
Decentralizing MAS Monitoring
with DecAMon

Angelo Ferrando
∗

Davide Ancona Viviana Mascardi
Dept. of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS)

University of Genova, Italy
angelo.ferrando@dibris.unige.it, davide.ancona@unige.it, viviana.mascardi@unige.it

ABSTRACT
We describe DecAMon, an algorithm for decentralizing the
monitoring of the MAS communicative behavior described
via an Agent Interaction Protocol (AIP). If some agents in
the MAS are grouped together and monitored by the same
monitor, instead of individually, a partial decentralization
of the monitoring activity can still be obtained even if the
“unique point of choice” (a.k.a. local choice) and “connect-
edness for sequence” (a.k.a. causality) coherence conditions
are not satisfied by the protocol. Given an AIP specification,
DecAMon outputs a set of “Monitoring Safe Partitions” of
the agents, namely partitions P which ensure that having
one monitor in charge for each group of agents in P allows
detection of all and only the protocol violations that a fully
centralized monitor would detect. In order to specify AIPs
we use “trace expressions”: this formalism can express event
traces that are not context-free and can model both syn-
chronous and asynchronous communication just by changing
the underlying notion of event.

CCS Concepts
•Computing methodologies → Multi-agent systems;

Keywords
Decentralized Runtime Verification, MAS Runtime Verifica-
tion, Agent Interaction Protocol

1. INTRODUCTION
Ensuring that software applications behave as expected is

a challenging task in general, and it is even more demanding
when the software application is as large, distributed, and
communication-intensive as a MAS.

By complementing formal static verification and testing,
Runtime Verification (RV) offers a practical solution for de-
tecting some misbehavior which can emerge at runtime: in
RV, a monitor is generated from a formal specification of
the properties to be verified and dynamically checks the be-
havior of the monitored system w.r.t. the given specifica-
tion. When the system is small, one centralized monitor

∗Corresponding author, PhD student at DIBRIS.

Appears in: Proceedings of the 16th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2017), S. Das, E. Durfee, K. Larson, M. Winikoff
(eds.), May 8–12, 2017, São Paulo, Brazil.
Copyright c© 2017, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

can check it all without becoming a bottleneck. Neverthe-
less, centralized monitoring does not scale with the growth
of the system dimension and a decentralized monitoring ap-
proach may be the only viable solution for coping with the
system complexity. Also, decentralized monitoring may be
a more natural choice when the system is distributed, since
different monitors can be associated with groups of physi-
cally, geographically, or logically connected entities, gaining
in efficiency and modularity.

If we limit ourselves to the MAS communicative behav-
ior, we can assume that agents interactions can be observed
by adding unobtrusive sniffers to the MAS communication
layer, as happens for example in JADE [11] and as can be
obtained with limited effort in Jason [13].

Associating an individual agent or group of agents with a
sniffer in charge of observing their communicative behavior
does not raise serious technical problems if JADE or Ja-
son are used. Rather, the actual problems for dynamically
verifying that a MAS behaves according to a given Agent
Interaction Protocol (AIP) are

1. how to specify the expected global communicative behav-
ior of the MAS (the global AIP) in a formal way,

2. how to automatically derive the partial AIPs associated
with each agent or group of agents from the global one,

3. how to turn a sniffer into a monitor that, besides ob-
serving agent interactions, is able to check their compliance
w.r.t. to the AIP formal specification and, above all,

4. how to ensure that the system made up of the decentral-
ized monitors detects all and only the same protocol viola-
tions that a single centralized monitor observing the MAS
would detect.

Solutions to the first three problems exist and will be briefly
discussed in the paper, but the last issue is still open and ex-
tremely challenging: it is indeed well known that some global
AIPs cannot be fully decentralized for monitoring purposes
(namely, they cannot be properly monitored by individual
monitors associated with individual agents), because they do
not respect some necessary coherence conditions [29, 30]. In
the existing literature these protocols are either monitored
in a centralized way or discarded.

In this paper we describe DecAMon, an algorithm for
Decentralizing the Agent system Monitoring which works
also in case the global AIP specification, expressed using
trace expressions [8], does not satisfy those coherence con-
ditions. Trace expressions represent a suitable solution to
problem 1, “how to specify the MAS communicative behav-
ior in a formal way”.

239

Our proposal, which falls in the Decentralized Runtime
Verification area [12], is based on the idea that, between
a fully centralized and a fully decentralized monitoring ap-
proach, a third viable solution is possible: partially decen-
tralized monitoring.

DecAMon is completely agnostic w.r.t. the type of ob-
served events. Although in this paper, for sake of presenta-
tion clarity, we limit ourselves to consider interaction events,
the DecAMon algorithm can be applied to trace expressions
dealing with events of any kind. The only requirement for
the DecAMon algorithm to work is that the set of agents
involved in a given event should be efficiently computed.

The paper is organized in the following way: Section 2 dis-
cusses the motivations of our work; Section 3 gently presents
the intuition behind DecAMon by means of examples; Sec-
tion 4 provides the technical details of DecAMon design
and implementation and presents the experimental results;
Section 5 analyzes the related work and concludes. The
proof of Theorem 4.1, the DecAMon code, and the results of
those experiments that, for space constraints, have not been
included in this paper, can be found at http://decamon.

altervista.org/.

2. MOTIVATION
Alice and Carol are two PhD students. They are writ-

ing a paper for the AAMAS 2017 conference with their col-
league Bob and their supervisor Dave. Alice and Carol are
in charge for running experiments. They are working on a
shared repository and they agree on the notion of satisfac-
tory results. A few weeks before the deadline, they decide
that if the experimental results will reach a satisfactory level
by the evening, Alice will contact their supervisor to meet,
otherwise Carol will ask Bob to meet, to fix the problems.

If Alice and Carol are modeled as software agents, the
resulting global agent interaction protocol, AIP1, can be

represented by alice
meet
=⇒ dave : ε ∨ carol

meet
=⇒ bob : ε

where ag1
msg
=⇒ ag2 stands for “there is an interaction be-

tween ag1 and ag2, with exchanged message msg”. The :
operator stands for sequential composition of an interaction
and the remainder of the protocol, ε stands for the empty
protocol, and ∨ stands for nondeterministic choice where, if
one branch is selected, the other branch cannot be selected
any longer (mutual exclusivity).

Once the paper is ready, Alice and Carol decide that Alice
will make a first submission in the morning and then she will
make a last check and, eventually, modify and re-submit the
paper. Carol will send the final version to their supervisor
in the evening. The resulting protocol can be modeled by

AIP2 = alice
submit
=⇒ aamas : (alice

submit
=⇒ aamas : ε ∨ ε) ·

carol
submitted

=⇒ dave : ε
where Alice makes one or two submissions and after (· stands
for protocol concatenation) Carol sends submitted to Dave.

Even if AIP1 and AIP2 are simple and realistic, they have
two major problems that are well known in the behavioral
types community [29, 30] and which prevent them from be-
ing used for fully decentralized monitoring.

The first problem is that these protocols are too abstract.
Although their meaning can be easily grasped, what does ac-
tually mean for two agents to interact? Let us consider this

simple example: alice
m1
=⇒ bob : alice

m2
=⇒ carol : ε. Once

Alice has sent m1 to Bob, could she immediately send m2
to Carol, without worrying if Bob received m1, or not? This
problem is related with the granularity of interactions, which
describe message sending and receiving as an atomic action.
Since, in many cases, communication is asynchronous, as-
suming interaction atomicity is not always the case. We
should decouple the sending event and the reception event,
in order to provide a more precise description of the system.
By using ag1〈msg=⇒ag2〉 to denote “ag1 sends msg to ag2” and

〈ag1msg=⇒〉ag2 to denote “ag2 receives msg from ag1”, we can

describe both a synchronous behavior, where nothing should
happen between a sending and the corresponding reception
(we use a for alice, b for bob, and c for carol), CAIP1 =
a
〈m1
=⇒b〉

:
〈am1

=⇒〉
b : a

〈m2
=⇒c〉

:
〈am2

=⇒〉
c : ε, and an asynchronous

one, where sending comes first, the corresponding reception
comes after, but other events could take place in between,
CAIP2 = a

〈m1
=⇒b〉

: (
〈am1

=⇒〉
b : ε | a

〈m2
=⇒c〉

:
〈am2

=⇒〉
c : ε)1.

The | shuffle operator combines two protocols by allowing
any shuffling of the events at its right with those at its left.
Of course, ordering among events in each branch must be
preserved. The idea behind τ1|τ2 is that τ1 and τ2 are inde-
pendent.

The second problem is related with monitoring the be-
havior of each agent ag w.r.t. the view that ag has of
the global protocol, namely, the global protocol restricted to
those events that involve ag. Moving from a global protocol
that involves all the agents in the MAS to a view of that pro-
tocol restricted to an agent subset is usually named “projec-
tion”. If T identifies the set of trace expressions, projection
can be described as a function Π : T × P(Ags) → T, where
the second argument is the subset of agents onto which pro-
jection is made. Trace expression projection can be formally
defined and effectively computed [3, 6] and provides a solu-
tion to the second problem introduced in Section 1: “how to
automatically derive the partial AIPs associated with each
individual agent or group of agents in the MAS from the
global one”. Even if we are able to project onto individual
agents, how can we be sure that the individual monitoring
gives the same results as the centralized one? This second
problem is independent from the granularity of communica-
tive events. Rather, it depends on taking a centralized or
a decentralized view point. Let us consider AIP1. A moni-
tor Malice associated with Alice and driven by the protocol
portion that involves Alice only, will consider her behavior
correct if she sends a meet message to Dave. In the same
way, a monitor Mcarol will consider Carol’s behavior correct
if she sends a meet message to Bob. However, perform-
ing both actions will not be compliant with AIP1 as they
are mutually exclusive. Unfortunately, none among Malice ,
Mcarol , Mbob , Mdave alone can verify if mutual exclusivity is
respected. Following the terminology from the behavioral
types literature, AIP1 does not satisfy the unique point of
choice coherence condition; using the terminology from mes-
sage flow graphs theory, it shows a non local choice problem
[28].

The problem with AIP2 is different: what happens if Carol
sends submitted to Dave before Alice submits the paper?
The AIP2 portion that Mcarol sees is

carol
submitted

=⇒ dave : ε

1We name these protocols CAIP1 and CAIP2 to stress that
they are “Concrete”.

240

On the other hand, the portion seen by Malice is

alice
submit
=⇒ aamas : (alice

submit
=⇒ aamas : ε ∨ ε)

No individual monitor can state whether a submitted mes-
sage sent by Carol to Dave comes after Alice completed her
last submission. According to the behavioral types termi-
nology, AIP2 does not satisfy the connectedness for sequence
coherence condition. According to Desai and Singh’s termi-
nology [21], AIP2 problem is due to the blindness of carol
w.r.t. the submit message that alice sends to aamas.

A protocol that meets the coherence conditions can al-
ways be fully decentralized as protocol violations are only
due to messages which are exchanged in a given protocol
state, but were not allowed in that state. For example AIP4

= alice
submit
=⇒ aamas : (alice

sumbitted
=⇒ dave : ε | aamas

ack
=⇒

alice : ε) could be violated by Alice submitting the paper

twice. However, the second alice
submit
=⇒ aamas interaction

would violate both Π(AIP4, {alice}) and Π(AIP4, {aamas})
(the projections of the global protocol AIP4 onto {alice} and
{aamas}, respectively), so at least one decentralized mon-
itor between Malice and Maamas would immediately detect
it. A protocol that does not meet the coherence conditions
causes problems only when we try to fully decentralize its
monitoring: each agent ag has its own monitor that checks
if ag behavior is compliant with Π(τ, {ag}). This may cause
the loss of sequentiality and mutual exclusivity constraints.
As long as we assume that centralized monitoring takes place
no problems arise, apart from the enormous bottleneck that
the centralized monitor may become!

Given a protocol specification and the set Ags of agents in
the MAS, DecAMon faces the partial decentralization prob-
lem by computing a set of “Monitoring Safe (MS) partitions”
of Ags. If a violation of the behavior patterns defined by the
protocol takes place, one monitor in charge for one group in
the MS partition will detect it.

3. DECAMON:
A GENTLE INTRODUCTION

Let us suppose that the agents involved in the MAS are
alice, bob, carol , and dave. If {{alice, carol}, {bob}, {dave}}
is a MS partition, then alice and carol must be monitored by
the same monitor M{alice,carol}, whereas bob and dave may
be monitored by distinct monitors. This does not mean that
having one monitor M{alice,carol} for alice and carol and one
M{bob,dave} for bob and dave (to be monitored together),
or one single monitor M{alice,bob,carol,dave} for all the four
agents, is not monitoring safe: larger groups can be formed,
provided that those agents which must stay together, are
monitored together. The above partition is one of those
returned by DecAMon on the AIP1 protocol introduced in
Section 2: if the same monitor observes both alice and carol ,
it will be able to detect violations of mutual exclusivity be-

tween alice
meet
=⇒ dave and carol

meet
=⇒ bob.

In a similar way, one MS partition of the agents involved in
AIP2 is {{alice, dave}, {aamas}, {carol}}: if the same mon-
itor is in charge for both alice and dave, it can verify that
the interaction involving dave (and carol) takes place after
the interactions involving alice (and aamas).

Intuition 3.1 (Monitoring Safety (MS)). A parti-
tion of Ags P is Monitoring Safe (MS partition, abbreviated
in MS in the sequel) if it enjoys the following property: if
the agents belonging to the same group in P are monitored

together, no loss of sequentiality and mutual exclusivity con-
straints takes place; one among the decentralized monitors
detects a violation of “its portion” of the global protocol iff a
violation of the global protocol occurs.

If the system monitoring cannot be decentralized, DecA-
Mon will return only one MS, {Ags}. On the other hand,
if each agent agi ∈ Ags, with i ∈ {1, ..., n} can be moni-
tored independently from the others, DecAMon will output
{{ag1}, {ag2}, {ag3}, ..., {agn}}.

DecAMon agnosticism w.r.t. the events syntax gives us
the flexibility to execute it on abstract and concrete agent
protocol specifications by defining the involved function as

involved(ag1
msg
=⇒ ag2) = {ag1, ag2}

involved(ag1〈msg=⇒ag2〉) = {ag1}
involved(〈ag1msg=⇒〉ag2) = {ag2}.

When we adopt a concrete protocol perspective, where send-
ing and reception are distinct, the only entity involved in a
message sending (resp. reception) is the sender (resp. the
receiver), even if we keep track of the message sender also
in a “receive” event 〈ag1msg=⇒〉ag2 and viceversa.

Continuing the AIP1 example, the other MSs are
{{alice}, {carol}, {bob, dave}}
{{alice, bob}, {carol}, {dave}}
{{alice}, {carol , dave}, {bob}}

If ev1 and ev2 are joined by an ∨ operator in the AIP like

alice
meet
=⇒ dave and carol

meet
=⇒ bob in AIP1, and involved(ev1)

has empty intersection with involved(ev2), one agent ag1 ∈
involved(ev1) must be monitored together with one agent
ag2 ∈ involved(ev2) to ensure that mutual exclusivity be-
comes verifiable. In a similar way, if ev1 and ev2 are two

sequential events like alice
submit
=⇒ aamas and carol

submitted
=⇒

dave in AIP2, and involved(ev1) has empty intersection with
involved(ev2), one agent ag1 ∈ involved(ev1) must be mon-
itored together with one agent ag2 ∈ involved(ev2) in or-
der to verify the correct sequentiality of ev1 and ev2. In
both cases, if there exists one agent agI ∈ involved(ev1) ∩
involved(ev2) no grouping is required: the monitor associ-
ated with agI can verify mutual exclusiveness and correct
sequencing between ev1 and ev2.

3.1 Trace expressions
This subsection is based on [8]. We simplified some defi-

nitions for sake of presentation.
Trace expressions are a formalism expressly designed for

RV. In the following we denote by E a fixed universe of

events (carol
submit
=⇒ dave is an event) and by ET a fixed

universe of event types each denoting a subset of events in

E (SubmitType = {alice
submit
=⇒ aamas, carol

submit
=⇒ dave}

is an event type). Since any trace expression built on top
of event types containing finitely many events can be auto-
matically transformed into an equivalent2 trace expression
built on top of singleton event types (event types containing
exactly one event), we will assume that DecAMon operates
on trace expressions with singleton event types only.

Event traces. An event trace over E is a possibly infinite
sequence of events in E. A trace expression over E denotes a
set of event traces over E. In other words, the denotational
semantics of a trace expression is a set of event traces.

2W.r.t. trace expression denotational semantics.

241

Trace expressions. A trace expression τ is defined on top
of the following operators; binary operators associate from
left to right and the topmost one has the highest precedence.

• ε (empty trace), denoting the singleton set {ε} containing
the empty event trace ε.
• ϑ:τ (prefix), denoting the set of all traces whose first

event ev matches the event type ϑ (ev ∈ ϑ), and the re-
maining part is a trace of τ .
• τ1·τ2 (concatenation), denoting the set of all traces ob-

tained by concatenating the traces of τ1 with those of τ2.
• τ1∧τ2 (intersection), denoting the intersection of the

traces of τ1 and τ2.
• τ1∨τ2 (union), denoting the union of the traces of τ1

and τ2.
• τ1|τ2 (shuffle), denoting the set obtained by shuffling

the traces of τ1 with the traces of τ2.

With some abuse of notation, in the sequel we will use
events instead of event types inside trace expressions. This
is the notation we already used in Section 2, where protocols
were built on top of events.

To support recursion without introducing an explicit con-
struct, trace expressions are cyclic terms which can be rep-
resented by a finite set of syntactic equations, as happens
in Jason and in most modern Prolog implementations. To

make an example, AIP4 represented by τ = alice
submit
=⇒

aamas : (τ ∨ ε) · carol
submitted

=⇒ dave : ε models the protocol
where alice can submit a paper to aamas one or more (in-
cluding infinitely many) times, before carol sends a submitted

message to dave. If we name a the event alice
submit
=⇒ aamas

and c the event carol
submitted

=⇒ dave, the denotational seman-
tics of τ is the set of event traces {ac, aac, aaac, . . . , anc, aω}
where an stands for a trace containing n instances of the

event alice
submit
=⇒ aamas and aω stands for an infinite trace

of alice
submit
=⇒ aamas events.

3.2 High-level Description and Examples
Now, we are ready to introduce the notions of critical

point of a trace expression and of minimality of a MS parti-
tion. The function first(τ) returns all the first events of τ
and last(τ) all its last events. For example, first(a : ε ∨ b :
c : ε) = {a, b} and last(a : ε ∨ b : c : ε) = {a, c}. Their
precise definition is given in Section 4.

Def. 3.1 (Critical Point). A couple of events (ev1,
ev2) is a critical point of τ iff τsub is a sub-expression of τ
such that
• τsub = τ1∨τ2 and ∃ev1 ∈ first(τ1), ∃ev2 ∈ first(τ2) s.t.

involved(ev1) ∩ involved(ev2) = ∅, or
• τsub = ev1:τ2 and ∃ev2 ∈ first(τ2) s.t. involved(ev1) ∩

involved(ev2) = ∅, or
• τsub = τ1·τ2 and ∃ev1 ∈ last(τ1), ∃ev2 ∈ first(τ2) s.t.

involved(ev1) ∩ involved(ev2) = ∅.
We say that τsub generates the critical point (ev1, ev2).

Uniqueness of (ev1, ev2) is violated if both ev1 and ev2 take
place. Sequentiality of (ev1, ev2) is violated if ev2 takes place
before ev1.

Def. 3.2 (Minimal Monitoring Safety (MMS)). The
partition P of agents Ags is Minimal Monitoring Safe (MMS)
if it is Monitoring Safe and if splitting one of the groups of

agents in P leads to a partition that does not satisfies mon-
itoring safety any longer.

For generating a set of MSs, DecAMon exploits merge:
merge : P(P(Ags)) × P(P(Ags)) → P(P(Ags))

One argument C of merge (no matter which, since merge
is commutative) consists of new groups of agents that are
constrained to be monitored together; the other argument
OldC models the existing agent grouping constraints: we
name them “constraint stores”. The result of merge is a new
constraint store NewC where both the constraints in OldC
and those in C hold. No unnecessary constraints (namely,
no unnecessary groupings) are added to the merge result.
The way merge works ensures that the groups of agents in
NewC ∈ P(P(Ags)) will be disjoint if the groups of agents
in C were disjoints, and the groups of agents in OldC were.
Let us introduce merge by means of an example: the idea
behind merge({{ag1, ag2}}, {{ag1, ag3}, {ag4, ag5}}) is to
add the new constraint “agents ag1 and ag2 must be mon-
itored together” to the constraint store {{ag1, ag3}, {ag4,
ag5}} stating that ag1 and ag3 must be monitored together,
as well as ag4 and ag5. The only constraint store resulting
from this merge is NewC = {{ag1, ag2, ag3}, {ag4, ag5}},
where both the previous and the new constraints are re-
spected. The amount of agents that are constrained to be
monitored together is minimized: inNewC, ag1 and ag4 can
be monitored independently as there is no reason to group
them. The constraint store NewC′ = {{ag1, ag2, ag3, ag4,
ag5}} satisfies the old and new constraints as well but use-
lessly imposes that ag1 and ag4 are monitored together:
merge will never return it.

DecAMon carries out a structural analysis of the trace
expression in order to find those agents that must be moni-
tored together because they are involved in a critical point.
As soon as new groups of agents that must be monitored
together are found, the new constraint store is merged with
the previously computed one: given a trace expression τ =
τ1 op τ2 where op is a binary operator, DecAMon computes
the constraint stores due to op (they may be more than
one, as shown in the sequel) and computes the combina-
tions obtained by merging each of them with each of those
resulting from τ1 and each of those resulting from τ2. Since
the constraint stores deriving from τ1 and τ2 are computed
independently, they could overlap up to some extent and
their merge could generate groupings with unnecessary con-
straints. To cope with this problem we have implemented a
post-processing algorithm that allows us to obtain the set of
MMSs as a refinement of the DecAMon output, by remov-
ing those MSs that add useless constraints to other MSs.
The global minimality property can be obtained either via
this post-processing activity where each returned MS is com-
pared with all the others, or by making merge more complex
(merge would need to know all the possible MSs for each
trace expression branch to discard the overlapping ones and
return only minimal MSs). We opted for the first solution.

Let us consider another example: if we had to compute
merge({{ag1, ag2, ag4}}, {{ag1, ag3}, {ag2, ag5}}) the only
possible result would be to merge {ag1, ag3} and {ag2, ag5}
where ag1 and ag2 could be monitored independently, to
meet the new constraint where they must be monitored to-
gether; a4 must be grouped with a1 and a2. The result is
{{ag1, ag2, ag3, ag4, ag5}}.

Let us consider the more complex protocol AIP5 defined

242

as (ab:bc:ε | de:ef :ε | gh:hi:ε) · (jk:ε | lm:ε | no:ε) where ab

stands for a
ab

=⇒ b, bc stands for b
bc

=⇒ c, and so on.
DecAMon starts exploring AIP5 looking for critical points.

The outmost AIP5 operator is a concatenation, which may
generate critical points. DecAMon computes all the last
events in τ1 = (ab:bc:ε | de:ef :ε | gh:hi:ε) and all the first
events in τ2 = (jk:ε | lm:ε | no:ε). They turn out to be
last(τ1) = {bc, ef, hi} and first(τ2) = {jk, lm, no}.

Any couple (ev1, ev2) s.t. ev1 ∈ last(τ1), ev2 ∈ first(τ2),
and involved(ev1) ∩ involved(ev2) = ∅ is a critical point.
Here, (bc, jk), (bc, lm), (bc, no), (ef, jk), (ef, lm), (ef, no),
(hi, jk), (hi, lm), (hi, no), are all the critical points gener-
ated by the outmost · in AIP5.

For each critical point (ev1, ev2), one agent involved in ev1
must be grouped together with one agent involved in ev2.

Def. 3.3 (Critical Point Satisfaction). A group of
agents satisfies a critical point (ev1, ev2) if it contains one
agent involved in ev1 and one agent involved in ev2.

Def. 3.4 (Trace Expression Satisfaction). A con-
straint store C satisfies a trace expression if all the critical
points generated by the outmost operator in that trace ex-
pression are satisfied by one group in C.

To make another example, C51 = {{b, e, h, j, l, n}} satis-
fies AIP5 = τ1·τ2 since b which is involved in bc is grouped
with j involved in jk, l involved in lm, and n involved in no.
The same holds for e involved in ef and h involved in hi.

Also C52 = {{b, k,m, o}, {e, h, j, l, n}}, satisfies AIP5: b is
grouped with k, m, and o hence satisfying (bc, jk), (bc, lm),
and (bc, no); e and h are grouped with j, l, n, hence satisfy-
ing (ef, jk), (ef, lm), (ef, no), (hi, jk), (hi, lm), and (hi, no).

The same holds for C53 = {{c, k}, {b,m, o}, {e, h, j, l, n}}:
{c, k} satisfies (bc, jk); {b,m, o} satisfies (bc, lm) and (bc, no);
{e, h, j, l, n} satisfies all the remaining critical points.

The constraint store {{c, j}, {f, l}, {i, n}, {a}, {b}, {d}, {e},
{g}, {h}, {k}, {m}, {o}}, instead, does not satisfy AIP5: for
example, no group satisfies (bc, lm).

We define Cτ0 as the constraint store that contains all
and only one singleton set {ag} for each agent ag involved
in τ . Given the initial constraint store C50 for the proto-
col AIP5, DecAMon merges C50 with one of the constraint
stores C5i that satisfy AIP5, selected on a nondeterminis-
tic basis. Then, it recursively explores the components τ1
and τ2 of AIP5 and adds the newly discovered constraints
to the previously computed constraint store. The sequences
ab:bc:ε, de:efε and gh:hi:ε in τ1 do not generate any new
critical point because they verify the connectedness for se-
quence condition. Moreover, they are joined by a shuffle
operator that generates no critical points. Thus, no new
constraints are generated because of τ1. In a similar way, no
new constraints are generated because of τ2.

The nondeterministic selection of one of the constraint
stores satisfying the currently analyzed trace expression is
repeated for each possible constraint stores. By backtrack-
ing to any point of choice, DecAMon can produce all the
possible MSs, one at a time: C51, C52, C53, C54, together
with other 5628 possible initial constraint stores, are the
MSs output by DecAMon!

If τ1 were (ab:cd:ε | ef :gh:ε) (AIP6) the new constraints
{{a, c}, {e, g}} (or {{a, d}, {f, g}}, ...) due to connectedness
for sequence violation should have been merged with C5i

giving a different (and smaller) final set of MSs.

If τ1 were (ab:cd:ε ∨ ef :gh:ε) (AIP7) a further constraint
{a, e} (or {a, f}, or {b, e}, or {b, f}) due to unique point of
choice violation should have been merged with the previous
ones.

Finally, let us consider the concrete protocol CAIP1 =
a
〈m1
=⇒b〉

:
〈am1

=⇒〉
b : a

〈m2
=⇒c〉

:
〈am2

=⇒〉
c : ε. As anticipated,

DecAMon works exactly in the same way, provided it can
compute the involved function. CAIP1 can be seen as a

〈m1
=⇒b〉

:

τ1. Its outmost operator is the first prefix with {a
〈m1
=⇒b〉

} at

its left, first(τ1) = {
〈am1

=⇒〉
b} and these two events share

no involved agents: (a
〈m1
=⇒b〉

,
〈am1

=⇒〉
b) is a critical point. The

constraint store generated by CAIP1 is {{a, b}} which must
be merged with the initial constraint store {{a}, {b}, {c}}
leading to {{a, b}, {c}}. Now DecAMon is called on τ1 =

〈am1
=⇒〉

b : a
〈m2
=⇒c〉

:
〈am2

=⇒〉
c : ε generating the new constraint

store {{a, c}} which must be merged with {{a, b}, {c}} lead-
ing to {{a, b, c}}. In the end, all the three agents must
be monitored together. This is correct: how can Mb alone
verify that when b receives m1 from a, a actually sent it
before? If we make either security assumptions (“all the
received messages have been actually sent by the sender”)
or strong assumptions on the underlying network reliability
(“all the sent messages will be received”, or even “all the sent
messages will be received in the same order they were sent”)
we can relax some monitoring safety constraints, but this is
not possible in general.

4. DESIGN, IMPLEMENTATION,
EXPERIMENTS

In order to provide a formal account of runtime verifica-
tion using trace expressions, it is useful to explain what we
mean by “trace expression transition relation”. A trace ex-
pression can be seen as the state of an AIP. The notion of
“transition from one trace expression (state of the protocol)
to another” is at the basis of the trace expression operational
semantics and makes AIP runtime verification possible. An
event ev is compliant with the protocol current state iff the
protocol can move to another state once ev has been ob-
served.

The operational semantics of trace expressions is speci-
fied by the transition relation δ ⊆ T × E × T. τ1

ev−→ τ2
means (τ1, ev, τ2) ∈ δ. If the trace expression τ1 specifies
the current valid state of the protocol, then an event ev is
considered valid in the current state iff there exists a tran-
sition τ1

ev−→ τ2; in such a case, τ2 specifies the next valid
state of the protocol after event ev takes place. Otherwise,
the event ev is not valid in τ1.

Union, shuffle, and concatenation operators may lead to
nondeterminism because for each of them two possibly over-
lapping transition rules are defined. We only consider deter-
ministic and contractive trace expressions, where determin-
istic means that given a trace expression and an event, only
one transition rule can be applied to them, and contractive
means that all the infinite paths in the syntax tree corre-
sponding to a trace expression contain the prefix operator.
These restrictions do not limit trace expressions expressive
power: the paper [8] demonstrates that deterministic and
contractive trace expressions are more expressive than the
three valued Linear Time Temporal Logic LTL3 [10].

Figure 1 defines the inductive rules for δ. While δ defines

243

(prefix)
ϑ:τ

ev−→ τ
ev∈ϑ (or-l)

τ1
ev−→ τ′1

τ1∨τ2
ev−→ τ′1

(or-r)
τ2

ev−→ τ′2
τ1∨τ2

ev−→ τ′2
(and)

τ1
ev−→ τ′1 τ2

ev−→ τ′2
τ1∧τ2

ev−→ τ′1∧τ
′
2

(shuffle-l)
τ1

ev−→ τ′1
τ1|τ2

ev−→ τ′1|τ2

(shuffle-r)
τ2

ev−→ τ′2
τ1|τ2

ev−→ τ1|τ′2
(cat-l)

τ1
ev−→ τ′1

τ1·τ2
ev−→ τ′1·τ2

(cat-r)
τ2

ev−→ τ′2
τ1·τ2

ev−→ τ′2
ε(τ1) (cond-t)

τ
ev−→ τ′

ϑ�τ ev−→ ϑ�τ′
ev∈ϑ (cond-f)

ϑ�τ ev−→ ϑ�τ
ev 6∈ϑ

Figure 1: Operational semantics of trace expressions

(ε-empty)
ε(ε)

(ε-or-l)
ε(τ1)

ε(τ1∨τ2)
(ε-or-r)

ε(τ2)

ε(τ1∨τ2)
(ε-shuffle)

ε(τ1) ε(τ2)

ε(τ1|τ2)
(ε-cat)

ε(τ1) ε(τ2)

ε(τ1·τ2)
(ε-and)

ε(τ1) ε(τ2)

ε(τ1∧τ2)
(ε-cond)

ε(τ)

ε(ϑ�τ)

Figure 2: Empty trace containment

the non empty traces of a trace expression, the predicate
ε(), inductively defined by the rules in Figure 2, defines the
trace expressions that contain the empty trace ε and hence
may terminate. If ε(τ) holds, then the empty trace is a valid
trace for τ . Both figures are taken from [8].

A SWI-Prolog implementation of these rules can be down-
loaded from http://decamon.altervista.org/; in the past,
similar rules implementing the operational semantics of“glo-
bal types” [7] have been integrated both in Jason, which sup-
ports a Prolog-like reasoning engine [4, 7], and in JADE, by
means of the JPL Java–SWI-Prolog bidirectional interface,
http://www.swi-prolog.org/packages/jpl/java_api/ [14,
15]. This integration, which in the most recent works also
supported projection, answers the third challenge raised in
Section 1: “how to turn a sniffer into a monitor that, besides
observing agent interactions, is able to check their compli-
ance w.r.t. to the AIP formal specification”. Although the
results of the above papers make the decentralized runtime
verification of Jason and JADE MASs possible from a prac-
tical point of view, they do not solve the theoretical problem
stated in Section 1 about formal guarantees given by the de-
centralized monitoring process w.r.t. the centralized one.

4.1 Design
The definition of first does not need to take cycles – which

are due to trace expressions recursive definitions – into ac-
count; in fact, contractiveness ensures that, while exploring
a trace expression following its syntactical structure, a pre-
fix operator will be met in a finite number of steps.

– first(ε) = {}
– first(ϑ:τ) = {ϑ}
– first(τ1·τ2) = first(τ1) ∪ first(τ2) if ε(τ1);
first(τ1·τ2) = first(τ1) otherwise

– first(τ1∧τ2) = first(τ1∨τ2) = first(τ1|τ2) =
first(τ1) ∪ first(τ2).

The definition of last is more complex because it must not
recall itself in case of cyclic trace expressions and contrac-
tiveness is not enough to avoid entering a loop. For example,
τ = ev:τ is contractive, but we must have plenty of time and
patience if we are going to look for its last element! In this
case, last should return {} (and we should do the same...)
but it can do this only if it keeps track of the already met
trace expressions. To this aim last saves the argument of
each call into a global repository; if it is called on τ and it
had already been called on τ before, it returns {}:
– last(ε) = {}
– last(τ) = {} if last had already been called on τ ;

otherwise, the following rules apply:
– last(ϑ:τ) = last(τ) ∪ {ϑ} if ε(τ);
last(ϑ:τ) = last(τ) otherwise

– last(τ1·τ2) = last(τ2)
– last(τ1∧τ2) = last(τ1∨τ2) = last(τ1|τ2) =
last(τ1) ∪ last(τ2).

To describe DecAMon we first describe the DecOne logi-
cal predicate, DecOne ⊆ T × P(P(Ags)) × P(P(Ags)).

The way DecOne works ensures that the groups of agents
in Arg ∈ P(P(Ags)) are disjoint, for each Arg that can
appear as its second or third argument. Given a trace ex-
pression τ ∈ T, DecOne(τ,OldC,NewC) holds iff there ex-
ists a constraint store C s.t. C satisfies τ and NewC =
merge(OldC,C). DecOne(τ, OldC, NewC) nondeterminis-
tically selects one of the constraint stores that satisfy τ , let
us name it C, and merges it with OldC resulting into NewC.
SinceDecOnemust avoid entering loops, it operates like last
keeping track of the already met trace expressions.

• DecOne(ε, OldC,OldC)

•DecOne(τ,OldC,OldC) ifDecOne had already been called
on τ ; otherwise, the following rules apply:

i. DecOne(ϑ:τ,OldC,NewC) iff
∃ C′ s.t. DecOne(τ,OldC,C′),
∃ C that satisfies ϑ:τ , and
NewC = merge(C′, C);

ii. DecOne(τ1·τ2, OldC,NewC)
(resp. DecOne(τ1∨τ2, OldC,NewC)) iff
∃ C1 s.t. DecOne(τ1, OldC,C1),
∃ C2 s.t. DecOne(τ2, C1, C2),
∃ C that satisfies τ1·τ2 (resp. τ1∨τ2) and
NewC = merge(C2, C);

iii. DecOne(τ1∧τ2, OldC,NewC)
(resp. DecOne(τ1|τ2, OldC,NewC)) iff
∃ C1 s.t. DecOne(τ1, OldC,C1),
∃ C2 s.t. DecOne(τ2, C1, NewC).

Since ∧ and | do not generate critical points, DecOne is
just called onto the first branch and the resulting constraint
store is passed to the call on the second branch (rule iii);
the definition on trace expressions whose outmost operator
is either · or ∨ is more complex as a further merge with
the constraint store generated by these operators is required
(rule ii). We recall that Cτ0 is τ initial constraint store: it
contains one set {ag} for each agent ag involved in τ .

Def. 4.1 (Monitoring Safety (MS)). A partition of
Ags P is Monitoring Safe either if DecOne(τ, Cτ0, P) holds,
or if DecOne(τ, Cτ0, P

′) holds and P can be obtained from
P ′ by aggregating some groups in it.

We are just one step away from giving the DecAMon def-
inition: we need to introduce the findall(V ar, Goal, Res)
extra-logical predicate which creates a list Res of V ar in-
stances obtained by backtracking over Goal. We are ready:

244

DecAMon(τ) = MSs
iff findall(P, DecOne(τ, Cτ0, P), MSs)

We say that a monitor M “checks” a trace expression τ
if M is in charge for verifying that the events it observes
do not violate the current state of the protocol, and the
initial state of the protocol is represented by τ . Theorem
4.1 demonstrates that a partition P computed by DecOne
is monitoring safe.

Theorem 4.1. Let τ be a trace expression involving agents
Ags, let Cτ0 be τ initial constraint store, let P = {Gr1, Gr2,
..., GrN} be one partition computed by DecOne(τ, Cτ0,
P), and let (ev1, ev2) be a critical point generated by a sub-
expression τsub of τ .

The centralized monitor MAgs that checks τ detects a vi-
olation of (ev1, ev2) ⇐⇒ there exists MGrI that checks
Π(τ,GrI) which detects a violation of (ev1, ev2).

Proof. See http://decamon.altervista.org/

Theorem 4.1 answers the main research question addressed
by this paper and introduced in Section 1: “how to ensure
that the system made up of the decentralized monitors de-
tects all and only the same protocol violations that a single
centralized monitor observing the MAS would detect.”

4.2 Implementation and Experiments
DecAMon has been implemented in SWI-Prolog, http:

//www.swi-prolog.org/. The code can be downloaded from
the supplemental material web site and amounts to almost
600 lines. The choice of Prolog was due to many reasons:
one-to-one correspondence between the transition and empty
rules definitions and their rule-based implementation; built-
in support to cyclic terms and to the recognition that a cyclic
term has already been met; built-in support to backtrack-
ing over goals; availability of Prolog-based tools for trace
expressions management.

When the protocol has as many critical points as AIP5,
computing all the MSs may require too much time. DecOne
can be used instead of DecAMon to compute one MS at a
time. As an example, calling DecOne of AIP5 produced the
first result in 9 ms, the second one in 8 ms, the third in 1 ms.
Although DecOne might not return the best MS according
to the designer or the runtime environment needs, its result
is guaranteed to be monitoring safe.

If time is not an issue, however, all the MSs can be gen-
erated for further post-processing. We implemented the fol-
lowing functionalities which operate on a set of monitoring
safe partitions:

1. removing non minimal partitions from the set;
2. selecting those partitions that contain N agents groups

or less (resp. more), where N is given;
3. selecting those partitions that contain M singleton

agents groups or less (resp. more), where M is given;
4. selecting those partitions where the agents in the set

D, given as input in form of a Prolog list, are all disjoint;
5. selecting those partitions where the agents in the set

T , given as input in form of a Prolog list, are all together.
We run experiments with the protocols introduced in the

previous sections, AIP1 to AIP7, plus the following four.
We used a MacBook Pro (Retina, 13-inch, Early 2015) with
Processor 2,7 GHz Intel Core i5, Memory 8 GB 1867 MHz
DDR3, SWI-Prolog version 7.2.3.

Protocol Dec (ms) Dec (]) MMS (ms) MMS (])

aip1 2 4 2 4

aip2 1 4 1 4

aip3 1 4 1 4

aip4 1 1 1 1

aip5 122400 5632 74711 5632

aip6 308 256 139 256

aip7 309 128 37 128

aip8 1 1 1 1

aip9 1 16 1 2

abp norm 14 1 1 1

abp crit 8 16 1 16

T1.a: DecAMon execution time (Dec (ms));
MSs returned by DecAMon (Dec (]));

execution time of the tool for removing non-minimal MSs (MMS (ms));
computed MMSs (MMS (])).

Protocol ≥ 1g ≥ 5g ≥ 7g ≥ 9g ≥ 1s ≥ 5s ≥ 7s ≥ 9s

aip1 4 0 0 0 4 0 0 0

aip2 4 0 0 0 4 0 0 0

aip3 4 0 0 0 4 0 0 0

aip4 1 0 0 0 1 0 0 0

aip5 5632 5632 1600 64 5632 1600 64 64

aip6 256 256 128 0 256 128 128 0

aip7 128 128 128 0 128 128 128 0

aip8 1 0 0 0 1 0 0 0

aip9 2 0 0 0 2 0 0 0

abp norm 1 0 0 0 1 0 0 0

abp crit 16 0 0 0 16 0 0 0

T1.b: Number of MMSs that contain at least 1, 5, 7, 9 agents groups
(columns ≥ 1g, ≥ 5g, ≥ 7g, ≥ 9g).

Number of MMSs that contain at least 1, 5, 7, 9 singleton groups
(columns ≥ 1s, ≥ 5s, ≥ 7s, ≥ 9s).

Table 1: Experimental results.

AIP8 = (alice
submit
=⇒ aamas : aamas

ack
=⇒ alice : ε) |

(bob
submit
=⇒ aamas : aamas

ack
=⇒ bob : ε) |

(carol
submit
=⇒ aamas : aamas

ack
=⇒ carol : ε)

respects the connectedness for sequence condition: the agents
can be monitored independently.

AIP9 = (alice
submit
=⇒ aamas : chair

review
=⇒ bob :

(aamas
accept
=⇒ alice : ε)∨(aamas

reject
=⇒ alice : ε))

| (bob
submit
=⇒ aamas : chair

review
=⇒ alice :

(aamas
accept
=⇒ bob : ε)∨(aamas

reject
=⇒ bob : ε))

demonstrates that DecAMon may return non minimal mon-
itoring safe partitions, which are detected during the post-
processing stage. The two only MMSs are {{chair, aamas},
{alice}, {bob}} and {{alice, bob}, {chair}, {aamas}} but
DecAMon also returns {{aamas, alice, bob}, {chair}}, be-
sides others, where AAMAS is uselessly grouped with Alice
and Bob.

The other two protocols are variants of the Alternating Bit
Protocol (ABP) described in [19]. The ABP is an infinite
iteration, where the following constraints have to be satisfied
for all occurrences of the interactions:

– The n-th occurrence of message m1 must precede the
n-th occurrence of m2 which in turn must precede the n-th
occurrence of m3.

– For k ∈ {1, 2, 3}, the n-th occurrence of mk must precede
the n-th occurrence of the acknowledge ak, which, in turn,
must precede the (n+ 1)-th occurrence of mk.

Because of space constraints, we do not show here the
trace expressions corresponding to ABPnorm and ABPcrit.
The difference between them is that in ABPnorm, m1 =

bob
m1
=⇒ alice, m2 = bob

m2
=⇒ carol , m3 = bob

m3
=⇒ dave,

and the acknowledges flow in the opposite direction: M{bob}
can monitor all the protocol, as Bob is involved in all the
interactions.

In ABPcrit, instead, m1 = alice
m1
=⇒ bob, m2 = carol

m2
=⇒

dave, m3 = emma
m3
=⇒ frank (with their respective acknowl-

edges), so the connectedness for sequence of m1, m2, and m3

cannot be guaranteed by one monitor alone.

245

For each protocol we measured the time required by De-
cAMon to compute its output, the number of MSs computed
by DecAMon, the time required to remove the non minimal
partitions from DecAMon output, and the number of MMSs.
W.r.t. T1.a, we highlight the following aspects:

– the number of computed MSs depends on the trace ex-
pression structure and not on its length: AIP6 and AIP7

only differ for one operator, but they give different results;
– the number of computed MSs of AIP4, AIP8, ABPnorm

is 1: this means that the monitoring can be fully decen-
tralized, as DecAMon returns only the partition with one
singleton group for each agent;

– the number of computed MSs of AIP9 is different from
the number of MMSs: DecAMon may return non minimal
partitions.

Since the more groups in the MMS, the better from the
decentralization point of view, selecting a MMS with a high
number of groups is a good choice for decentralizing as much
as possible. Another criterion for preferring a MMS w.r.t.
another could be the number of singleton groups, which cor-
respond to agents that can be monitored on their own. Table
T1.b shows the results of other post-processing functions,
namely the number of MMSs that contain at least 1, 5, 7, 9
agents groups for each protocol, and the number of MMSs
that contain at least 1, 5, 7, 9 singleton groups. Although
Table T1.b only reports numbers, the post-processing tools
return all the partitions that meet the given conditions. The
MAS designer or a software agent in charge for the dynamic
reconfiguration of the MAS monitoring activity can select
one among them and can impose further conditions such
as having some agents disjoint or together. By running this
tool we discovered for example that there is no MMS of AIP5

where b, c, d are together, and there are 4224 MMSs where
b and m are disjoint.

5. RELATED AND FUTURE WORK
The literature on Distributed Runtime Verification (DRV)

is still very limited: the First Workshop on DRV was held
at Bertinoro in May 2016, http://www.labri.fr/perso/

travers/DRV2016/, and the first survey has been published
in October 2016 [12]. It references 18 papers only and many
of them, such as [24, 25, 27], deal with issues which fall
outside the scope of our investigation.

A large amount of contributions are loosely connected
with DRV, and investigate the issue of projecting global pro-
tocols onto protocol-compliant “skeletons” or “endpoints” in
many different areas ranging from MASs [3, 20] to session
types [16, 17, 18], from cryptographic protocols [31] to be-
havioral types for programming languages [2]. Most of the
research is focused on the study of well-formedness condi-
tions ensuring that the projection of global protocols can
produce correct “enactments”; protocols not meeting such
requirements are discarded. The work presented in this pa-
per is entirely devoted to the problem of partial distribution
of the protocol verification mechanism even when some well
known enactability conditions do not hold.

Singh’s Blindingly Simple Protocol Language (BSPL [34,
35, 36]) is a promising approach for declaratively expressing
multiagent protocols. It supports a rich variety of practical
protocols and can be realized in a distributed asynchronous
architecture where the participating agents act based on lo-
cal knowledge alone; in this way DRV of declarative pro-
tocols is naturally supported. The major difference of our

work in comparison to BSPL, is that we face the challenge of
DRV of those protocols that do not satisfy the unique point
of choice and connectedness for sequence conditions.

Testerink et al. [37, 38] present a formal model for de-
centralized monitors that supports their formal analysis to
face the robustness and security, and a theoretical analysis
of distributed runtime norm enforcement. They synthesize
the properties that each local monitor is able to verify, ex-
pressed in LTL, in order to build a consistent representation
of the global state of the world. We do the opposite: we
start from a global protocol modeling how the world should
behave, and create sub-protocols that involve disjoint groups
of agents, in such a way that violations to the global pro-
tocol can be discovered by at least one of the monitors in
charge for these groups.

The work [33] which is closer to ours addresses the fol-
lowing problem: “given a distributed program D and an
LTL3 property φ, construct a set of monitor processes whose
composition with D can evaluate φ at runtime in a sound,
complete, and decentralized fashion.” The main differences
with our proposal consist in the observed events, which are
related to the execution of a program and not to commu-
nicative behavior in a MAS, and, most importantly, the use
of LTL3 for specifying system properties; in previous work
[8], we have shown that trace expressions are strictly more
expressive than LTL3 when used for runtime verification.
Falcone et al. [22] propose an efficient and generalized de-
centralized monitoring algorithm to detect violation of any
regular specification by local monitors without central ob-
servation point; also in this case the main difference with
our work is the expressive power of the employed formalism
for specifications.

Decentralizing the runtime monitoring using DecAMon
can prove useful in many situations. The applications we
are actually looking at fall in the e-health and well-being
domains that we started exploring in the last year [1, 23]. If
we have a global protocol describing the expected behavior
of a system of communicating low-power wearable devices
able to measure vital parameters to check the health condi-
tions of a person, we would like to add lightweight monitors
on top of them to monitor only those events “local” to the
devices, still being sure that global protocol violations will
be detected. In these scenarios, proximity of the monitor to
the device is of paramount importance.

For what concerns the time complexity of computing a
Minimal Monitoring Safe partition, we suspect that the prob-
lem can be reduced to computing a solution to a Minimal
Constraint Network [32], recently proven to be NP-hard [26].
For the applications we have in mind, the need for decentral-
izing a protocol for monitoring purposes arises only seldom,
so the (possibly) high complexity of DecAMon can be tol-
erated. Experiments on several protocols have empirically
shown that, once the protocol has been decentralized, the
time complexity of monitoring is linear in the trace length,
and does not depend on the number of involved agents.

We leave for future developments the investigation of suit-
able heuristics for boosting the efficiency of DecAMon when
a MAS partition must be recomputed very often; other inter-
esting research directions include the extension of DecAMon
to deal with parametric trace expressions [9], and its ex-
ploitation in other promising application domains, such as
ambient intelligence systems [5] and traffic monitoring.

246

REFERENCES
[1] F. Aielli, D. Ancona, P. Caianiello, S. Costantini,

G. D. Gasperis, A. D. Marco, A. Ferrando, and
V. Mascardi. FRIENDLY & KIND with your health:
Human-friendly knowledge-intensive dynamic systems
for the e-health domain. In J. Bajo, M. J. Escalona,
S. Giroux, P. Hoffa-Dabrowska, V. Julián, P. Novais,
N. S. Pi, R. Unland, and R. A. Silveira, editors,
Highlights of Practical Applications of Scalable
Multi-Agent Systems. The PAAMS Collection -
International Workshops of PAAMS 2016.
Proceedings, volume 616 of Communications in
Computer and Information Science, pages 15–26.
Springer, 2016.

[2] D. Ancona, V. Bono, M. Bravetti, J. Campos,
G. Castagna, P. Deniélou, S. J. Gay, N. Gesbert,
E. Giachino, R. Hu, E. B. Johnsen, F. Martins,
V. Mascardi, F. Montesi, R. Neykova, N. Ng,
L. Padovani, V. T. Vasconcelos, and N. Yoshida.
Behavioral types in programming languages.
Foundations and Trends in Programming Languages,
3(2-3):95–230, 2016.

[3] D. Ancona, D. Briola, A. El Fallah Seghrouchni,
V. Mascardi, and P. Taillibert. Efficient verification of
MASs with projections. In F. Dalpiaz, J. Dix, and
M. B. van Riemsdijk, editors, Engineering Multi-Agent
Systems: Second International Workshop, EMAS
2014, Revised Selected Papers, pages 246–270.
Springer, 2014.

[4] D. Ancona, D. Briola, A. Ferrando, and V. Mascardi.
Global protocols as first class entities for self-adaptive
agents. In G. Weiss, P. Yolum, R. H. Bordini, and
E. Elkind, editors, International Conference on
Autonomous Agents and Multiagent Systems, AAMAS
2015. Proceedings, pages 1019–1029. ACM, 2015.

[5] D. Ancona, D. Briola, A. Ferrando, and V. Mascardi.
Runtime verification of fail-uncontrolled and ambient
intelligence systems: A uniform approach. Intelligenza
Artificiale, 9(2):131–148, 2015.

[6] D. Ancona, D. Briola, A. Ferrando, and V. Mascardi.
MAS-DRiVe: a practical approach to decentralized
runtime verification of agent interaction protocols. In
C. Santoro, F. Messina, and M. D. Benedetti, editors,
From Objects to Agents, 17th Workshop, WOA 2016.
Proceedings, volume 1664 of CEUR Workshop
Proceedings, pages 35–43. CEUR-WS.org, 2016.

[7] D. Ancona, S. Drossopoulou, and V. Mascardi.
Automatic generation of self-monitoring MASs from
multiparty global session types in Jason. In
M. Baldoni, L. A. Dennis, V. Mascardi, and W. W.
Vasconcelos, editors, Declarative Agent Languages and
Technologies X - 10th International Workshop, DALT
2012. Revised Selected Papers, volume 7784 of Lecture
Notes in Computer Science, pages 76–95. Springer,
2013.

[8] D. Ancona, A. Ferrando, and V. Mascardi. Theory and
Practice of Formal Methods: Essays Dedicated to
Frank de Boer on the Occasion of His 60th Birthday,
chapter Comparing Trace Expressions and Linear
Temporal Logic for Runtime Verification, pages 47–64.
Springer, 2016.

[9] D. Ancona, A. Ferrando, and V. Mascardi. Parametric

runtime verification of multiagent systems. In S. Das,
E. Durfee, K. Larson, and M. Winikoff, editors,
International Conference on Autonomous Agents and
Multiagent Systems, AAMAS 2017. Proceedings.
IFAAMAS, 2017.

[10] A. Bauer, M. Leucker, and C. Schallhart. Runtime
verification for LTL and TLTL. ACM Trans. Softw.
Eng. Methodol., 20(4):14, 2011.

[11] F. L. Bellifemine, G. Caire, and D. Greenwood.
Developing Multi-Agent Systems with JADE. Wiley,
2007.

[12] B. Bonakdarpour, P. Fraigniaud, S. Rajsbaum, and
C. Travers. Challenges in fault-tolerant distributed
runtime verification. In T. Margaria and B. Steffen,
editors, Leveraging Applications of Formal Methods,
Verification and Validation: Discussion,
Dissemination, Applications: 7th International
Symposium, ISoLA 2016. Proceedings, Part II, pages
363–370. Springer, 2016.

[13] R. H. Bordini, J. F. Hübner, and M. Wooldridge.
Programming Multi-Agent Systems in AgentSpeak
Using Jason. John Wiley & Sons, 2007.

[14] D. Briola, V. Mascardi, and D. Ancona. Distributed
runtime verification of JADE and Jason multiagent
systems with Prolog. In L. Giordano, V. Gliozzi, and
G. L. Pozzato, editors, Italian Conference on
Computational Logic, 29th edition, CILC 2014.
Proceedings, volume 1195 of CEUR Workshop
Proceedings, pages 319–323. CEUR-WS.org, 2014.

[15] D. Briola, V. Mascardi, and D. Ancona. Distributed
runtime verification of JADE multiagent systems. In
D. Camacho, L. Braubach, S. Venticinque, and
C. Badica, editors, Intelligent Distributed Computing
VIII - 8th International Symposium, IDC 2014.
Proceedings, volume 570 of Studies in Computational
Intelligence, pages 81–91. Springer, 2014.

[16] M. Carbone, K. Honda, and N. Yoshida. Structured
communication-centered programming for web
services. ACM Trans. Program. Lang. Syst.,
34(2):8:1–8:78, June 2012.

[17] M. Coppo, M. Dezani-Ciancaglini, L. Padovani, and
N. Yoshida. A gentle introduction to multiparty
asynchronous session types. In M. Bernardo and E. B.
Johnsen, editors, Formal Methods for Multicore
Programming - 15th International School on Formal
Methods for the Design of Computer, Communication,
and Software Systems, SFM 2015, Advanced Lectures,
volume 9104 of Lecture Notes in Computer Science,
pages 146–178. Springer, 2015.

[18] R. Corin, P. Deniélou, C. Fournet, K. Bhargavan, and
J. J. Leifer. Secure implementations for typed session
abstractions. In 20th IEEE Computer Security
Foundations Symposium, CSF 2007, pages 170–186.
IEEE Computer Society, 2007.

[19] P.-M. Deniélou and N. Yoshida. Multiparty session
types meet communicating automata. In H. Seidl,
editor, Programming Languages and Systems, 21st
European Symposium on Programming, ESOP 2012.
Proceedings, pages 194–213. Springer, 2012.

[20] N. Desai and M. P. Singh. Protocol-based business
process modeling and enactment. In Proceedings of the
IEEE International Conference on Web Services

247

(ICWS’04), pages 35–42. IEEE Computer Society,
2004.

[21] N. Desai and M. P. Singh. On the enactability of
business protocols. In D. Fox and C. P. Gomes,
editors, Proceedings of the Twenty-Third AAAI
Conference on Artificial Intelligence, AAAI 2008,
pages 1126–1131. AAAI Press, 2008.

[22] Y. Falcone, T. Cornebize, and J.-C. Fernandez.
Efficient and generalized decentralized monitoring of
regular languages. In E. Ábrahám and C. Palamidessi,
editors, Formal Techniques for Distributed Objects,
Components, and Systems: 34th IFIP WG 6.1
International Conference, FORTE 2014. Proceedings,
pages 66–83. Springer, 2014.

[23] A. Ferrando, D. Ancona, and V. Mascardi. Monitoring
patients with hypoglycemia using self-adaptive
protocol-driven agents: A case study. In M. Baldoni,
J. P. Müller, I. Nunes, and R. Zalila-Wenkstern,
editors, Engineering Multi-Agent Systems - 4th
International Workshop, EMAS 2016, Revised,
Selected, and Invited Papers, volume 10093 of Lecture
Notes in Computer Science, pages 39–58. Springer,
2016.

[24] P. Fraigniaud, S. Rajsbaum, M. Roy, and C. Travers.
The opinion number of set-agreement. In M. K.
Aguilera, L. Querzoni, and M. Shapiro, editors,
Principles of Distributed Systems: 18th International
Conference, OPODIS 2014. Proceedings, pages
155–170. Springer, 2014.

[25] P. Fraigniaud, S. Rajsbaum, and C. Travers. On the
number of opinions needed for fault-tolerant run-time
monitoring in distributed systems. In
B. Bonakdarpour and S. A. Smolka, editors, Runtime
Verification: 5th International Conference, RV 2014.
Proceedings, pages 92–107. Springer, 2014.

[26] G. Gottlob. On minimal constraint networks. Artif.
Intell., 191-192:42–60, 2012.

[27] M. Herlihy. Wait-free synchronization. ACM Trans.
Program. Lang. Syst., 13(1):124–149, Jan. 1991.

[28] P. B. Ladkin and S. Leue. Interpreting message flow
graphs. Formal Aspects of Computing, 7(5):473–509,
1995.

[29] I. Lanese, C. Guidi, F. Montesi, and G. Zavattaro.
Bridging the gap between interaction-and
process-oriented choreographies. In 2008 Sixth IEEE
International Conference on Software Engineering and
Formal Methods, pages 323–332. IEEE, 2008.

[30] I. Lanese, F. Montesi, and G. Zavattaro. Amending
choreographies. In A. Ravara and J. Silva, editors,
Automated Specification and Verification of Web
Systems, 9th International Workshop, WWV 2013.
Proceedings, volume 123 of EPTCS, pages 34–48, 2013.

[31] J. A. McCarthy and S. Krishnamurthi. Cryptographic
protocol explication and end-point projection. In
S. Jajodia and J. López, editors, Computer Security -
ESORICS 2008, 13th European Symposium on
Research in Computer Security. Proceedings, volume
5283 of Lecture Notes in Computer Science, pages
533–547. Springer, 2008.

[32] U. Montanari. Networks of constraints: Fundamental
properties and applications to picture processing.
Information Sciences, 7:95–132, 1974.

[33] M. Mostafa and B. Bonakdarpour. Decentralized
runtime verification of LTL specifications in
distributed systems. In Parallel and Distributed
Processing Symposium, IEEE International
Conference, IPDPS 2015. Proceedings, pages 494–503,
2015.

[34] M. P. Singh. Information-driven interaction-oriented
programming: BSPL, the blindingly simple protocol
language. In L. Sonenberg, P. Stone, K. Tumer, and
P. Yolum, editors, 10th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS
2011), Volume 1-3, pages 491–498. IFAAMAS, 2011.

[35] M. P. Singh. LoST: Local state transfer - an
architectural style for the distributed enactment of
business protocols. In IEEE International Conference
on Web Services, ICWS 2011, pages 57–64. IEEE
Computer Society, 2011.

[36] M. P. Singh. Semantics and verification of
information-based protocols. In W. van der Hoek,
L. Padgham, V. Conitzer, and M. Winikoff, editors,
International Conference on Autonomous Agents and
Multiagent Systems, AAMAS 2012, pages 1149–1156.
IFAAMAS, 2012.

[37] B. Testerink, N. Bulling, and M. Dastani. Security
and robustness for collaborative monitors. In
V. Dignum, P. Noriega, M. Sensoy, and J. S. Sichman,
editors, Coordination, Organizations, Institutions, and
Normes in Agent Systems XI - COIN 2015
International Workshops, Revised Selected Papers,
volume 9628 of Lecture Notes in Computer Science,
pages 376–395. Springer, 2016.

[38] B. Testerink, M. Dastani, and N. Bulling. Distributed
controllers for norm enforcement. In G. A. Kaminka,
M. Fox, P. Bouquet, E. Hüllermeier, V. Dignum,
F. Dignum, and F. van Harmelen, editors, ECAI 2016
- 22nd European Conference on Artificial Intelligence
– Including Prestigious Applications of Artificial
Intelligence (PAIS 2016), volume 285 of Frontiers in
Artificial Intelligence and Applications, pages 751–759.
IOS Press, 2016.

248

