
Infinite-Horizon Proactive Dynamic DCOPs

Khoi D. Hoang†, Ping Hou†, Ferdinando Fioretto‡, William Yeoh†, Roie Zivan�, Makoto Yokoo?
†Department of Computer Science, New Mexico State University, USA

{khoang, phou, wyeoh}@cs.nmsu.edu
‡Department of Industrial and Operations Engineering, University of Michigan, USA

fioretto@umich.edu
�Department of Industrial Engineering and Management, Ben Gurion University of the Negev, Israel

zivanr@cs.bgu.ac.il
?Department of Informatics, Kyushu University, Japan

yokoo@inf.kyushu-u.ac.jp

ABSTRACT
The Distributed Constraint Optimization Problem (DCOP) formu-
lation is a powerful tool for modeling multi-agent coordination
problems. Researchers have recently extended this model to Proac-
tive Dynamic DCOPs (PD-DCOPs) to capture the inherent dy-
namism present in many coordination problems. The PD-DCOP
formulation is a finite-horizon model that assumes a finite hori-
zon is known a priori. It ignores changes to the problem after
the horizon and is thus not guaranteed to find optimal solutions
for infinite-horizon problems, which often occur in the real world.
Therefore, we (i) propose the Infinite-Horizon PD-DCOP (IPD-
DCOP) model, which extends PD-DCOPs to handle infinite hori-
zons; (ii) exploit the convergence properties of Markov chains to
determine the optimal solution to the problem after it has con-
verged; (iii) propose three distributed greedy algorithms to solve
IPD-DCOPs; (iv) provide theoretical quality guarantees on the new
model; and (v) empirically evaluate both proactive and reactive al-
gorithms to determine the tradeoffs between the two classes. The
final contribution is important as, thus far, researchers have exclu-
sively evaluated the two classes of algorithms in isolation. As a
result, it is difficult to identify the characteristics of problems that
they excel in. Our results are the first in this important direction.

Keywords
Distributed Constraint Optimization; Dynamic DCOPs; Stochastic
DCOPs

1. INTRODUCTION
Distributed Constraint Optimization Problems (DCOPs) [17, 21,
34] are problems where agents need to coordinate their value as-
signments to maximize the sum of the resulting constraint rewards.
This model can be applied to solve a number of multi-agent coor-
dination problems including distributed meeting scheduling, coor-
dination of sensors or robots, coalition formation, smart grids, and
smart homes [3, 6, 7, 8, 12, 14, 15, 16, 25, 28, 32, 35]. However,
DCOPs address and solve a single (static) problem as they assume
that the problem does not change over time.

This limiting assumption prompted researchers to propose the
Dynamic DCOP model [22], which is a sequence of (static) DCOPs
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with changes between them. There are a number of algorithms that
handle various changes such as addition/removal of agents [26] or
changes in the topology of the coordination graph [35]. In this
paper, we focus on the problem where only the reward functions
can change. This is a popular Dynamic DCOP variant, and re-
searchers have proposed a number of algorithms to solve it. Dy-
namic DCOP algorithms can be categorized as (1) reactive, which
are online algorithms reacting to the changes of the problem by
solving the DCOP every time such changes occur [22, 26, 33], or
(2) proactive, which are offline algorithms that take into account
prior knowledge on the evolution of the problem when finding so-
lutions. The recently introduced Proactive Dynamic DCOP (PD-
DCOP) algorithms [10] belong to this category.

The PD-DCOP formulation is a finite-horizon Dynamic DCOP
model that assumes a finite horizon is known a priori. It ignores
changes to the problem after the horizon and optimizes the prob-
lems within the horizon only. It is suitable in problems where there
is a deadline (i.e., horizon) after which the problem either ends or
changes to the problem are inconsequential. However, in some ap-
plications, there may not be such a deadline or the deadline is not
known. In such problems, infinite-horizon models are necessary.

Therefore, we (i) propose the Infinite-Horizon PD-DCOP (IPD-
DCOP) model, which extends PD-DCOPs to handle infinite hori-
zons; (ii) exploit the convergence properties of Markov chains to
determine the optimal solution to the problem after it has con-
verged; (iii) propose three distributed greedy algorithms to solve
IPD-DCOPs; (iv) provide theoretical quality guarantees on the new
model; and (v) empirically evaluate both proactive and reactive al-
gorithms to determine the tradeoffs between the two classes. The
final contribution is important as, thus far, researchers have exclu-
sively evaluated the two classes of algorithms in isolation. As a
result, it is difficult to identify the characteristics of problems that
they excel in. Our results are the first in this important direction.

2. BACKGROUND
We now provide background on the regular and dynamic DCOPs as
well as on key Markov chain properties that form the foundations
for our proposed algorithm.

2.1 DCOPs
A Distributed Constraint Optimization Problem (DCOP) [17, 34]
is a tuple 〈A,X,D,F, α〉, where A = {ai}pi=1 is a set of agents;
X = {xi}ni=1 is a set of decision variables; D = {Dx}x∈X is a set
of finite domains and each variable x ∈ X takes values from the set
Dx ∈ D; F = {fi}ki=1 is a set of reward functions, each defined
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over a set of decision variables: fi :
∏
x∈xfi Dx → R+

0 ∪ {−∞},
where infeasible configurations have −∞ rewards, xfi ⊆ X is the
scope of fi, and α : X → A is a function that associates each
decision variable to one agent.

A solution σ is a value assignment for a set xσ ⊆ X of vari-
ables that is consistent with their respective domains. The reward
F(σ) =

∑
f∈F,xf⊆xσ

f(σ) is the sum of the rewards across all
the applicable reward functions in σ. A solution σ is complete
if xσ = X. The goal is to find an optimal complete solution
x∗ = argmaxx F(x).

2.2 Dynamic DCOPs
A Dynamic DCOP (D-DCOP) [22] is a sequence of DCOPs with
changes between them, without an explicit model for how the prob-
lem will change over time. Solving a D-DCOP optimally means
finding a reward-maximal solution for each DCOP in the sequence.
Therefore, this approach is reactive since it does not consider fu-
ture changes. Its advantage is that solving a D-DCOP is no harder
than solving h DCOPs, where h is the horizon of the problem. Re-
searcher have used this approach to solve D-DCOPs, where they in-
troduce a super-stabilizing algorithm that reuses information from
previous searches to speed up its current search [22]. Reactive al-
gorithms are online algorithms by definition.

Alternatively, a proactive approach predicts future changes in
the D-DCOP and finds robust solutions that require little or no
refinements despite future changes in the problem. Recently, re-
searchers have introduced a Proactive D-DCOP (PD-DCOP) for-
mulation that incorporates a switching cost for changing solutions
between subsequent DCOPs and proposed several proactive ap-
proaches to solve this problem [10]. Existing proactive algorithms
are all offline algorithms as they solve the entire sequence of D-
DCOPs before the first change occurs.

Finally, researchers have also proposed other models for D-
DCOPs including one where agents have deadlines to choose their
values [23], a model where agents can have imperfect knowledge
about their environment [13, 19], and a model where changes in the
constraint graph depends on the value assignments of agents [35].

2.3 Markov Chains
A Markov chain [9] is a sequence of random variables
〈x0, x1, . . . , xT 〉, where the transition from state xt−1 to state xt

depends exclusively on the previous state. More formally,

Pr(xt = j | xt−1 = i, xt−2 = r, . . . , x0 = s)

= Pr(xt = j | xt−1 = i) (1)

for all time steps t > 0. We use Pr to denote the probability mea-
sure.

A Markov chain with a finite state space is said to be time-
homogeneous if the transition Pr(xt = j | xt−1 = i) is identical
for all time steps t. We use the time-invariant notation of Pij to
denote such transitions.

A time-homogeneous Markov chain with a finite state space con-
verges to a stationary distribution (i.e., the probability distribution
of the random variable no longer changes over all states) when:

πt−1 · P = πt = π∗ (2)

where πt = [πt1, . . . , π
t
M ] is the probability distribution at time t

over M states in the chain and P is the transition matrix where
each element Pij in the matrix is the time-homogeneous transition
probability from state i to state j.

A state j is said to be accessible from i, denoted by i → j, if
there exists a sequence of t-step transitions (t ≥ 1) such that:

Pr(xt = j | x0 = i) > 0 (3)

We use the notation P tij = Pr(xt = j | x0 = i) to denote the
probability of such transitions. Two states i and j communicate,
denoted by i ↔ j, if both states are accessible from each other. A
class C of communicating states is a non-empty set of states such
that each state i ∈ C in the class communicates with every other
state j ∈ C in the class but does not communicates with any state
j /∈ C outside the class. The period of a state i, denoted by d(i),
is the greatest common divisor (gcd) of the time steps t for which
P tii > 0.

d(i) = gcd{t : P tii > 0} (4)

The state is said to be aperiodic if it has period d(i) = 1, and
periodic if d(i) > 1. In finite-state time-homogeneous Markov
chain, all states in the same class have the same period. If all the
states of a Markov chain form a single class, then that chain has the
period of that class.

A state i is said to be recurrent if it is accessible from all states
j that are accessible from i. In other words, i → j implies j → i.
Otherwise, it is transient. All states in the same class are either re-
current or transient. A class of states are said to be ergodic if they
are both recurrent and aperiodic. A unichain is a chain that con-
tains a single recurrent class and may be some transient states. A
unichain is called ergodic unichain if the recurrent class is ergodic.

In this paper, we consider the case where each Markov chain is
guaranteed to converge to a unique stationary distribution π∗ given
any initial distribution. Specifically, the Markov chain should fol-
low one of the following conditions (from strict to loose condi-
tions): (i) Pij > 0 for all states i and j, (ii) all states are in one
single class and they are ergodic, (iii) the Markov chain is an er-
godic unichain [9]. Throughout the paper, we interchangeably use
the terms converged distribution and stationary distribution.

3. IPD-DCOP MODEL
At a high level, the Infinite-Horizon Proactive Dynamic DCOP
(IPD-DCOP) model is a straightforward, but essential and signif-
icant, extension of the PD-DCOP model. Both IPD-DCOP and
PD-DCOP models assume that a finite horizon h is given. How-
ever, PD-DCOPs ignore all changes to the problem after its finite
horizon h and, thus, do not optimize for them, while IPD-DCOPs
assume that the Markov chains will converge to stationary distribu-
tions after that horizon and an optimal solution for those stationary
distributions should be adopted after the horizon. Since both mod-
els are similar, we follow and use the same PD-DCOP notations to
describe IPD-DCOPs.

Formally, an IPD-DCOP is a tuple
〈A,X,Y,D,Ω,F, p0

Y,T, h, c, α〉, where:
• A = {ai}pi=1 is a set of agents.
• X = {xi}ni=1 is a set of decision variables, which are variables

controlled by the agents.
• Y = {yi}mi=1 is a set of random variables, which are variables

that are uncontrollable and model stochastic events (e.g., traffic,
weather, malfunctioning devices).
• D = {Dx}x∈X is a set of finite domains of the decision vari-

ables. Each variable x ∈ X takes values from the set Dx ∈ D.
• Ω = {Ωy}y∈Y is a set of finite domains of the random variables

(e.g., different traffic conditions, weather conditions). Each vari-
able y ∈ Y takes values from the set Ωy ∈ Ω.
• F = {fi}ki=1 is a set of reward functions, each defined

over a mixed set of decision and random variables: fi :
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∏
x∈X∩xfi Dx×

∏
y∈Y∩xfi Ωy → R+

0 ∪{−∞}, where xfi ⊆
X ∪Y is the scope of fi and infeasible value combinations for
the variables in xfi have −∞ rewards.
• p0

Y = {p0
y}y∈Y is a set of initial probability distributions for the

random variables y ∈ Y.
• T = {Ty}y∈Y is a set of transition functions Ty : Ωy × Ωy →

[0, 1] for the random variables y ∈ Y, describing the probability
for a random variable to change its value in successive time steps.
For each time step t > 0 and values ω, ω′ ∈ Ωy , Ty(ω, ω′) =
Pr(yt=ω′|yt−1 =ω), where yt denotes the value of the variable
y at time step t. Thus, Ty(ω, ω′) describes the probability for the
random variable y to change its value from ω at time step t − 1
to ω′ at time step t. Note that Ty(ω, ω′) is identical for every
time step. Finally,

∑
ω′∈Ωy

Ty(ω, ω′) = 1 for all ω ∈ Ωy .
• h ∈ N is the horizon where the agents solve the problem with

stationary distributions and keep the same solution onwards. It is
guaranteed to maximize the expected reward from h onwards to
the infinite horizon. In general, it is preferred that h = ∞ so as
not to impose restriction on when agents are allowed to change
their values.
• c ∈ R+

0 is a switching cost, which is the cost associated with the
change in the value of a decision variable from one time step to
the next.
• α : X → A is a function that associates each decision variable

to one agent. We assume that the random variables are not under
the control of the agents and are independent of decision vari-
ables. Thus, their values are solely determined according to their
transition functions.

Throughout this paper, we refer to decision (resp. random) vari-
ables with the letter x (resp. y). We also assume that each agent
controls exactly one decision variable (thus, α is a bijection), and
that each reward function fi ∈ F is associated with at most one
random variable yi.1

As agents will keep their optimal solution from horizon h on-
wards, the goal of an IPD-DCOP is to find a sequence of h + 1
assignments x̄∗ for all the decision variables in X:

x̄∗ = argmax
x̄=〈x0,...,xh〉∈Σh+1

F(x̄) (5)

F(x̄) =

h∑
t=0

F t(xt) (6)

−
h−1∑
t=0

[
c ·∆(xt,xt+1)

]
(7)

where Σ is the assignment space for the decision variables of the
IPD-DCOP at each time step, ∆ : Σ×Σ → {0} ∪ N is a func-
tion counting the number of assignments to decision variables that
differs from one time step to the next.

Equation (6) refers to the reward optimization for each time step:

F t(xt) = F tx (xt) + F ty (xt) (8)

F tx(x) =
∑

fi∈F\FY

fi(xi) (9)

F ty(x) =
∑
fi∈FY

∑
ω∈Ωyi

fi(xi|yi=ω) · ptyi(ω) (10)

where xi is an assignment for all the variables in the scope xfi of
the function fi, xi|yi=ω indicates that the random variable yi ∈
xfi takes on the event ω ∈ Ωyi , FY = {fi ∈ F | xfi ∩Y 6= ∅}
1If multiple random variables are associated with a reward function,
w.l.o.g., they can be merged into a single variable.

is the set of functions in F that involve random variables, ptyi(ω)
is the probability for the random variable yi to assume value ω at
time t:

ptyi(ω) =

{∑
ω′∈Ωyi

pt−1
yi (ω′) · Tyi(ω′, ω) if t < h

p∗yi(ω) if t = h
(11)

where p∗yi(ω) is the stationary distribution of random variable yi
taking on value ω, and p∗yi is the solution of the following system
of linear equations. For each ω ∈ Ωyi :∑

ω′∈Ωyi

p∗yi(ω
′) · Tyi(ω

′, ω) = p∗yi(ω) (12)

and p∗yi is a probability vector:∑
ω∈Ωyi

p∗yi(ω) = 1 (13)

In this paper, we assume that each Markov chain is guaranteed to
converge to a unique stationary distribution π∗ given any initial
distribution.

Note that at horizon h, agents solve the problem with the station-
ary distribution of random variables and keep this optimal solution
onwards. This would maximize the expected reward at each time
step after the distributions have converged to the stationary distri-
bution. If choosing any other assignment, then, it will result in a
smaller reward (see Theorem 3).

Finally, Equation (7) considers the penalties due to the changes
in the decision variables’ values during the optimization process.

4. IPD-DCOP ALGORITHMS
In general, IPD-DCOPs can be solved in an online or offline man-
ner. Online approaches have the benefit of observing the actual val-
ues of the random variables during execution and can thus exploit
these observations to improve the overall solution quality. How-
ever, the downside to online approaches is that they may have a lim-
ited amount of time to find a solution as the problem may change
rapidly. Offline approaches, on the other hand, have the benefit of
having sufficient time to take into account all possible changes to
the problem. However, the finite horizon h needs to be known a
priori or pre-determined before execution. Offline approaches may
seek to find open-loop solutions, which are solutions that do not
depend on observation of the actual values of the random variables
during execution, or closed-loop solutions, which are solutions that
do depend on such observations. IPD-DCOP solutions are open-
loop solutions by definition as they do not depend on observations
(see Equation (5)). It is possible to find closed-loop solutions as
well, and one such type of solutions are MDP policies. Readers
are refered to Section 6 for a discussion on how MDPs and their
variants relate to IPD-DCOPs.

As the changes from PD-DCOPs to IPD-DCOPs are straightfor-
ward, one can modify existing PD-DCOP algorithms, which are all
offline algorithms, to solve IPD-DCOPs. We also introduce three
new greedy algorithms, called FORWARD, BACKWARD, and HY-
BRID to solve IPD-DCOPs. FORWARD can be implemented as ei-
ther an offline or online algorithm, BACKWARD is an offline algo-
rithm, and HYBRID is an online algorithm. The fact that we intro-
duce online proactive algorithms is important as it allows us to em-
pirically evaluate and compare the empirical performance of online
proactive algorithms and online reactive algorithms. Comparisons
between proactive and reactive algorithms have never been done, to
the best of our knowledge, and a better understanding of the prob-
lem characteristics that each algorithm type excels in is important.
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4.1 PD-DCOP Algorithm Extensions
As PD-DCOP algorithms solve finite-horizon problems, one can
extend them to solve IPD-DCOPs offline. To fully understand these
extensions, familiarity with PD-DCOP algorithms may be neces-
sary. Due to the lack of space, we only briefly elaborate on them
here and refer the reader to the original PD-DCOP paper [10]. Two
PD-DCOP algorithms that we extend and later compare against are
S-DPOP and LS-SDPOP. S-DPOP ignores the switching costs be-
tween subsequent DCOPs and solves each DCOP in the dynamic
problem optimally. LS-SDPOP is a local search algorithm that first
runs S-DPOP to find an initial PD-DCOP solution, and then itera-
tively improves the solution by incorporating switching costs.

The key changes to extend these algorithms to solve IPD-DCOPs
are as follows: (1) Find the stationary distribution of the random
variables in the problem; and (2) Solve the problem at horizon h
with this stationary distribution and adopt it at that time step. De-
tails for these changes are described in Step 1 of the FORWARD
algorithm in the next subsection. Aside from these changes, all
other components of the algorithms remain unchanged. Note that
we solve the problem at horizon h with the stationary distribution
so that we can guarantee that we are adopting the optimal solution
at the infinite horizon.

4.2 FORWARD
We now introduce FORWARD, a distributed greedy algorithm to
solve IPD-DCOPs. We will first introduce FORWARD as an offline
algorithm that solves IPD-DCOPs within a given amount of time.
We summarize below the high-level ideas for this algorithm:
• STEP 1: It assumes that the Markov chains of all the random

variables will converge to their own stationary distributions and
searches for an optimal DCOP solution for these stationary dis-
tributions.
• STEP 2: It greedily solves the IPD-DCOP one time step at a

time starting from the initial time step t = 0. In other words,
it successively solves the DCOP for each time step starting from
t = 0. When solving each DCOP optimally, it takes into account
the switching costs of changing values from the solution in the
previous time step.
• STEP 3: If it is about to run out of time (e.g., it can only solve

the DCOP for the current time step h − 1 before it terminates),
it also takes into account the switching costs of changing values
from the solution in the current time step to the solution for the
converged distribution.
Therefore, it can potentially have different solutions for all time

steps 0 ≤ t < h, and incurring switching costs if the solutions are
different, but the solutions for all subsequent time steps t ≥ h will
be the optimal solution for the stationary distribution.

STEP 1: Observe that the m random variables in the IPD-DCOP
form m independent Markov chains since the transition function
Ty ∈ T of each random variable y ∈ Y is independent of the tran-
sition functions for the other random variables. Furthermore, these
Markov chains are time-homogeneous – the transition functions are
identical for all time steps – and has finite state spaces – the domain
of each random variable y is a finite set Ωy ∈ Ω. In this paper, we
assume that all the Markov chains will converge to a unique station-
ary distribution given any initial distribution [9]. The computation
of the unique distribution for each random variable y, computed us-
ing a system of linear equations (Equations (12) and (13)), can be
done independently by each agent a that controls the decision vari-
able x that is constrained with random variable y. In other words,
the computation for random variable y is performed by the agent a
such that ∃x ∈ X, f ∈ F : y ∈ xf ∧ x ∈ xf ∧ α(x) = a.

Once the stationary distribution for each random variable is
found, the agents run a pre-processing step to reformulate the con-
straint between decision and random variables into constraints be-
tween decision variables only. Specifically, for each constraint
f ∈ FY between decision variables x and a random variable y
(i.e., scope xf = x∪{y}), the following new constraint is created:

Fh(x) =
∑
ω∈Ωy

f(x|y=ω) · p∗y(ω) (14)

where p∗y(ω) is the probability of random variable y having state ω
in the stationary distribution. Note that the new scope of this new
constraint is exclusively the decision variables x only. After this
pre-processing step, they run a complete DCOP algorithm to find
an optimal solution given the converged distribution of the random
variables.

STEP 2: The agents optimally solve each sub-problem associated
with time steps t (0 ≤ t < h) using a complete DCOP algorithm.
However, before solving each DCOP, they run a pre-processing
step, where they (1) reformulate the constraint between decision
and random variables similar to Step 1, and (2) capture the cost of
switching values between time steps in new unary constraints of
decision variables. Similar to Step 1, for each constraint f ∈ FY
between decision variables x and a random variable y, the follow-
ing new constraint is created for each time step 0 ≤ t < h:

F t(x) =
∑
ω∈Ωy

f(x|y=ω) · pty(ω) (15)

where pty(ω) is the probability of random variable y in state ω at
time step t.

To capture the cost of switching values across time steps, for
each decision variable x ∈ X, the following new unary constraint
is created for each time step 0 < t < h− 1:

Ct(x) = −c ·∆(xt−1, xt) (16)

After these pre-processing steps, the agents repeatedly run a
complete DCOP algorithm to successively solve the DCOPs from
time step t = 0 onwards.

STEP 3: Finally, if there is only enough time to complete one more
complete DCOP run, before the run, the agents also incorporate
the switching cost from the current solution to the solution for the
converged distribution as unary constraints in a pre-processing step:

Ch−1(x) = −c ·
(

∆(xh−2, xh−1) + ∆(xh−1, x∗)
)

(17)

where h − 1 is the current time step and x∗ is the value of the
variable x in the solution for the converged distribution of random
variables.

Finally, to change FORWARD from the above offline version to
an online version, it simply skips Step 3 as it will never run out of
time. Since it skips Step 3, it will continue to greedily solve each
time step indefinitely. Therefore, there is also no need to run Step
1 as it will never assume that the Markov chains have converged.

4.3 BACKWARD
Instead of greedily solving the IPD-DCOP one time step at a time
forward starting from t = 0 towards the horizon, one can also
greedily solve the problem backwards from t = h towards the first
time step. The BACKWARD algorithm implements this key differ-
ence. It too has the similar three steps of FORWARD with small
differences:
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• STEP 1: Both algorithms solve the problem at horizon t = h
first with stationary distribution.
• STEP 2: While FORWARD successively solves each sub-problem

from horizon t = 0 forwards, BACKWARD successively solves
each sub-problem from horizon t = h − 1 backwards. At time
step t, while FORWARD takes into account the switching cost
from the solution in the previous time step t − 1, BACKWARD
takes into account the switching cost to the solution in the next
time step t + 1. Specifically, before solving each sub-problem
optimally, BACKWARD runs a pre-processing step by creating a
unary constraint for each time step 0 ≤ t ≤ h− 1 as (15) and:

Ct(x) = −c ·∆(xt+1, xt) (18)

• STEP 3: The key difference occurs when both algorithms solve
the last sub-problem. For FORWARD, it solves the last sub-
problem at t = h− 1 and considers the switching cost from the
solution at t = h−2 as well as the switching cost to the solution
at t = h (optimal solution for the stationary distribution). On
the other hand, BACKWARD solves the problem at t = 0 while
taking into account the switching cost to the solution at t = 1.

4.4 HYBRID
Finally, HYBRID is a combination between the proactive FOR-
WARD algorithm and reactive algorithms. Similar to FORWARD,
HYBRID greedily solves the problem from the first horizon t = 0
onwards. The difference is that it will observe the values of the
random variables at each time step t ≥ 0, and take that informa-
tion into account when computing the probability distribution of the
random variables in the next time step. It then solves the problem
for the next time step with the updated probability distributions,
thereby finding better solutions than the FORWARD algorithm.

5. THEORETICAL RESULTS
Let Fy(x) denote the reward of a DCOP where the random
variables are assigned y and the decision variables are assigned
x; x∗ denote the optimal assignment of decision variables for
the converged distribution of random variables. Then, Fy

∆ =
maxx∈Σ Fy(x) − Fy(x∗) is the largest possible solution qual-
ity loss for assigning x∗; and β = Πy∈Y minω,ω′ Ty(ω, ω′) is the
smallest probability for transitioning between two joint states y and
y′ of the joint random variables in Y.

THEOREM 1. When β > 0, the error between the optimal solution
qualities of an IPD-DCOP with horizon h and an IPD-DCOP with
horizon∞ is bounded from above by:

c · |X|+
∑

y∈
∏
y∈Y Ωy

(1− 2β)h

2β
Fy

∆

PROOF SKETCH: First, given a random variable y, the following
inequality holds if the Markov chain converges to the stationary
distribution p∗y [9]. For a given ω ∈ Ωy:

|T ty(ω′, ω)− p∗y(ω)| ≤ (1− 2α)t

for all ω′ ∈ Ωy , where T is the transition matrix and α =
minω,ω′ Ty(ω, ω′).

As T ∗ and T t are the stationary transition matrix and the transi-
tion matrix at time step t, respectively:

p0
y · T ∗ = p∗y

p0
y · T t = pty

For ω ∈ Ωy:

p∗y(ω) =
∑
ω′∈Ωy

p0
y(ω′) · T ∗y (ω′, ω)

pty(ω) =
∑
ω′∈Ωy

p0
y(ω′) · T ty(ω′, ω)

|p∗y(ω)− pty(ω)| = |
∑
ω′∈Ωy

p0
y(ω′) · (T ∗y (ω′, ω)− T ty(ω′, ω))|

= |
∑
ω′∈Ωy

p0
y(ω′) · (p∗y(ω)− T ty(ω′, ω))|

≤
∑
ω′∈Ωy

p0
y(ω′) · |(p∗y(ω)− T ty(ω′, ω))|

≤
∑
ω′∈Ωy

p0
y(ω′) · (1− 2α)t

≤ (1− 2α)t

where T ∗y (ω′, ω) = p∗y(ω) for all ω′ ∈ Ωy . Similarly, with y ∈∏
y∈Y Ωy , we have:

δtY(y) = |p∗Y(y)− ptY(y)| ≤ (1− 2β)t

Then, the solution quality loss for assigning x∗:

F t∆ =
∑

y∈
∏
y∈Y Ωy

δtY(y) · Fy
∆

≤
∑

y∈
∏
y∈Y Ωy

(1− 2β)t · Fy
∆

Next, let x̂∗ = 〈x̂∗0, . . . , x̂∗h〉 be the optimal solution for DCOPs
from time step 0 to h, x̄∗ = 〈x∗0, . . . ,x∗h〉 be the optimal solution
given x∗h = x∗, and let x̌∗ = 〈x̌∗0 = x̂∗0, x̌

∗
1 = x̂∗1, . . . , x̌

∗
h−1 =

x̂∗h−1, x̌
∗
h = x∗h = x∗〉. We then have the following solution qual-

ities:

U+ =

h∑
t=0

F t(x̂∗t )−
h−1∑
t=0

[c ·∆(x̂∗t , x̂
∗
t+1)]

U =

h∑
t=0

F t(x∗t )−
h−1∑
t=0

[c ·∆(x∗t ,x
∗
t+1)]

U− =

h∑
t=0

F t(x̌∗t )−
h−1∑
t=0

[c ·∆(x̌∗t , x̌
∗
t+1)]

As x̄∗ is the optimal solution for the IPD-DCOP and x̌∗h = x∗h =
x∗, so U− ≤ U . Moreover, x̌∗t = x̂∗t for all time step between 0
and h− 1, so we have:

U+ − U ≤ U+ − U− =
[
Fh(x̂∗h)−Fh(x∗)

]
− [c ·∆(x̂∗h−1, x̂

∗
h)− c ·∆(x̌∗h−1,x

∗)]

and:

c ·∆(x̂∗h−1, x̂
∗
h)− c ·∆(x̌∗h−1,x

∗) ≤ c · |X|

Moreover, Fh(x̂∗h) − Fh(x∗) is the reward difference at time
step h for applying x∗. So, it is bounded by Fh∆:

Fh(x̂∗h)−Fh(x∗) ≤ Fh∆

The error bound is U+ − U ≤ Fh∆ + c · |X|. In addition, from
t = h+ 1 to∞, sum of the error bounds is

∑∞
t=h+1 F

t
∆.
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Summing up the two error bounds for 0 → h and h + 1 → ∞,
we get:

Fh∆ + c · |X|+
∞∑

t=h+1

F t∆ = c · |X|+
∞∑
t=h

F t∆

and:
∞∑
t=h

F t∆ =

∞∑
t=h

 ∑
y∈

∏
y∈Y Ωy

δtY(y) · Fy
∆


≤

∑
y∈

∏
y∈Y Ωy

∞∑
t=h

(1− 2β)t · Fy
∆

≤
∑

y∈
∏
y∈Y Ωy

(1− 2β)h

2β
Fy

∆

Then, the bound can be rewritten as:

c · |X|+
∑

y∈
∏
y∈Y Ωy

(1− 2β)h

2β
Fy

∆

2

THEOREM 2. Optimally solving an IPD-DCOP with a horizon
that is polynomial (exponential) in |X| is PSPACE-complete
(PSPACE-hard).

PROOF SKETCH: Similar to the complexity proof of PD-
DCOPs [10], there exists a naive depth-first search to solve IPD-
DCOPs with horizon h, where the algorithm requires linear space
in the number of variables and horizon length. Also, one can re-
duce a satisfiability of quantified Boolean formula (QSAT) to an
IPD-DCOP with h = 1. If the time horizon h is only polynomial
in the size of |X|, solving PD-DCOPs is PSPACE-complete. If the
time horizon h is exponential in the size of |X|, solving PD-DCOPs
is PSPACE-hard. 2

THEOREM 3. From time step h onwards, adopting the optimal so-
lution for the stationary distribution, instead of any other solution,
will maximize the expected reward from that time step onwards.

PROOF SKETCH: As p∗y is the stationary distribution of random
variable y and it is also the converged distribution:

lim
t→∞

pty = p∗y (19)

p∗y · T = p∗y (20)

After convergence, as p∗y does not change for every y ∈ Y, the
optimal solution for the successive DCOPs remain the same. Let
h∗ be the horizon when the stationary distribution converges, x∗

be the optimal solution, x′ be any sub-optimal solution, and F∗(x)
be the quality of solution x for the regular DCOP with stationary
distribution. As the stationary distribution at h∗ is the actual distri-
bution at h∗, the solution x∗ is optimal for DCOP at h∗ and also
optimal for all DCOPs from h∗:

F∗(x∗) > F∗(x′) (21)

The difference in quality between two solutions for DCOPs after
h∗ is:

∆∞h∗ =

∞∑
t=h∗

[
F∗(x∗)−F∗(x′)

]
(22)

As the difference in solution quality from h to h∗ is finite, it is dom-
inated by ∆∞h∗ = ∞. In other words, if the solution at time step is
x′, the accumulated expected reward is smaller than the expected
reward with optimal solution x∗. 2

6. RELATED WORK
There is a large body of work on dynamic DCOPs, which we sum-
marized in Section 2.2. Among them, the PD-DCOP model [10] is
the one that is most closely related to ours. There are two key dif-
ferences. The first is that IPD-DCOPs model infinite-horizon prob-
lems while PD-DCOPs model finite-horizon problems. As such,
the IPD-DCOP solution at the last time step h (after which the
solution does not change) is one that is optimized for the (con-
verged) stationary distribution of random variables p∗yi(ω) (see
Equations (10) and (11)). In contrast, the PD-DCOP solution at
the last time step (after which the problem is assumed to no longer
change) is one that is optimized for the actual distribution of ran-
dom variables at that time step.

The second difference is in the objective functions. IPD-DCOPs
optimize the expected cumulative undiscounted reward function
(see Equations (6) and (7)) while PD-DCOPs optimize the expected
cumulative discounted reward function, where the reward at time
step t is discounted by a discount factor γt < 1. While it is possi-
ble to extend the objective of PD-DCOPs to the undiscounted case,
we believe that for infinite-horizon problems, optimizing the ex-
pected undiscounted reward fits more naturally with many multi-
agent applications, where achieving a goal in a future time step is
as important as achieving it in the current time step. For example,
in a sensor network application, detecting an intruder next week
should not be any less valuable than detecting an intruder today. In
some cases, optimizing the undiscounted reward is harder and the
motivation for using discounted utilities is mostly a convenience,
not a better match with the real objective. It is well known that dis-
count factors are often selected arbitrarily despite the fact that they
could affect the final policy [11].

Like PD-DCOPs, IPD-DCOPs are also related to Dy-
namic/Mixed/Stochastic CSPs [27, 29, 30] as well as to Dec-
(PO)MDPs [1, 2, 20, 31]. The generality of Dec-POMDPs would
allow them to represent (I)PD-DCOPs. For example, their goal of
finding closed-loop solutions subsume open-loop solutions. Fur-
ther, they assume very general transition functions, while IPD-
DCOPs assume that the transition functions are independent of the
agents’ decisions. However, as discussed in the original PD-DCOP
paper, such generality is achieved at the cost of a high complexity
– solving Dec-POMDPs optimally is NEXP-hard for finite-horizon
problems and undecidable for infinite-horizon problems [2]. On the
other hand, IPD-DCOPs are PSPACE-hard/complete (Theorem 2).

Additionally, due to the high complexity of Dec-POMDPs, they
are typically solved in a centralized manner [1, 2, 4, 5]. In contrast,
the specialization of the IPD-DCOP model allows it to computa-
tionally exploit the specific structures of the model and to solve it
in a decentralized manner. IPD-DCOPs also exploit the conver-
gence properties of Markov chain, which cannot be done if transi-
tion functions are affected by the agents’ decisions.

Thus, one ought to view IPD-DCOPs as a model between
DCOPs and Dec-POMDPs, which we hope is a step towards greater
synergy between these two research fields. In fact, researchers have
proposed ND-POMDPs [18], which combine elements of the two
models. However, ND-POMDPs share the same worst-case com-
plexity as regular Dec-POMDPs.

Additionally, a new area that is related to IPD-DCOPs is the
work on (PO)MDPs and their decentralized models using the
average-reward criterion [24]. Both IPD-DCOPs and these Marko-
vian models optimize the expected reward at each time step after
the random variables have converged. However, IPD-DCOP solu-
tions also optimize the cumulative reward before the random vari-
ables are assumed to have converged while average-reward solu-
tions do not.
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(a) Switching Cost = 10
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(b) Switching Cost = 1,000
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(c) Switching Cost = 100,000

Figure 1: Comparison between Offline Proactive Algorithms

7. EXPERIMENTAL RESULTS
As IPD-DCOPs can be solved in an offline or online manner, we
perform empirical evaluations for both settings. In contrast to many
experiments in the literature, our experiments are performed in an
actual distributed system, where each agent is an Intel i7 Quadcore
3.4GHz machine with 16GB of RAM, connected in a local area
network. We thus report actual distributed runtimes.

Experiment with Offline Algorithms: We empirically evalu-
ate all the offline algorithms: The offline version of FORWARD,
BACKWARD, and two PD-DCOP algorithms (S-DPOP and LS-
DPOP) [10] that we adapt to solve IPD-DCOPs. Figure 1 shows
the results, where we varied the switching cost c of the problem
from 10 to 100,000. We used the following settings for the prob-
lem: |A| = |X| = |Y| = 8, where each agent owns exactly one
decision variable, and each decision variable is constrained with
exactly one random variable; |Dx| = |Ωy| = 3 for all decision
variables x and random variables y; constraint density p1 = 0.5;2

and h = 5. The initial probability distributions for the random
variables and their transition functions are randomly generated and
then normalized.

Each of the three scatter plots normalized rewards (y-axis),
where we normalize the rewards with the largest reward over all
instances in all three plots, and runtimes (x-axis) of the three algo-
rithms on 100 instances. We make the following observations:
• When the switching cost is small (c = 10), the agents have little

incentive to keep their values and will change them to the ones
that gain the largest rewards. Thus, all four algorithms find solu-
tions of similar quality in the same amount of time.
• As the switching cost increases (c = 1, 000), S-DPOP finds

worse solutions since it does not take into account switching
costs. Thus, LS-SDPOP is able to make iterative improvements,
resulting in better solutions but at the cost of larger runtimes.
Also, S-DPOP, FORWARD, and BACKWARD start to differ in
their solutions and runtimes, but without any statistically signif-
icant differences.
• When the switching cost is large (c = 100, 000), BACKWARD

finds the best solutions, followed by FORWARD. The reason is
the following: At each time step t, BACKWARD only needs to
consider the switching cost between two solutions: its solution
for the current time step t and the solution at time step t + 1.
In contrast, FORWARD needs to consider the switching cost be-
tween three solutions at time step h − 1: its solution for the
current time step h − 1, the solution at time step h − 2, and the
solution at time step h. Therefore, FORWARD may have greed-
ily chosen bad solutions at time step h − 2 that incur very high
switching costs regardless of the solution at time step h−1. This

2p1 is the density of functions between two decision variables.

time step0 1 2

time0 ms 500 ms 1000 ms

ONLINE
FORWARD

ONLINE
REACTIVE

HYBRID

Figure 2: Search Time vs. Solution Adoption Time

case is exacerbated when the switching costs are very high. In
such a case, the optimal solution may be that the solution for
the converged solution be adopted for all time steps from t = 0
onwards. BACKWARD is able to take this factor into account
while FORWARD is not able to do so since it does not consider
the optimal solution at the converged solution when searching
for solutions at time steps t = 0 to t = h− 2.

Both BACKWARD and FORWARD find better solutions than
LS-SDPOP and S-DPOP. The reason is the following: S-DPOP
does not take into account switching costs when solving each
sub-problem DCOP optimally. Therefore, S-DPOP has worse
solutions. While LS-SDPOP improves the SDPOP solution
through local search improvements, it is hampered by the overly
inferior solutions of S-DPOP. Therefore, LS-SDPOP has better
solutions than S-DPOP but are still not as good as those found
by BACKWARD and FORWARD.

In terms of runtime, LS-SDPOP has the largest runtime, while
BACKWARD, FORWARD and S-DPOP have similar runtimes.
These trends show that BACKWARD and FORWARD find better
solutions than S-DPOP and LS-SDPOP with runtimes that are
smaller than LS-SDPOP and comparable to that of S-DPOP.

Experiment with Online Algorithms: We empirically evaluate all
the online algorithms: The online version of FORWARD, HYBRID,
and a reactive algorithm that waits for the problem to change before
solving it. In order to fairly compare them, we evaluated them in a
simulator that emulates an actual physical deployment.

Figure 2 illustrates the time both algorithms spent searching for
solutions (denoted by gray rectangles) as well as the time they
adopted their solutions (denoted by white rectangles) when the time
duration between iterations is 500ms. FORWARD starts searching
for optimal solutions before the problem starts, and adopts the so-
lution later. HYBRID solves the first sub-problem at t = 0 based
on the initial distribution of random variables, which is known a
priori. When the problem starts, HYBRID adopts the solution while
observing the values of random variables, using the observation to
find its solution for the next time step. Finally, the reactive algo-
rithm solves the problem each time the problem changes.
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Figure 3: Comparison between FORWARD and Reactive
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Figure 4: Comparison between HYBRID and Reactive

The effective reward Reff of the reactive algorithm in each time
step t is thus the weighted sum

Reff = wt1 · qtt−1 + wt2 · qtt − (wt1 + wt2) · ct−1,t (23)

where wt1 is the time it spent searching for a solution at time step
t;3 wt2 is the time it adopted the solution found; qtt−1 is the qual-
ity of solution found in the previous time step t − 1; qtt is the
quality of solution found in the current time step t; and ct−1,t is
the switching cost incurred between the two time steps. For FOR-
WARD and HYBRID, since they find a solution for each time step
before the start of that time step, wt1 = 0 for all time steps and
Reff = wt2 · (qtt − ct−1,t). However, the solution found for each
time step by the three algorithms are likely to differ and we aim to
experimentally evaluate the conditions in which one class of algo-
rithms is preferred over the other.

Figure 3 shows the results comparing FORWARD and the reac-
tive algorithm, where we varied two parameters – the time duration
between subsequent time steps of the dynamic DCOP (i.e., the time
before the DCOP changes) and the switching cost c of the dynamic
DCOP. The vertical axis shows the difference between the effec-
tive rewards of the FORWARD and reactive algorithms. The blue
manifold shows the average difference over 50 runs4 and the green
manifold shows the largest difference across runs. These results are
averaged over 20 problem instances and all other problem settings
are identical to those in Experiment 1.

When the switching cost is 0, the reactive algorithm is able to
find an optimal solution at every time step. However, when the cost
increases, it may myopically choose a solution that is good for the
current time step but bad for future time steps. Thus, the reactive
algorithm is best when the switching cost is small and deteriorates

3We discretize time into 50ms intervals.
4We conducted multiple runs as the actual states of the random
variables across time steps can be different across runs.

with larger switching costs. When the time duration between sub-
sequent time steps is small, the reactive algorithm spends most of
the time searching for the solution and little time adopting it; vice
versa when the time duration is large. Thus, the reactive algorithm
is worst when the time duration is small and improves with longer
durations. Finally, the worst-case results have similar trends except
that the effects are amplified.

Figure 4 shows the result between HYBRID and the reactive al-
gorithm. The trends are similar to those in Figure 3, except that the
largest differences, shown by the green manifold, are larger than
those in Figure 3. The reason is that HYBRID uses its observation
of the random variables in the current time step to compute a more
accurate probability distribution of random variables for the next
time step. By observing and getting better predictions on the val-
ues of random variables, HYBRID can find better solutions in many
runs. Moreover, unlike the reactive algorithm, HYBRID is able to
adopt the solution immediately when the problem changes.

These experimental results, therefore, shed light – for the first
time to the best of our knowledge – on the identification of char-
acteristics for which each class of algorithms excels in. To sum-
marize, reactive algorithms are well suited for problems with small
switching costs and that changes slowly. In contrast, proactive al-
gorithms are well suited for problems with large switching costs
and that changes quickly. Finally, our hybrid algorithm combines
the strengths of both approaches – it works well in the same type
of problems that proactive algorithms work well in and it exploits
observations to improve its solutions like reactive algorithms.

8. CONCLUSIONS
Researchers recently proposed the Proactive Dynamic DCOP (PD-
DCOP) formulation to model dynamically changing multi-agent
coordination problems [10]. It assumes that the problem can only
change for a finite number of times and this number is known in ad-
vanced. Unfortunately, this assumption is unrealistic in many appli-
cations. Therefore, in this paper, we propose the Infinite-Horizon
PD-DCOP (IPD-DCOP) model, which extends PD-DCOPs to op-
timize the cumulative reward obtained across an infinite number
of time steps. It exploits the convergence properties of Markov
chains and assumes that the underlying Markov chain in the prob-
lem is guaranteed to converge to the unique stationary distribution.
We also show how to compute an optimal solution for this con-
verged chain and adopting it from some horizon h onwards. This
method can also be adopted by PD-DCOP algorithms to solve the
new IPD-DCOP model. When solving IPD-DCOPs offline, our
new distributed offline greedy algorithms FORWARD and BACK-
WARD find better solutions with comparable or smaller runtimes
compared to extensions of PD-DCOP algorithms. When solving
IPD-DCOPs online, our new distributed online greedy algorithms
FORWARD and HYBRID outperform reactive algorithms in prob-
lems with large switching costs and that changes quickly. Our em-
pirical findings on the tradeoffs between proactive and reactive al-
gorithms are the first, to the best of our knowledge, that shed light
on this important, but often ignored, issue.
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