characterizing Common Vulnerabilities and
Exposures (CVEs). We develop a system that leverages the
knowledge in public attack databases and expertise of sys-
tem administrators for obtaining meaningful game utilities
and switching costs respectively.

For computing the movement policy for the defender, we
initially expected to be able to use existing solvers developed
for physical security systems [18]. Unfortunately, none of
them considered the cost of switching between strategies.
Since this is highly relevant in cyber-security systems, we
had to formulate an optimization problem to consider these
costs when generating strategies.

The increased complexity in an MTD systems exacerbates
the difficulty of prioritizing vulnerabilities that need to be
fixed next. We define this problem formally and propose a
preliminary solution. Lastly, we talk about metrics to mea-
sure the robustness of switching strategies generated by var-
ious models when the uncertainty about attacker types vary
in the real world.

In section 2, we introduce the reader to the different ways
people have tried to address the problem of generating switch-
ing strategies for cyber-security systems. We introduce do-
main terminology related to MTD systems for web appli-
cations in section 3. In section 4, we develop the Bayesian
Game model for this system defining attacker types, attack
classification, rewards generated from security databases and
strategy switching costs. To find an effective switching strat-
egy, we propose a solver that maximizes system security
while accounting for switching costs in section 5. We em-
pirically study the effectiveness and robustness of the strat-
egy generated by our framework in section 6, comparing it
to the state-of-the-art. We also formulate the problem of
identifying critical vulnerabilities and propose a preliminary
solution in section 6. We conclude the paper in section 7,
highlighting promising research directions.

2. RELATED WORK
Although there exists prior work on the design of switch-

ing strategies for MTD systems, most of it is domain spe-
cific. Evaluation of these strategies on real-world MTD sys-
tems for web applications is scarce. We discuss some of
these works, highlighting their limitations in the domain of
web applications, thus motivating the need for our solution.
Existing efforts describe the use of randomized switching
strategies, and show its effectiveness for MTD systems [26].
We empirically demonstrate that our strategy outperforms
this state-of-the-art for web applications, especially when
the cost of switching is negligible.

Attacker-defender scenarios have been modeled earlier as
stochastic games for attack-surface shifting [9]. Other works
model the MTD problem as a repeated game where the de-
fender uses uniform random strategy with the exception that

the same defense configuration is not deployed in two con-
secutive rounds [25]. This work needs an in-depth analysis
of code, which is unrealistic for complex web applications.

Switching strategies for MTD systems based on detection
of probes by attackers are presented by [15]. Unfortunately,
an accurate detection of attacks in web applications is diffi-
cult, if not impossible. Furthermore, such strategies can lead
to a detrimental performance in repeated games if an intel-
ligent attacker biases the system to switch more towards
MTD configurations where the attacker attains higher re-
ward. In [8], the MTD system is modeled as a game called
PLADD, based on FlipIt games [21]. This work assumes that
different agents control the server in different game rounds,
which is impractical for most cyber-security applications,
especially web applications. These techniques also fail to
capture the reconnaissance aspect of the attackers which is
shown to be an important aspect in the attack phase [12].

In [3], a game theoretic leader-follower type approach is
presented for a dynamic platform defense where the strate-
gies are chosen so as to be diverse, based on statistical anal-
ysis rather than being uniformly distributed. They find sim-
ilarity among different configurations of the MTD system,
which is difficult in the domain of web applications. The
work fails to consider the uncertainty in the attacker model
and the costs for switching.

These aspects of uncertainty in the attacker model and
attacker reconnaissance are handled effectively via Bayesian
Stackelberg Games (BSG), making it an appropriate choice
for modeling the web applications domain. Our modeling
could help us leverage the existing solution methods in the
physical security domains [18] and provide scalable and op-
timal switching strategies for cyber-security systems. Un-
fortunately, these works, to our knowledge, do not consider
the cost the defenders incur when asked to switch from a
particular strategy to another. Hence, we propose a solver
that maximizes the defender’s reward and minimizes the
overall cost of switching between web-application configu-
rations. Our solver is essentially an extension of the DOBSS
solver [13]. Although there has been furhter development
since DOBSS, the more recent solvers for BSGs make addi-
tional assumptions about the game structure—either about
the action sets of the defender, or the presence of hierarchi-
cal structure among attacker types [1], which do not hold
for the web application domain.

The use of Common Vulnerabilitiy Scoring System (CVSS)
for rating attacks is well studied in security [7]. We describe
this metric later. CVSS provides a strong backbone for ob-
taining utilities for our game theoretic model. None of the
existing works (to our knowledge) talk about the pragmatic
aspect of prioritizing vulnerabilites in MTD systems. Also,
there does not seem to be any standard metrics to capture
the robustness of strategies generated by a model. We ad-
dress both these issues in the upcoming sections.

3. MTD FOR WEB APPLICATIONS
In this section, we present a brief overview of the web

application domain and its functionality which will be use-
ful for understanding the challenges involved in generating
solution strategies for such systems.
• Configuration – A configuration set for a web applica-
tion stack is denoted as C = C1 × C2 · · · × Cn where there
are n-technological stacks. Here, Ci denotes the set of tech-
nologies that can be used in the i-th layer of the application

179

stack. A valid configuration c is an n-tuple that preserves
the system’s operational goals.

Consider a web application that has two layers (n = 2)
where the first layer denotes the coding language the web-
application was coded in and the second layer denotes the
database that stores the data handled by this application.
Say, the technologies used in each layer are C1 = {Python,
PHP} and C2 = {MySQL, postgreSQL}. A valid configu-
ration can be (PHP, MySQL). The diversity of an MTD
system, which is the number of valid configurations, can be
4 (at max) in this case.
• Attack – Software security is defined in terms of three
characteristics - Confidentiality, Integrity and Availability
[10]. In a broad sense, an attack on a web application is
defined as an act that compromises any of the aforemen-
tioned characteristics. The National Vulnerability Database
(NVD) is a public directory of known vulnerabilities and
exposures affecting all technologies that can be used in a
web application. The Common Vulnerabilities and Exploits
(CVEs) in this database list vulnerabilities and correspond-
ing attacks that can be used to compromise an application
using the affected technology. As each CVE has an exploit
associated with it, we use the terms vulnerability and attack
interchangeably going forward.
• Switching Strategy and its cost – This is a decision
making process for the defender to select the next valid sys-
tem configuration c′ given c as the present system config-
uration (where both c, c′ ∈ C). If pc represents the proba-
bility that c is chosen in a given deployment cycle through
randomization, a switching strategy is f : C → pc where∑
c∈C pc = 1 ∀ pc ∈ [0, 1]. To add to the complexity, the

cost for switching from a configuration c to another con-
figuration c′ can be nontrivial and non-uniform. Thus, the
aim of a good strategy is to maximize the effectiveness of an
MTD system while trying to minimize the cost for switch-
ing. Present state-of-the-art MTD systems use a uniformly
distributed switching strategy (pc = 1/|C|) and assume that
switching between configurations incur a uniform cost [19].

We now develop a game theoretic system to generate switch-
ing strategies for the MTD web application that 1) shows a
uniformly distributed switching strategy is sub-optimal and
2) considers the non-negative non-uniform costs of switching
between different configurations of an MTD system.

4. GAME THEORETIC MODELING
In this section, we model the setup of MTD systems in as

a repeated step Bayesian Game.
• Agents and Agent types – There are (N =) two players
in our game, a defender and an attacker. The set θi is the set
of types for player i (= {1, 2}). Thus, θ1 and θ2 denotes the
set of defender and attacker types respectively. The j−th
attacker type is represented by θ2j .

When an attacker attacks an application, its beliefs about
what (resource/data) is most valuable to the application
owner (defender) remains consistent. Thus, we assume that
the attacker knows that there is only one type of defender
when (s)he attacks a particular web application. Thus, we
have |θ1| = 1.

We consider finite types of attackers. Each attacker type
is defined in our model using a 3 tuple,

θ2i = 〈name, {(expertise, technologies) . . . }, probability〉

where the second field is a set of two dimentional values that

express an attacker’s expertise (∈ [0, 10]) in a technology.
The rationale for using values in this range stems from the
use of Common Vulnerability Scoring System (CVSS) de-
scribed later. Lastly, the set of attacker types have a discrete
probability distribution associated with it. The probability
Pθ2j represents the defender’s belief about the attacker type
θ2j attacking their application. Obviously, the probability
values of all attacker types sum up to one

∑
θ2j∈θ2 Pθ2j = 1.

Note that one can define attacker expertise over a ‘cat-
egory of attacks’ (like ‘BufferOverflowAttacks’) instead of
technology specific attacks. We feel the latter is more realis-
tic for our domain. This definition captures the aspect that
an attacker type can have expertise in a set of technologies.
Since, these attacker types and the probability distribution
over them are application specific, it is defined by a domain
expert and taken as an input to our proposed model. For
instance, a defender using a no-SQL database in all config-
urations of his MTD system, assigns zero probability to an
‘SQL database’ attacker type because none of their attacks
can compromise the security of his present system.

The assumption that the input probability distribution
over all the attacker types can be accurately specified is a
strong one. We later discuss how errors in judgment can
affect the effectiveness of a switching strategy and define a
measure to capture the robustness of the generated policy
in such circumstances.
• Agent actions – We define Aθi as a finite set of actions
available to player i. The defender action set, Aθ1 is a switch
action to a valid configuration, c of the web application.
The maximum number of actions (or pure strategies) for
the defender can ideally be |C1|× |C2| · · ·× |Cn|. This might
be lower since a technology used in layer x might not be
compatible when paired with a technology used in layer y (6=
x) rendering that configuration invalid.

For the attacker, Aθ2 represents the set of all attacks used
by atleast one attacker type. A particular attack a belongs
to the set Aθ2 if it affects atleast one of the technologies used
in the layers for our web application (C1 ∪ C2 · · · ∪ Cn).

We now define a function f : (θ2t, a) → {1, 0} for our
model. The function implies an attack a belongs to an at-
tacker type θ2t’s arsenal Aθ2t(⊆ Aθ2) if the value of the
function is 1. This function value is based on (i) the exper-
tise of the attacker type contrasted with the ‘exploitability’
necessary to execute the attack, and (ii) the attacker’s ex-
pertise in the technology for which the attack can be used.
We provide a concrete definition for the function f after
elaborating on what we mean by exploitability of an attack.

For (almost all) CVEs listed in the NVD database, we
have a six-dimensional CVSS v2 vector representing two
independent scores – Impact Score (IS) and Exploitability
Score (ES). For an attack action a, let ESa (∈ [0, 10]) rep-
resent the ease of exploitability (higher is tougher). Each
attack also has a set of technologies it affects, say T a.

Let us consider the set of technologies an attacker type t
has expertise in is Tt. Now we define the function f as,

f(θ2t, a) =

{
1, iff Tt ∩ T a 6= φ ∧ ESa ≤ expertiset
0 otherwise

Where the condition ESa ≤ expertiset must hold for all
the technologies ∈ Tt ∩ T a.

4.1 Reward values for the Game
Now that we have attack sets for each attacker type, the

180

general reward structure for the proposed game is defined
as follows:

RAa,θ2i,c =

 +xa if a ⊂ υ(c)
−ya if a can be detected or a ⊂ c′
0 otherwise

RDa,θ2i,c =

 −xd if a ⊂ υ(c)
+yd if a can be detected or a ⊂ c′
0 otherwise

where RAa,θ2i,c and RDa,θ2i,c
are the rewards for the attacker

type and the defender respectively, when the attacker type
θ2i uses an attack action a against a configuration c (∈ C).
The function υ(c) represents the set of security vulnera-
bilities (CVEs) that configuration c has. Also, c′ refers to
a honey-net configuration. A honey-net is a configuration
setup with intentional vulnerabilities for trapping attackers.

Note that the reward values when a attacker does not at-
tack (NO-OP action), is zero. Moreover, a defender gets zero
reward for successfully defending a system. We reward him
positively only if he/she is able to reveal some more infor-
mation or catch the attacker without impacting operation
requirements for the non-malicious users. He gets a negative
reward if an attacker successfully exploits his(/her) system.

To obtain reward values for the variables xa, ya, xd and yd,
we make use of CVSSv2 metric. This metric provides the
Impact (IS) and Exploitability Scores (ES), stated above,
which are combined to calculate a third score called Base
Score (BS) [11]. Using these, we now define the following:

xd = −1 ∗ IS
xa = BS

Note that BS considers both the impact and the exploitabil-
ity. When the IS for two attacks are the same, the one that
is easier to exploit gets the attacker a higher reward value.
The ease of an attack can be interpreted in terms of the re-
source and effort spent by an attacker for an attack Vs. the
reward (s)he attains by harming the defender. Although the
robustness of our framework provides provisions for having
yd and ya, detecting attacks on a deployed system or setting
up honey-nets is non-trivial in present web application sys-
tems. Hence, there are no actions where values of yd or ya
are required in our present application.

Before we move on, we describe briefly what security di-
mensions the independent scores (IS and ES) are actually
trying to capture in the context of a real world software
system. For this purpose, we first define the 6 independent
values that generate these scores.
• Access Vector (AV) is dependent on the amount of ac-
cess an attacker needs to exploit a vulnerability. An attack
that needs physical access to a system will have lower score
than one that can be exploited over the Internet.
• Access Complexity (AC) represents the complexity of
exploiting an attack. A buffer overflow attack on an Internet
service is less complex than an e-mail client vulnerability in
which a user has perform attachment downloads followed by
executing it and hence has lower AC value.
• Authentication (Au) level required to execute the at-
tack. If no sign-up account is required to exploit the system,
this value is high. In contrast, if one needs multiple accounts
to exploit the vulnerability, the value is low.
• Confidentiality Impact (C) scores are low if only some
(non-relevant) information gets leaked. Highest impact oc-
curs when say, the entire database is compromised if the
vulnerability is successfully exploited.

• Integrity Impact (I) refers to the attacker’s power to
modify files or behaviour of a system if he executes the ex-
ploit successfully. Higher value indicates more power.
• Availability Impact (A) represents the power of a suc-
cessful exploit to bring down the availability of a system.
A successful Denial of Service (DoS) that brings down an
application server, will have high impact.

From these values, one can obtain the two independent
scores using the following formulas,

ES = 20 ∗ (AV) ∗ (AC) ∗ (Au)

IS = −10.41 ∗ (1− (1− C)(1− I)(1−A))

The CVSS values are generated by security experts across
the globe. A rigorous treatment of how one should come us
with these values can be found in [11].

Our model takes a time range as input. It then parses all
the CVEs (a) from the NVD in that time range to finally
filter out the ones that can affect atleast one of the con-
figurations in our system (a ⊂ υ(ci)). Note that old CVEs
become irrelevant for generating attack sets for a relatively
new MTD system as they either have no effect on the up-
dated versions of the technologies they can affect or have
popular solutions to prevent them when application devel-
opment is going on. For our application, we obtain this input
range from our security experts.

4.2 Switching Cost
The switching costs can be represented by a Kn×n matrix

where the n rows (and columns) denote the n system config-
urations. The cell Kij denotes the cost of switching when the
defender moves from configuration i to configuration j. As
mentioned earlier, the values in K are all non-negative. Our
security experts, who have written the code to automati-
cally move from one configuration to another, hand code
these values in each cell of the martix. We provide some
guidance in choosing these values here and give a concrete
example on how we selected these for our application later.

If there is no common technology between configurations c
and c′ involved in a switch operation, the cost will be large.
Also, switching technologies in a specific layer may incur
more cost than switching technologies in other layers. In
the developed MTD system, we find that switching between
databases incur large costs because the structure of the data
needs to be changed for shifting, and the time required to
copy huge amounts of data from one database to another
must also be accounted for.

The matrix K for our system turns out to be symmetric,
i.e. Kij = Kji ∀ i, j ∈ {1, . . . n}. Also, Kii = 0, which implies
that there is no cost if no configuration switch occurs. Note
that although our security experts think this is the structure
of rewards for the developed system, the modelling is generic
enough to allow for asymmetric costs. Lastly, we choose the
values of Kij in the range [0, 10]. The reason for this upper
bound becomes clear in the upcoming section.

5. SWITCHING STRATEGY GENERATION
In this section, we first introduce the notion of Stackelberg

Equilibrium for our security game, that gives us a defender
strategy that maximizes his reward (and thus the security
of the system). We briefly talk of optimization methods, rel-
evant to our domain, that can produce this. Finally, we in-
corporate the costs of switching into the objective function
and propose our solver.

181

5.1 Stackelberg Equilibrium
The strategy generated for the designed game needs to

capture the reconnaissance aspect. Note that the game starts
only after the defender has deployed the web application,
acting as a leader. This now becomes a repeated game in
which an attacker can observe a finite number of switch
moves and probabilistically learn the switching strategy (since
|C| � ∞) of the defender. Thus, the defender has to select a
strategy that maximizes his reward in this game, given that
the attacker knows his strategy. This is exactly the problem
of finding the Stackelberg Equilibrium in a Bayesian Game
[22]. The resulting mixed strategy is the switching strategy
for the defender. Unfortunately, this problem becomes NP-
hard in our case because of multiple attacker types [5].

Before we find a strong Stackelberg Equilibrium for our
proposed game, we state a couple of well founded assump-
tions we make. Firstly, an attacker chooses a pure strategy,
i.e., a single attack action that maximizes his reward value.
This assumption is popular in prior work on security games
because for every mixed strategy for the attacker, there is
always a pure strategy in support for it [14]. Secondly, we
assume that the pure strategy of an attacker type is not in-
fluenced by the strategy of other attacker types. This is not
limiting for our web application domain since an attacker
type’s attack selection is independent of the attack action
chosen by another type.

To solve for the optimal mixed strategy, one can use the
Decomposed Optimal Bayesian Stackelberg Solver (DOBSS)
[13]. This optimizes the expected reward of the defender over
all possible mixed strategies for the defender (~x), and pure
strategies for each attacker type (~nθ2i) given the attacker

type uncertainty (~Pθ2i). We now define the objective func-
tion of the Mixed Integer Quadratic Program (MIQP).

max
x,n,v

∑
c∈C

∑
θ2i∈θ2

∑
a∈Aθ2i

Pθ2iR
D
a,θ2i,c

xcn
θ2i
a (1)

We observe that solving the MIQP version is more effi-
cient (in computation time and memory usage) than solv-
ing the Mixed Integer Linear Program (MILP) version of
the DOBSS. This can be attributed to the fact that the
MILP formulation results in an increase in the dimensions
of the solution space. Theoretically, the MIQP solves for
|C| +

∑
θ2i∈θ2

∑
aj∈Aθ2i

|aj | variables where as the MILP

solves for |C| ∗
∑
θ2i∈θ2

∑
aj∈Aθ2i

|aj | variables.

Notice that this does not consider that switching costs
between defender strategies. Essentially, this means the for-
mulation assumes that switching costs are uniform.

5.2 Incorporating Switching Costs
As defined in the last section, the cost for switching from

a configuration i to a configuration j can be represented as
Kij . The probability the system is in configuration i and
then switches to configuration j is xi · xj . Thus, the cost
incurred by the defender for a switch action from i to j
is Kij · xi · xj . The expected cost for any switch action is∑
i∈C

∑
j∈C Kij ·xi ·xj . To account for cost, we can subtract

this expression from the objective function of Equation 1
with a cost-accountability factor α (≥ 0) to obtain

max
x,n,v

∑
c∈C

∑
θ2i∈θ2

∑
a∈Aθ2i

Pθ2iR
D
a,θ2i,c

xcn
θ2i
a −α·

∑
i∈C

∑
j∈C

Kij ·xi ·xj

Unfortunately, this results in a Bilinear Mixed Integer Pro-
gramming problem, which is not convex. To ameliorate this

problem, we now introduce new variables wij that essentially
represent an approximate value of xi · xj . We first use the
piecewise linear McCormick envelopes to design a convex
function using these wij-s that estimates a good solution to
this problem [23]. Along with these constrains, we introduce
further constrains which we describe after introducing the
final MIQP convex optimization problem as follows,

max
x,n,v

∑
c∈C

∑
θ2i∈θ2

∑
a∈Aθ2i

Pθ2iR
D
a,θ2i,c

xcn
θ2i
a − α ·

∑
i∈C

∑
j∈C

Kijwij

(2)

s.t.
∑
c∈C

xc = 1 (3)

∑
a∈Aθ2i

nθ2ia = 1 (4)

0 ≤ vθ2i −
∑
c∈C

RAa,θ2i,cxc ≤ (1− nθ2ia)M (5)

wij ≥ 0 ∀ i, j (6)

wij ≤ xi ∀ i, j (7)

wij ≤ xj ∀ i, j (8)∑
j∈C

∑
i∈C

wij = 1 ∀ i, j (9)

∑
j∈C

wij = xi ∀ i (10)

∑
i∈C

wij = xj ∀ j (11)

xc ∈ [0 . . . 1], nθ2ia ∈ {0, 1}, vθ2i ∈ R
∀ c ∈ C, θ2i ∈ θ2, a ∈ Aθ2i

where M is a large positive number. ~nθ2i and vθ2i give the
pure strategy and its corresponding reward for the attacker
type θ2i, and ~x gives the mixed switching strategy for the
defender. (5) solves the dual problem of maximizing rewards
for each attacker type (vθ2i) given the defender’s strategy
which ensures that attackers select the best attack action.
The constrains (6), (7) and (8) represent the McCormick
envelope that provides lower and upper bounds on each wij .

We now introduce more constrains on the values wij rele-
vant to our problem to generate tighter approximations for
the value xi · xj . Since we consider all possible switches,∑
j∈C

∑
i∈C xi · xj = 1. This is enforced by (9). Lastly, for

each i,
∑
j∈C xi · xj = xi · (

∑
j∈C xj) = xi. This is repre-

sented by the constraints (10) and (11).
The optimization problem defined in Equation 2 guaran-

tees a good strategy for the defender in the first round, i.e.,
when the MTD application is being deployed. After that, in
a repeated game, this strategy is going to be sub-optimal
because the wij–s does not take into account the defender’s
decision in the previous round. For this, the expression xi ·xj
would have to be x

(t)
i ·x

(t+1)
j where x

(t)
i = 1 for the i-th con-

figuration that was deployed at time t and 0 for the others.

The variables here are only x
(t+1)
j ∀j, which can easily be

found by solving the following optimization problem,

max
x,n,v

∑
c∈C

∑
θ2i∈θ2

∑
a∈Aθ2i

Pθ2iR
D
a,θ2i,c

xcn
θ2i
a −α·

∑
i∈C

∑
j∈C

Kij ·x
(t)
i ·xj

with the domain constrains and constrains (3), (4) and (5).

This is a convex function since x
(t)
i are constants. Thus, the

defender can now obtain the best strategy for each round.

182

If we now allow the maximum cost of switching to be 10,
we can see that the values for the cost is comparable in
magnitude to the value of the defenders rewards. This helps
us to provide a semantic meaning for the cost-accountability
factor, α. The first term in the objective function seeks to
maximize the defender’s reward, which in turn maximizes
the security of the web application. The second term on
the other hand, seeks to reduce the expected cost of the
switching actions. Thus, if a defender selects a low α value,
(s)he gives more significance to the first term. To provide
a sense to the reader, we later show in the experimental
section, how strategies and reward values are effected with
changing alpha values.

6. EMPIRICAL EVALUATION
The goal of this section is to answer three key questions.

Firstly, does our proposed Bayesian Stackelberg Game (BSG)
model generate better strategies that the state-of-the-art?
Secondly, can we effectively compute the set of critical vul-
nerabilities? Lastly, who are the sensitive attacker types and
how robust is our model?

Test Bed Description
To answer the questions mentioned above, we develop a real
world MTD web application (Figure 1) with 2 layers. The
key idea of applying MTD to web applications requires you
to have several versions of the same system, each written in
either a different language, using a different database, etc.
This diversity is not ubiquitous in legacy web applications,
due to cost, time, and resources required to build several
versions of the same web application. To aid this, we devel-
oped a framework to automatically generate the diversity
necessary for this web application. The current prototype
is able to convert a web application coded in Python to an
equivalent one coded in PHP, and vice versa, as well as a web
application using a MySQL database to an identical version
that uses PostgreSQL, and vice versa. In the future, as more
and more variations are developed, the set of defender’s ac-
tions will increase.

The present set of valid configurations for our system is
C = {(PHP, MySQL), (Python, MySQL), (PHP, postgreSQL),
(Python, postgreSQL)}. The costs for switching between
configurations is shown in Table 1. These cost values gener-
ated are based on the following considerations:
• Switching between different languages while keeping the
same database dialect incurs minimal cost. Workload is pri-
marily rerouting to the correct server with the source code.
• Switching between different database dialects while keep-
ing the same language incurs a higher cost due to the con-
version required for the database structure and its contents.
One also has to account for copying large amounts of data
to the database used in the current system configuration.
• Switching between different database dialects AND differ-
ent languages incur the highest cost due to the combination
of the costs of the database switch as well as the penalty for
rerouting to the correct server with the source code.

The attacker types along with the attack action set size
are defined in Table 2. We mined the NVD for obtaining
CVE data from January, 2013 to August, 2016 to generate
these attack sets. When the stakes of getting caught are too
high for an attacker type, (s)he may choose not to attack.
Hence, we have a NO-OP action for each attacker type.

The optimization problems for the experiments were solved

PHP, Python, PHP, Python,
MySQL MySQL postgreSQL postgreSQL

PHP,
MySQL

0 2 6 10

Python,
MySQL

2 0 9 5

PHP,
postgreSQL

6 9 0 2

Python,
postgreSQL

10 5 2 0

Table 1: Swithing costs for our system

Name
(Technologies,

Prob. |Aθ2i |Expertise)

Script
Kiddie (SK)

(PHP,4),
(MySQL,4)

0.15 34

Database
Hacker (DH)

(MySQL,10),
(postgreSQL,8)

0.35 269

Mainstream
Hacker (MH)

(Python,4),
(PHP,6),
(MySQL,5)

0.5 48

Table 2: Attacker types and attack action counts

using Gurobi on an Intel Xeon E5 2643v3@3.40GHz machine
with 6 cores and 64GB of RAM.

6.1 Strategy Evaluation
We evaluate our method using Bayesian Stackelberg Games

on our real life web application against the Uniform Ran-
dom Strategy (URS), which is the state-of-the-art in such
systems [19]. We plot the values of the objective function
in Equation 2 for both the strategies as α varies from 0 to
1. For URS, we use the exact values of wij = 0.25 ∗ 0.25 =
0.0625 ∀ i, j. The plot is shown in Figure 2. Both are straight
lines because although the value of α changes, the strategy
for URS is same (by definition) and the one generated by
BSG also remains the same. The latter case came as a sur-
prise to us initially. On further investigation, we noticed that
in the formulated game for our web-application, the Stackel-
berg Equilibrium for our application (luckily) coincides with
the least switching cost strategy.

These attacker and defender strategies is shown in Ta-
ble 3 alongwith the value of the defender’s reward (i.e. the
first term in the objective function in Equation 2). Notice
that, not only is the mixed strategy generated by BSG more
secure than URS, it leverages fewer configurations than all
valid configurations |C| = 4 the system has to offer. This re-
sult is consistent with previous work in cybersecurity which
show that number of configurations used is not directly pro-
portional to the amount of security [3].

Studying the effect of α-values
To empirically show that our solver is actually considering
costs of switching, we change the value for switching from
(PHP, postgreSQL) to (Python, postgreSQL) and vice-
versa from 2 (yellow boxes in Table 1) to 10. We plot this
scenario in Figure 3. As soon as α ≥ 0.4, the BSG gener-
ates (0.25, 0.25, 0.25, 0.25) (which is URS) as the most op-
timal strategy. After analysis, we note that this happens
because the most powerful attack actions in the arsenal of
the attacker types are for the systems (PHP, MySQL) and
(Python, MySQL). When, one does not prioritize switch-
ing costs (α ∈ {0, 0.1, 0.2, 0.3}), the system keeps switch-

183

0 0.2 0.4 0.6 0.8 1

−8

−6

−4

α

O
b

j
BSG

URS

Figure 2: Objective function values for Uniform
Random Strategy Vs. Bayesian Stackelberg Game
with switching costs as α varies from 0 to 1.

Method Mixed Defender’s Attack sets
Strategy Reward (SK, DH, MH)

URS (.25, .25, .25, .25) -5
CVE-2016-3477,
CVE-2015-3144,
CVE-2016-3477

BSG (.0, .0, .5, .5) -3.25
CVE-2014-0185,
CVE-2014-0067,
CVE-2014-0185

Table 3: Comparison between the strategies gen-
erated by Uniform Random Strategy (URS) Vs.
Bayesian Stackelberg Game (BSG)

ing between the more secure configurations nullifying the
good attacks of the attackers. As switching costs start to
get more significant (α ∈ {0.4, 0.5, . . . 1.2}), the objective
function value reduces if it sticks to the stronger configura-
tions since switching costs are now high for these. It switches
to the URS in this case. Beyond that, it switches to the
strategy (0.25, 0.5, 0, 0.25) as α keeps on increasing. When
α becomes close to 2, it completely ignores the security of the
system and tries to minimize the switching cost by proposing
the strategy (0.5, 0.5, 0, 0) as the cost for switching between
(PHP, MySQL) and (Python, MySQL) is the least (= 2).

In the bottom of Figure 3, we show the change in the
values of objective function with respect to α. At first, the
BSG generates a better strategy when compared to URS.
When the BSG strategy becomes the same as the URS (for
0.4 ≤ α ≤ 1.2), the objective function value for BSG be-
comes lower than URS. This is not surprising since BSG is
merely trying to estimate the value xi ·xj with the variables
wij , whereas URS is using the exact value. As we increase
α further, we are essentially discouraging switching in an
MTD system since now the cost of switching becomes too
high (URS is not effected by this).

6.2 Identifying Critical Vulnerabilities
In real-world development teams, it is impossible to solve

all the vulnerabilities, especially in a system with so many
technologies. In current software systems, given a set of vul-
nerabilities, a challenging question often asked is which vul-
nerabilities should one fix to improve the security? For an
MTD system, this becomes a tough problem since the de-
fender needs to reason about multiple attacker types – their
probabilities and attack actions. For a given k, the set of k
fixed vulnerabilities which result in the highest gain in de-
fender reward, is termed as the k critical vulnerability set.

To address this problem, we remove each k-sized attack set

0 0.5 1 1.5 2 2.5

0

0.2

0.4

α→

P
(c

o
n
fi
g
u
ra

ti
o
n
=
c)

php mysql

py mysql

php psql

py psql

0 0.5 1 1.5 2 2.5

−15

−10

−5

α→

O
b

j

BSG

URS

Figure 3: Top: Showcases the change in probabili-
ties associated with a particular configuration. Bot-
tom: Objective function values for Uniform Ran-
dom Strategy Vs. Bayesian Stackelberg Game with
switching costs as α varies from 0 to 2.5 when the
cost of switching are as showcased in Table 1 with
the values in the yellow boxes being 10.

k
Critical Objective CPU

Vulnerability sets Value Time

1 {(CVE-2014-0185)} -2.435 3m15s

2
{(CVE-2014-0185,

-1.973 421m27s
CVE-2015-5652)}

Table 4: Most critical vulnerability in the MTD sys-
tem and the time required to generate it.

from the set of all attacks (A′2 = A2 \D ∀ D ⊂ A2 & |D| =
k) and evaluate the objective function (Equation 2). The
sets A′2 that yield the highest objective values, provide the
vulnerabilities D that should be fixed.

We studied this complicated behaviour for some toy ex-
amples. An interesting phenomenon we noticed was that a
k-set critical vulnerabilities (k−CV) is not always a subset
of the (k + 1)−CV [16]. Suppose we want to find 3 vulner-
abilities that we want to fix. Since it is not just a super-set
of the 2-CV, we need to solve this problem from the scratch
with k = 3. Hence, there is going to be combinatorial ex-
plosion here. As the value of k increases, we end up solving
|A′2| =

(|A2|
k

)
MIQP problems to identify the k−CVs.

Critical Vulnerabilities in the Developed System
We start with k = 1 and increase the number of critical
vulnerabilities by one in each step. The result remains the
same for α ∈ [0, 1]. Unfortunately, the brute force approach
and the scalability of algorithms for solving normal extensive
form BSGs proves to be a key limitation. This is unsurpris-
ing since the total number of unique CVEs spread among the
attackers is 287. When k = 3, we end up solving

(
287
3

)
opti-

mization problems, failing to scale in both time and mem-
ory requirement. Thus, we only show critical vulnerabilities
identified up to k = 2 (in Table 4) using α = 0.2.

184

−100 −50 0 50 100

0

1

2
N

L
R

(B
S
G

)
MainstreamHacker(MH)

DatabaseHacker(DH)

ScriptKiddie(SK)

−100 −50 0 50 100

0

5

Varying sensitivity of attacker types (%)

N
L

R
(U

R
S
)

MainstreamHacker(MH)

DatabaseHacker(DH)

ScriptKiddie(SK)

Figure 4: NLR values for BSG and URS genereated
strategies when attacker type probabilities vary
from 0% to 200% of its original value.

At present, we are trying to develop a single MIQP for-
mulation that tries to approximately generate the k-CV set.
To reduce the combinatorial explosion, we plan to use switch
variables that can turn attack actions on and off. This comes
at the cost of increasing the number of variables in the for-
mulated optimization problem.

6.3 Robustness & Attacker Type Sensitivity
It is often the case that a web application administrator

(defender) cannot accurately specify the probability for a
particular attacker type. In this section, we see how this un-
certainty affects the optimal rewards generated by the sys-
tem. We provide a notion for determining sensitive attacker
types and measuring the robustness of a switching strategy.

For each attacker type i, we vary the probability Pθ2i by
±x% (Pnewθ2i

= Pθ2i(1± x
100

)) where x is the sensitivity fac-
tor, which can be varied from a low value to a high value
as needed. Note that now p = Pθ2i × x

100
needs to be dis-

tributed amongst the probabilities of the remaining attacker
types. To make sure that this distribution is done such that
the sensitivity of attacker i actually stands out, we propose
to distribute p amongst the other attacker types using a
weighted model as per their existing probabilities as shown
below. For attacker j (6= i), its new probability would be:

Pnewθ2j
= Pθ2j (1∓

p∑
k(6=i) Pθ2k

) (12)

When x% is subtracted from the probability ~Pθ2i , then the
sign in the above equation becomes positive, and vice-versa.

We now formally define the loss in reward to the de-
fender as the probability distribution over the attacker types
change. Let Ro be the overall reward for the defender when
he uses the mixed strategy for the assumed (and possibly

incorrect) model of attacker type uncertainty (~Pθ2) on the

true model (~Pnewθ2
). Let Rn be the defender’s optimal reward

value for the true model. We compute the Normalized Loss
in Rewards (NLR) for the defender’s strategy as follows:

NLR = Rn−Ro
Rn

(13)

Note that NLR values are ≥ 0. Higher values of NLR rep-
resent more sensitive attacker types. Inaccurate probability

estimates for the sensitive attackers can be detrimental to
the security of our application. Note that lower NLR values
indicate that a generated strategy is more robust.

Evaluation Based on the Developed System
We compute the attacker sensitivity for our system varying
the probability of each attacker type from −100% to +100%
(of its modeled probability) with 10% step sizes. We plot the
results in Figure 4 using Equation 13. The Mainstream and
Database hacker (MH & DH) are the least sensitive attacker
types. The NLR values for both these attackers are 0. This
is the case since the real world attack action used by these
types remain the same even when their probabilities change.
On the other hand, if the probability associated with the
Script Kiddie (SK) is underestimated in our model, we see
that the strategies deviate substantially from the optimal.

In this section, we use α = 0.2. The max NLR for our
BSG strategy is 2.35 Vs. 9 for URS. The average of the 60
NLR values is 0.061 for BSG and 0.88 for URS. These values
indicate our model is more robust to variance in attacker
type uncertainty than the present state-of-the-art.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we propose a method to generate a switching

strategy for real-world web application based on the Mov-
ing Target Defense (MTD) architecture. To find an effec-
tive switching strategy, we model the system as a repeated
Bayesian game. We develop methods to assign attack ac-
tions to attacker types and generate realistic utilities based
on expertise of security professionals. For obtaining real-
world attack data, we mine vulnerabilities in the National
Vulnerability Database (NVD) and obtain utilities based on
the Common Vulnerability Scoring System (CVSS). We for-
mulate an optimization problem which outputs a switching
strategy that maximizes system security while accounting
for switching costs. The generated strategy is shown to be
more effective than the state-of-the-art for a real-world ap-
plication. We also provide metrics that can be used to vali-
date the robustness of switching strategies, absent in litera-
ture for multi-agent cyber-security systems. Lastly, we pro-
pose the problem of identifying critical vulnerabilities and
provide a preliminary solution for the same.

The techniques in this paper are not limited to only web
applications. The attack actions mined from the security
databases relate to all kinds of technologies, like operating
systems, coding languages etc. Hence, the the MTD archi-
tecture should be relevant to any software application.

In the domain of security games, especially cyber-security,
new attack actions are discovered every day. Fixing vulnera-
bilities also invalidate certain attack actions. Moreover, new
configurations and new attack types can change the game
tables substantially. Thus, the defined problem should es-
sentially be a repeated and an evolutionary game where the
game tables need to be updated with time. This makes it
more difficult to design methods that promise globally opti-
mal strategies for the defender. We feel that a combination
of Markov Chain optimization over a short number of moves
and updating game tables in tandem may be an effective ap-
proach. We defer this investigation to future work.

Acknowledgments. This research is supported in part by
ONR grants N00014161-2892, N00014-13-1-0176, N00014-
13-1-0519, N00014-15-1-2027, & the NASA grant NNX17AD06G.

185

REFERENCES
[1] K. Amin, S. Singh, and M. P. Wellman. Gradient

methods for stackelberg security games. In Conference
on Uncertainty in Artificial Intelligence, pages 2–11.
AUAI Press, 2016.

[2] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic,
E. Kirda, C. Kruegel, and G. Vigna. Saner:
Composing static and dynamic analysis to validate
sanitization in web applications. In Security & Privacy
2008. IEEE Symposium, pages 387–401, 2008.

[3] K. M. Carter, J. F. Riordan, and H. Okhravi. A game
theoretic approach to strategy determination for
dynamic platform defenses. In ACM MTD Workshop,
2014, MTD ’14. ACM, 2014.

[4] M. Carvalho and R. Ford. Moving-target defenses for
computer networks. Security Privacy, IEEE,
12(2):73–76, Mar 2014.

[5] V. Conitzer and T. Sandholm. Computing the optimal
strategy to commit to. In Proceedings of the 7th ACM
Conference on Electronic Commerce, EC ’06, pages
82–90, New York, NY, USA, 2006. ACM.

[6] A. Doupé, L. Cavedon, C. Kruegel, and G. Vigna.
Enemy of the state: A state-aware black-box web
vulnerability scanner. In USENIX Security
Symposium, 2012.

[7] S. H. Houmb, V. N. Franqueira, and E. A. Engum.
Quantifying security risk level from cvss estimates of
frequency and impact. JSS, 83(9):1622–1634, 2010.

[8] S. Jones, A. Outkin, J. Gearhart, J. Hobbs, J. Siirola,
C. Phillips, S. Verzi, D. Tauritz, S. Mulder, and
A. Naugle. Evaluating moving target defense with
pladd. Technical report, Sandia National Labs-NM,
Albuquerque, 2015.

[9] P. Manadhata. Game theoretic approaches to attack
surface shifting. In Moving Target Defense II, volume
100 of AIS, pages 1–13. Springer New York, 2013.

[10] J. McCumber. Information systems security: A
comprehensive model. In Proceedings of the 14th
National Computer Security Conference, 1991.

[11] P. Mell, K. Scarfone, and S. Romanosky. Cvss v2
complete documentation, 2007.

[12] H. Okhravi, T. Hobson, D. Bigelow, and W. Streilein.
Finding focus in the blur of moving-target techniques.
Security & Privacy, IEEE, 12(2):16–26, 2014.

[13] P. Paruchuri, J. P. Pearce, J. Marecki, M. Tambe,
F. Ordonez, and S. Kraus. Playing games for security:

An efficient exact algorithm for solving bayesian
stackelberg games. In AAMAS, 2008, 2008.

[14] J. Pita, M. Jain, J. Marecki, F. Ordóñez, C. Portway,
M. Tambe, C. Western, P. Paruchuri, and S. Kraus.
Deployed ARMOR protection: the application of a
game theoretic model for security at the los angeles
international airport. In AAMAS 2008, Industry and
Applications Track Proceedings, pages 125–132, 2008.

[15] A. Prakash and M. P. Wellman. Empirical
game-theoretic analysis for moving target defense. In
ACM MTD Workshop, 2015, 2015.

[16] S. Sengupta, S. G. Vadlamudi, S. Kambhampati,
M. Taguinod, Z. Zhao, A. Doupé, and G. Ahn. Moving
target defense for web applications using bayesian
stackelberg games. CoRR, abs/1602.07024, 2016.

[17] J. Silver-Greenberg, M. Goldstein, and N. Perlroth.
JPMorgan Chase Hacking Affects 76 Million
Households. In The New York Times, 2014.

[18] A. Sinha, T. Nguyen, D. Kar, M. Brown, M. Tambe,
and A. X. Jiang. From physical security to cyber
security. Journal of Cybersecurity, 2016.

[19] M. Taguinod, A. Doupé, Z. Zhao, and G.-J. Ahn.
Toward a Moving Target Defense for Web
Applications. In IEEE IC-IRI, 2015.

[20] S. G. Vadlamudi, S. Sengupta, M. Taguinod, Z. Zhao,
A. Doupé, G.-J. Ahn, and S. Kambhampati. Moving
target defense for web applications using bayesian
stackelberg games. In Proceedings of AAMAS, 2016,
pages 1377–1378, 2016.

[21] M. Van Dijk, A. Juels, A. Oprea, and R. L. Rivest.
Flipit: The game of “stealthy takeover”. Journal of
Cryptology, 26(4):655–713, 2013.

[22] H. Von Stackelberg. Market structure and equilibrium.
Springer SBM, 2010.

[23] D. S. Wicaksono and I. Karimi. Piecewise milp
under-and overestimators for global optimization of
bilinear programs. volume 54, pages 991–1008. Wiley
Online Library, 2008.

[24] D. Wichers. Owasp top-10. OWASP, 2013.

[25] M. Winterrose, K. Carter, N. Wagner, and
W. Streilein. Adaptive attacker strategy development
against moving target cyber defenses.
arXiv:1407.8540, 2014.

[26] R. Zhuang, S. A. DeLoach, and X. Ou. Towards a
theory of moving target defense. In ACM MTD
Workshop, 2014, pages 31–40. ACM, 2014.

186

	Introduction
	Related Work
	MTD for Web Applications
	Game Theoretic Modeling
	Reward values for the Game
	Switching Cost

	Switching Strategy Generation
	Stackelberg Equilibrium
	Incorporating Switching Costs

	Empirical Evaluation
	Strategy Evaluation
	Identifying Critical Vulnerabilities
	Robustness & Attacker Type Sensitivity

	Conclusions and Future Work

