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ABSTRACT
We analyse the problem of finding an allocation of resources
in a multiagent system that is as fair as possible in terms
of minimising inequality between the utility levels enjoyed
by the individual agents. We use the well-known Atkin-
son index to measure inequality and we focus on the dis-
tributed approach to multiagent resource allocation, where
new allocations emerge as the result of a sequence of lo-
cal deals between groups of agents agreeing on an exchange
of some of the items in their possession. Our results show
that it is possible to design systems that provide theoreti-
cal guarantees for optimal outcomes that minimise inequal-
ity, but also that in practice there are significant compu-
tational hurdles to be overcome: finding an optimal allo-
cation is computationally intractable—independently of the
approach chosen—and large numbers of potentially highly
complex deals may be required under the distributed ap-
proach. From a methodological point of view, while much
work in multiagent resource allocation relies on combinato-
rial arguments, here we use insights from basic calculus.

Keywords
Multiagent Resource Allocation; Fair Division; Inequality
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1. INTRODUCTION

“What thoughtful rich people call the problem of poverty,
thoughtful poor people call with equal justice a problem of
riches.”

—Anthony B. Atkinson (1944 – 2017), Inequality [3]

Allocating resources to agents is one of the central tasks aris-
ing in most multiagent systems [9]. This is true not only for
systems of economic agents who need to share the value they
have generated together, but also for distributed systems of
problem-solving agents who need to share the computational
resources available to them. What makes a ‘good’ alloca-
tion heavily depends on the application at hand, but there
is broad consensus in the multiagent systems research com-
munity that, rather than coming up with new ad hoc criteria
for optimality for every new application, it is fruitful to base
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the design of a multiagent system on well-understood formal
criteria originally proposed in the literature on social choice
theory and welfare economics [20].

For instance, if an efficient allocation is sought, both
the notion of utilitarian social welfare, measuring quality in
terms of the sum of the individual utilities, and the weaker
notion of Pareto optimality have been found to be useful [26].
If fairness is a relevant design objective, there is a much
wider range of concepts to choose from, several of which
have been analysed in the literature on multiagent systems
in some detail: e.g., egalitarian social welfare, measuring
quality as utility of the worst-off agent, and its refinement
the leximin-ordering [14, 6], Nash social welfare, measuring
quality as the product of the individual utilities [24, 23],
and the absence of envy [17, 10]. However, fairness criteria
based on measuring inequality, which are widely used in the
social sciences [16, 2, 27], to date have received almost no
attention in the multiagent systems literature [19, 13].

To help close this gap, in this paper, we focus on one of the
most important representatives of this family of criteria, the
Atkinson inequality index, and analyse how to achieve alloca-
tions of resources that are optimal relative to this criterion.
Our main contributions concern the challenge of ensuring
convergence of an optimal allocation under the distributed
approach, where the goal is to obtain a good allocation by
means of a sequence of local exchanges of items between
(typically small) groups of agents [25, 14, 12, 10]. In addi-
tion, we analyse the computational complexity of comput-
ing an optimal allocation that minimises inequality, which
is relevant independently of the specific approach chosen
for performing multiagent resource allocation. Our results
show that, in principle, an appropriately designed system
can be made to guarantee outcomes with minimal inequality
amongst the agents, although in practice significant compu-
tational hurdles may have to be overcome. Specifically, we
may require arbitrarily complex deals and we may require an
exponential number of deals. From a methodological point
of view, while much work in multiagent resource allocation
relies on combinatorial arguments, here we specifically rely
on insights from basic calculus.

The remainder of this paper is organised as follows. In
Section 2 we introduce the model of multiagent resource
allocation with indivisible goods we shall be working with
and then recall the relevant definitions from the theory of
inequality measurement. Section 3 contains a simple com-
plexity result that clarifies the computational challenges in-
volved in minimising inequality amongst agents in a multi-
agent resource allocation problem. Our main contributions
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are presented in Section 4, where we set up a resource allo-
cation framework that allows agents to compute an optimal
allocation minimising inequality in a distributed manner,
by means of implementing a number of local deals. Our
technical results concern the guaranteed convergence to an
optimal outcome as well as the aforementioned limitations
of the framework. Section 5 concludes with a brief outlook
on future directions of research in this domain.

2. PRELIMINARIES
In this section, we first introduce the basic setting of multi-
agent resource allocation widely used in the literature [9, 5],
where a number of indivisible goods need to be distributed
amongst a number of agents who each have their own pref-
erences over which bundles of goods to obtain. We then re-
view the relevant definitions regarding inequality measure-
ment from the literature on welfare economics [2, 27, 20],
adapting them to the setting of indivisible goods [13].

2.1 Multiagent Resource Allocation
Let N = {1, . . . , n} be a finite set of agents, i.e., n = |N |,
and let G be a finite set of goods, with m = |G|. We refer to
the elements of the power set 2G as bundles. An allocation
is a function A : N → 2G , mapping agents to the bundles
they obtain, with A(i) ∩A(j) = ∅ for any i 6= j.

Every agent i ∈ N is equipped with a utility function
ui : 2G → R>0, mapping any bundle she might receive to
the (nonnegative) utility she attaches to that bundle. We
use ui(A) as a shorthand for ui(A(i)), the utility enjoyed by
agent i under allocation A. Every allocation A induces a
utility vector u(A) = (u1(A), . . . , un(A)). The collection of
all n utility functions is denoted by U . A scenario is a triple
〈N ,G,U〉. A collection U (and also the corresponding sce-
nario 〈N ,G,U〉) is called additive if ui(B) =

∑n
x∈B ui({x})

for all agents i ∈ N and bundles B ⊆ G.
The utilitarian social welfare of allocation A is defined

as swutil(A) =
∑
i∈N ui(A), and the closely related mean

value of A as µ(A) = 1
n
swutil(A). They reflect the eco-

nomic efficiency of A. The Nash social welfare swnash(A) =∏
i∈N ui(A) of allocation A can be used to measure fairness.

2.2 Inequality Indices
One way of comparing allocations consists in considering the
inequality induced by the corresponding utility vectors. This
can be measured by a so-called inequality index, which is a
function mapping allocations (or, equivalently, utility vec-
tors) to the interval [0, 1], where 0 stands for perfect equal-
ity (meaning that all agents receive the same utility, which
must not be 0). High values close or equal to 1 stand for
high inequality amongst the agents.

Famous examples of inequality indices are the Gini in-
dex [16], the Robin Hood index [18] (also called the maxi-
mum relative mean deviation), and the family of Atkinson
indices [2].

Every Atkinson index relies on a notion of social wel-
fare: For a given function sw mapping utility vectors to
their social welfare and for a utility vector u(A) of an al-
location A, first compute the so-called equally distributed
equivalent level of income µsw(A), such that the vector
(µsw(A), . . . , µsw(A)) has the same social welfare as u(A).
The Atkinson index based on the function sw is then defined
as Isw(A) := 1− µsw(A)

µ(A)
[2].

We will focus on the most important representative of this
family, the Atkinson index based on the Nash social welfare:

Inash(A) = 1−
n
√
swnash(A)

µ(A)
= 1−

n

√∏
i∈N ui(A)

1
n

∑
i∈N ui(A)

,

with Inash(A) = 0 if all individual utilities are 0.
While in the literature the term ‘Atkinson index’ is used

both for the family and for this concrete one, here we only
use it in this latter sense. From now on, we will use the
notation I instead of Inash. It is easy to see that I returns 0
if all the agents receive the same utility. Furthermore, we
can show that it never returns 0 in any other case:

Lemma 1. If I(A) = 0 for an allocation A, then all
agents receive the same utility, i.e.,

I(A) = 0 =⇒ ∀i ∈ N : ui(A) = µ(A).

Proof. The assertion follows from the inequality for the
arithmetic and the geometric mean, i.e.,

1

n

(
n∑
k=1

xk

)
> n

√√√√ n∏
k=1

xk

for any nonnegative real numbers x1, . . . , xn, with equality
if and only if x1 = x2 = . . . = xn. A proof can be found in
Cauchy’s Analyse Algébrique [8, pp. 457].

We focus on the Atkinson index, because of its importance
in the literature in the social sciences [2, 27, 1, 20]. While
some other indices, notably the Gini index, are more widely
used, the Atkinson index is often considered to be preferable
on normative grounds, due to its principled formulation in
terms of a notion of social welfare—in our case, Nash social
welfare, which itself enjoys sound axiomatic foundations, go-
ing back all the way to the seminal work of Nash [21, 27,
20, 7]. Furthermore, the Atkinson index fulfils the common
basic axioms for inequality indices which include the trans-
fer principle, symmetry, and scale invariance [11, 2, 1]. The
transfer principle states that transfers from an agent with a
high utility to one with low utility shall not increase the in-
equality (if their order is maintained). An inequality index
I is called symmetric if I(u(A)) = I(pu(A)) holds for any
permutation pu(A) of a utility vector u(A) (meaning that
the entries of u(A) are permuted). Finally, scale invariance
means that multiplication of all utilities by a (positive) con-
stant factor has no effect on the measured inequality.

3. COMPUTATIONAL COMPLEXITY
It is clearly desirable to find allocations that minimise the
inequality amongst the agents. One might in particular ask
whether, for a given scenario, there exists an allocation that
is perfectly equal. In this section, we consider the compu-
tational complexity of this problem when inequality is mea-
sured in terms of the Atkinson index. The Perfect Index
Optimisation problem is defined as follows:

Perfect Index Optimisation (PIO)

Instance: 〈N ,G,U〉
Question: ∃ allocation A : I(A) = 0?

Unfortunately, it turns out that this problem is NP-hard:
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Proposition 2. The decision problem PIO is NP-hard,
even for additive scenarios with just two agents.

Proof. First, note that, by Lemma 1, we have I(A) = 0
if and only if the two agents enjoy the same level of util-
ity. We use a reduction from the NP-hard Partition prob-
lem [15], which is defined as follows:

Partition

Instance: A finite set X, and a size s(x) ∈ Z>0

for each x ∈ X.
Question: Is there a subset X ′ ⊆ X such that∑

x∈X′ s(x) =
∑
x∈(X\X′) s(x)?

Given an instance 〈X, {s(x) | x ∈ X}〉 of the Partition
problem, we construct an instance 〈{1, 2},G,U〉 of PIO,
where G = X and u1(B) = u2(B) =

∑
b∈B s(b) for all B ⊆

G = X. Then it is easily checked that 〈X, {s(x) | x ∈ X}〉
is a YES-instance if and only if 〈{1, 2},G,U〉 is.

The Partition problem has previously been used to anal-
yse the complexity of problems arising in multiagent re-
source allocation, such as the problem of finding an alloca-
tion that maximises egalitarian social welfare when utilities
are additive [4, 22] and the problem of determining whether
a given allocation permits an inequality reduction by means
of a transfer between two agents with additive utilities [13].
We remark that NP-hardness for a less restricted scenario
(unbounded number of agents, symmetric utilities) of PIO
can also be shown by reduction from the Exact Cover by
3-Sets problem [15].

4. THE DISTRIBUTED APPROACH
As we have seen, the problem of deciding whether there
exists an allocation with perfect equality is computation-
ally intractable already for very restricted instances. Thus,
computing such an allocation will be just as hard. Neverthe-
less, we are interested in minimising inequality amongst the
agents. To this end, we will now explore adapting the so-
called distributed approach formulated by Endriss et al. [14],
relying on ideas originally introduced by Sandholm [25]. Un-
der this approach, starting from some initial allocation, the
agents can decide to arrange exchanges of some of the goods
between some of them by means of so-called deals. The key
idea is that the agents are supposed to only use local in-
formation: only some (preferably small number of) agents
may be involved in a deal and they only have access to in-
formation on the goods they own and on the goods they
exchange, not on the overall allocation. The goal is to de-
vise a protocol for the agents to follow that, despite this
limitation to local deals, permits them to negotiate an al-
location with good global properties. This approach has
been successfully applied to compute, in a distributed man-
ner, allocations that are optimal in view of, amongst others,
utilitarian social welfare [25], egalitarian social welfare [14],
Nash social welfare [23], and envy-freeness [10].

After defining the notion of a deal formally (in Sec-
tion 4.1), we will first prove that achieving convergence to
an allocation with minimal inequality is impossible for deals
that are local in the narrow sense in which this term has been
defined in the literature before (see Section 4.2). However,
we will then see that a very mild relaxation of this notion
of locality is sufficient to obtain a convergence result (see

δ = (A◦, A∗)
Agent 1:

A◦(1)={a,b}
A∗(1)={a,c}

N δ = {1, 2}

Agent 3:

A◦(3)={d}
A∗(3)={d}

Agent 2:

A◦(2)={c}
A∗(2)={b}

b

∅

∅

∅

∅

c

Figure 1: Scenario of Example 1 with a deal.

Section 4.3). This positive result is then tempered by two
further results. First, we show that we must admit arbitrar-
ily complex (yet semi-local) deals (see Section 4.4), and we
must allow for the possibility of exponentially long sequences
of deals before convergence is realised (see Section 4.5).

4.1 Deals and Sequences of Deals
A deal δ = (A,A′) is a pair of two (distinct) allocations A
and A′. The set of agents involved in the deal δ is denoted
by N δ, i.e., N δ := {i ∈ N | A(i) 6= A′(i)}.

Example 1. Consider the set of goods G = {a, b, c, d},
the set of agents N = {1, 2, 3}, and the two allocations
A◦ = ({a, b}, {c}, {d}) and A∗ = ({a, c}, {b}, {d}). The deal
δ = (A◦, A∗) with involved agents N δ = {1, 2}, in which
agent 1 gives item b to agent 2 and receives item c in return,
is visualised in Figure 1.

Note that a single deal may include any number of agents
and goods (even if we think of a typical deal as involving
just a few of each). We would like the agents to agree on a
sequence of deals that—somehow—converges to an alloca-
tion that minimises inequality. Let us first exclude two ap-
proaches that are definitely not useful. First, we could give
the agents complete freedom what deals to negotiate. This
protocol cannot ensure convergence, as we cannot exclude
the possibility of loops (e.g., they may indefinitely alternate
between A◦ and A∗ of Figure 1). Second, from any given al-
location we could only permit a single deal, namely the deal
that takes us straight to the optimal allocation. This also
is not useful, as it would not leverage any of the potential
power of the distributed approach and simply reduce it to a
fully centralised optimisation problem.

4.2 No Convergence by Local Deals
We are looking for a criterion to select admissible deals such
that (i) any sequence of admissible deals eventually leads
to an optimal allocation and (ii) the agents involved in any
given deal are able to determine locally whether that deal
is admissible. But how should we define ‘locality’ in this
context? Endriss et al. [14] call a criterion for determining
the admissibility of a deal δ = (A,A′) local if and only if the
question of whether δ is local can be answered by looking
only at the set {(i, ui(A), ui(A

′)) | i ∈ N δ}. In other words,
admissibility should only depend on the utility levels of the
agents involved before and after the deal.

Unfortunately, it is impossible to define a deal selection
criterion that is local in this sense and that could be used
to guide our search for an optimal allocation by only ever
admitting deals that reduce inequality:
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Proposition 3. It is impossible to always decide whether
a given deal δ = (A,A′) would decrease inequality as defined
by the Atkinson index by only inspecting the utility levels of
the agents involved in δ in allocations A and A′.

Proof. We construct an example where a given deal
would decrease inequality in one scenario but increase it in
another, while the local information on the utility levels of
the agents involved in that deal is the same in both scenar-
ios. Consider the two scenarios 〈N ,G,U1〉 and 〈N ,G,U2〉,
with N = {1,2,3} and G = {a, b, c, d}. The additive collec-
tions of utility functions U1 and U2 are defined in terms of
the values the agents assign to each of the items:

U1 a b c d U2 a b c d
1 : 2 1 3 4 1 : 2 1 3 4
2 : 2 5 2 1 2 : 2 5 2 1
3 : 1 2 1 6 3 : 3 2 3 2

Now consider the deal δ = (A◦, A∗) between allocations
A◦ = ({a, b}, {c}, {d}) and A∗ = ({a, c}, {b}, {d}), which is
the same deal we had already considered in Figure 1. Let us
compute the Atkinson index for each of the two allocations
in each of the two scenarios:

Scenario 〈N ,G,U1〉 Scenario 〈N ,G,U2〉

I(A◦) : 1−
3√3·2·6

1
3
·(3+2+6)

≈ 0.099 1−
3√3·2·2

1
3
·(3+2+2)

≈ 0.019

I(A∗) : 1−
3√5·5·6

1
3
·(5+5+6)

≈ 0.004 1−
3√5·5·2

1
3
·(5+5+2)

≈ 0.079

Thus, in the first scenario, δ decreases inequality, while
in the second scenario, δ increases inequality. Nevertheless,
the two agents involved in δ cannot distinguish between the
two scenarios. Hence, there can be no local criterion for the
admissibility of deals that would allow us to always select
deals that decrease inequality.

For comparison, when optimality is defined in terms of
utilitarian social welfare, egalitarian social welfare, or Nash
social welfare, local criteria for selecting deals that ensure
a social improvement do exist [14, 23]. When the goal is
to compute an envy-free allocation, there exists no suitable
local criterion, but this hurdle can be overcome by slightly
relaxing the requirements [10]. We shall follow a similar
route.

4.3 Convergence by Semi-Local Deals
Recall that the computation of the Atkinson index involves
both the geometric mean and the arithmetic mean of the
utilities of all agents. On the one hand, the local information
on the utility levels of the involved agents is sufficient to
determine both whether (i) the geometric mean increases or
decreases, and whether (ii) the arithmetic mean increases or
decreases.1 On the other hand, the underlying reason for the
impossibility stated in Proposition 3 is that, nevertheless,
this local information is not sufficient to determine which
of these two effects is stronger, and thus whether inequality
will increase or decrease.

We now define a semi-local criterion for the admissibility
of deals that relaxes the constraints on the information avail-
able a little and thereby allows us to overcome this problem.

1This is precisely the reason why it is possible to design
local criteria for agents wishing to compute allocations with
maximal Nash and utilitarian social welfare, respectively.

The central idea is to allow the agents to also access µ(A),
the (arithmetic) mean of the utilities of all agents (not just
the involved agents) before the deal. Given µ(A) and the
usual local information, we can compute µ(A′) for another
allocation A′ reached by the deal δ = (A,A′) as follows:

µ(A′) = µ(A) +
1

n
·
∑
i∈Nδ

(ui(A
′)− ui(A))

We still do not have full access to the geometric mean of
all utilities, but only to the extent to which it changes during
the deal. As will become clear shortly, this is not a problem.

Let us call a deal δ = (A,A′) an Atkinson deal if and only
if it satisfies the following condition:

n

√∏
i∈Nδ ui(A)

µ(A)
>

n

√∏
i∈Nδ ui(A

′)

µ(A) + 1
n
·
∑
i∈Nδ (ui(A′)− ui(A))

Observe that we can determine whether a given deal is an
Atkinson deal using semi-local information only: we require
the utility levels in A and A′ for the involved agents as well
as the mean value of the entire society in A. The good news
is that this is sufficient to allow us to compute an optimal
allocation in a distributed manner:

Theorem 4. For every scenario and initial allocation,
every sequence of Atkinson deals will eventually result in an
allocation that minimises inequality, as defined by the Atkin-
son index.

Proof. First, observe that a deal decreases inequality if
and only if it is an Atkinson deal (this is immediate from
the definitions of Atkinson index and Atkinson deals).

As there are only a finite number of allocations, any se-
quence without cycles has to terminate eventually. As every
deal in the sequence strictly decreases inequality, there can-
not be any cycles, which proves termination. Finally, it is
impossible for the terminal allocation A to not have min-
imal inequality, as then there would have to exist another
allocation A′ with lower inequality, which would make the
deal δ = (A,A′) an Atkinson deal, i.e., A could not have
been terminal in the first place.

Similar convergence results have been proved for a num-
ber of other criteria for social optimality [25, 14, 23, 10]. In
some cases, notably for utilitarian social welfare and envy-
freeness [25, 10], the admissibility criterion for deals has an
attractive interpretation as a rationality criterion for self-
ish agents. For example, in the case of utilitarian social
welfare, we obtain convergence by means of deals for which
myopic agents with quasi-linear utilities can negotiate prices
that benefit all agents involved in the deal. In other cases,
notably for egalitarian social welfare and Nash social wel-
fare [14, 23], just as for our result here, convergence theorems
should be interpreted as showing that cooperative agents can
collectively compute an optimal outcome without requiring
global coordination to guide their search. Specifically, Theo-
rem 4 shows that agents can freely contract deals with their
neighbours, safe in the knowledge that every single deal will
improve the global situation and no deal with cut them off
from a route to an optimal allocation.
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4.4 Necessity of Complex Deals
Theorem 4 shows that we will always reach an allocation
with minimal inequality, provided we keep on contracting
new Atkinson deals as long as any such deals exist. But
our result does not say anything about how complex these
deals are. Ideally, we would prefer deals that involve the
exchange of only a small number of goods between a small
number of agents. So we may ask whether a given deal,
particularly a deal of high structural complexity, might ever
become necessary for reaching an allocation with minimal
inequality. Unfortunately, this is indeed the case:

Theorem 5. For every deal δ, there exist utility func-
tions and a starting allocation, such that δ is necessary for
reaching an allocation that minimises inequality, as defined
by the Atkinson index, by means of Atkinson deals only.

Theorem 5 is bad news since it shows that, if we want to
reach an optimal allocation by using Atkinson deals, it might
be unavoidable to use very complex deals—even involving
all agents and all items. The proof is omitted for lack of
space. It makes use of Lemma 7 below which covers the
special case where δ is not independently decomposable (to
be defined shortly). For the remaining cases, it uses the fact
that any other deal can be decomposed into a sequence of
deals each of which is not independently decomposable.

In this context, a deal δ = (A,A′′) is called independently
decomposable if it concerns two separate sets of transactions
between two disjoint sets of agents, i.e., if there exists a
third allocation A′ such that, for the deals δ1 = (A,A′) and
δ2 = (A′, A′′), it is the case that N δ1 ∩N δ2 = ∅ [14].

To prove necessity of all independently decomposable
deals, we require the following technical lemma.

Lemma 6. For every n ∈ N>1, the function

T : [0, 1] → [0, 1]

x 7→ 1−
n
√

1− x
1− x

n

is strictly monotonically increasing and thus bijective.

Proof. T is well-defined and differentiable. Furthermore

T (0) = 0, T (1) = 1, and d
dx
T (x) = (n−1)x(1−x)(

1
n
−1)

(n−x)2 > 0

holds for all x ∈ ]0, 1[, which implies the claim.

We can now show that every deal that is not indepen-
dently decomposable is necessary in the above sense:

Lemma 7. For every deal δ = (A,A′) that is not inde-
pendently decomposable, there exist utility functions (ui)i∈N
and a starting allocation, such that δ is necessary for reach-
ing an allocation that minimises inequality, as defined by the
Atkinson index, by means of Atkinson deals only.

Proof. For the given deal δ = (A,A′), we construct a
utility function for every agent. As A and A′ are different,
there is at least one agent j with A(j) 6= A′(j). We fix this j
and let 0 < x < 1. We now define the utility functions for
any given bundle B ∈ 2G as

ui(B) =


1 if A′(i) = B,

1 if (i 6= j) and A(i) = B,

1− x if (i = j) and A(i) = B,
1
i+1

otherwise.

It is now easy to see that I(A′) = 0 and

I(A) = 1−
n
√

1− x
1− x

n

.

Next, we show that for any different allocation A∗ we
have I(A∗) > 0. As the deal δ is not independently de-
composable, there is at least one pair of agents k, ` with
uk(A∗) 6= u`(A

∗): otherwise, we would have ui(A
∗) = 1 for

all i ∈ N , meaning that A∗ agrees with either A or A′ for ev-
ery agent, i.e., δ would be independently decomposable into
the deals (A,A∗) and (A∗, A′), contradicting our assump-
tions. Thus, by Lemma 1, we must have that I(A∗) > 0.
As there are only finitely many possible allocations, we get

min
A∗ 6=A,A′

I(A∗) > 0.

We now choose some ε with 0 < ε < minA∗ 6=A,A′ I(A∗)
and then set x such that I(A) = ε, which is possible due
to Lemma 6. Hence, we have 0 = I(A′) < I(A) < I(A∗).
Thus, in this scenario, from allocation A, δ = (A,A′) is the
only deal reducing I, and thus the only Atkinson deal.

Our construction used in the proof of Lemma 7 is simi-
lar to the construction used to derive necessity results for
utilitarian and egalitarian social welfare [14] as well as Nash
social welfare [23]. In those other settings, not only are all
non-independently decomposable deals necessary, but these
are the only such deals. So Theorem 5 is a bad surprise, as
in the present setting the situation is worse and even deals
that are independently decomposable are necessary. The
following example also illustrates this fact:

Example 2. Consider the (additive) scenario 〈N ,G,U〉,
with N = {1,2,3,4} and G = {a, b, c, d}. The collection U
of additive utility functions is defined in terms of the values
the agents assign to each of the items:

U a b c d
1 : 4 10 4 4
2 : 10 3 3 3
3 : 2 2 2 10
4 : 1 1 10 1

Now consider the deal δ = (A,A′) between allocations
A = ({a}, {b}, {c}, {d}) and A′ = ({b}, {a}, {d}, {c}).
This deal is decomposable; there are two possible de-
composition sequences, (A,Ai1 , A′) and (A,Ai2 , A′) with
Ai1 = ({a}, {b}, {d}, {c}) and Ai2 = ({b}, {a}, {c}, {d}).

As U is additive, only allocations which assign exactly one
item to each agent are not completely unfair. So there are
only 4! allocations with inequality not equal to 1, but from
these, only Ai1 , Ai2 , and A′ have a different inequality from
A. The values of I for these four allocations are as follows:

I(A) : = 1−
4√4·3·2·1

1
4
·(4+3+2+1)

≈ 0.115

I(Ai1) = 1−
4√10·10·2·1

1
4
·(10+10+2+1)

≈ 0.346

I(Ai2) = 1−
4√4·3·10·10

1
4
·(4+3+10+10)

≈ 0.128

I(A′) = 1−
4√10·10·10·10

1
4
·(10+10+10+10)

= 0

So in this example, given the allocation A, the (indepen-
dently decomposable) deal δ = (A,A′) is necessary.
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Finally, we are able to show that deals involving all agents
and all goods can become necessary even for additive
scenarios—at least when the number of goods equals or ex-
ceeds the number of agents. Again, we omit all details for
lack of space.

4.5 Path Length to Convergence
In this section, we are interested in the number of deals
needed to reach an optimal allocation. It is clear that, given
a starting allocation A, it is always possible to reach an opti-
mal allocation Aopt with at most one Atkinson deal: just use
the deal as δ = (A,Aopt)—unless A already is optimal and
no deal is needed. It thus is more interesting to ask how long
a sequence of Atkinson deals from an initial to an optimal
allocation can be in the worst case. It is easy to establish an
upper bound: First, observe that there are nm possible allo-
cations (recall that n = |N | and m = |G|). Second, observe
that, since every Atkinson deal strictly reduces inequality,
we cannot visit any allocation twice. Hence, there can be
at most nm − 1 deals in total. We will show that there are
scenarios for which this theoretical maximum can in fact be
reached. To do so, we will construct a scenario where no two
allocations produce the same inequality. We start showing
this for the case of two agents in Lemma 8, before we proceed
to the general case of this assertion in Lemma 11.

Lemma 8. For two agents and m goods, m ∈ N, it is
possible to define utility functions such that any two distinct
allocations have a different value of I.

Proof. The proof of this lemma is inspired by the proof
of Lemma 1 in the work of Ramezani and Endriss [23] for the
Nash social welfare. We assign to agents 1 and 2 the prime
numbers 2 and 3, respectively. Now suppose each agent has
an ordering on all possible 2m bundles, and u1(B) = 2j if B
is the jth bundle in the first agent’s ordering. Analogously,
let u2(C) = 3j if C is the jth bundle in the second agent’s

ordering. In an allocation A, agent i receives the (jiA)
th

bun-
dle in his ordering. It is easy to see that any two allocations

A and A
′

have different Nash social welfare, since

swnash(A) = 2j
1
A · 3j

2
A = 2

j1
A
′ · 3j

2

A
′ = swnash(A′)

would imply directly j1A = j1A′ and j2A = j2A′ due to the
unique prime factorisation of every integer.

Now we will show that also I(A) = I(A′) implies A = A′:

I(A) = I(A′)

=⇒ 1−
√
swnash(A)

µ(A)
= 1−

√
swnash(A′)

µ(A′)

=⇒

√
2j

1
A · 3j2A

1
2
· (2j1A + 3j

2
A)

=

√
2j

1
A′ · 3j

2
A′

1
2
· (2j

1
A′ + 3j

2
A′ )

=⇒ 2j
1
A · 3j

2
A · (2j

1
A′ + 3j

2
A′ )2 = 2j

1
A′ · 3j

2
A′ · (2j

1
A + 3j

2
A)2.

As (2j + 3j
′
) ≡ 0 mod 2 can never hold for any (j, j′) ∈

{1, . . . , 2m}2 and also (2j + 3j
′
) ≡ 0 mod 3 can never hold

for any (j, j′) ∈ {1, . . . , 2m}2 , the unique prime factorisation
of each side of the last equation leads again directly to j1A =
j1A′ and j2A = j2A′ which implies A = A′.

We will require the following technical lemma:

Lemma 9. Let n ∈ N>2 and j1, j2, k1, k2 > 0. Then

1−
n
√

2j1 · 3k1
1
n

(2j1 + 3k1)
= 1−

n
√

2j2 · 3k2
1
n

(2j2 + 3k2)

holds iff j1 = j2 and k1 = k2.

Proof. This lemma can be be proved by proceeding anal-
ogously to the reasoning in the proof of Lemma 8.

The proof of Lemma 8 cannot easily be generalised for
more than 2 agents, as the argumentation with the modulo
calculation does not hold any longer: (2i + 3j + 5k) mod 5
can be equal to 0 for i = j = k, e.g., (21 +31 +51) mod 5 =
0. Nevertheless, the closely related Lemma 9 will help us to
prove the generalised statement for any number of agents.
But first, we prove one further technical lemma:

Lemma 10. Real functions ga,b : R→ R given by

ga,b(x) =
a · x

(b+ x)k

for a, b > 0 and k ∈ N can be interpolated exactly by using
just two points (x1, c1), (x2, c2) of the graph of the function
if we restrict the function to values x� b/k.

Proof. Given the two equations a·x1
(b+x1)k

= c1 and

a·x2
(b+x2)k

= c2, eliminating a leads to c1x2
c2x1

=
(
b+x2
b+x1

)k
. This

equation can be solved via

k

√
c1x2
c2x1︸ ︷︷ ︸
τ

=
b+ x2
b+ x1

⇒ τx2 − x1
1− τ = b,

so the interpolation is unique (meaning the equation has a
unique solution (a, b)).

This means that, if two functions of the above type agree
on their values for two (large enough) values of x, then they
already have to be identical. We will need this property for
constructing utility functions that imply different values of I
for each possible allocation in the corresponding scenario.

Lemma 11. For any natural numbers n and m, there ex-
ists a scenario 〈N ,G,U〉 with |N | = n and |G| = m such that
any two distinct allocations differ in inequality, as defined by
the Atkinson index.

Proof. We consider the scenario 〈N ,G,U〉 and construct
utility functions that fulfil the claim. As the elements of U
are the functions ui : 2G → R>0, it is possible to store all the

information of U in the n × 2m matrix P = (pi,j)
j=1,...,2m

i=1,...,n

with pij = ui(Bj). Herby we suppose some arbitrary, but
given ordering (B1, . . . , B2m) of the elements of 2G . For
given n,m ∈ N, we fill this matrix recursively to obtain the
desired result. We start the recursion with the first two rows
and the following entries:

P =


21 22 . . . 22m

31 32 . . . 32m

∗ ∗ . . . ∗
...

... . . .
...

∗ ∗ . . . ∗

 .

The symbol ∗ means that we have not yet fixed a value for
the corresponding entry. We notice an interesting property
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of this collection of 2m+1 real numbers. Let p = (p(1), p(2))
and q = (q(1), q(2)) be elements of

{21, 22, . . . , 22m} × {31, 32, . . . , 32m}.

Then, with the shorthand notation
∏
p =

∏2
i=1 p(i) and∑

p =
∑2
i=1 p(i), we see that

1−
2

√∏
p

1
2

∑
p

= 1−
2

√∏
q

1
2

∑
q

implies, by Lemma 9, that p = q. (This means, sloppily
speaking, that similarly as in Lemma 8, if utilities are given
by the already existing entries of P , any two different ‘al-
locations’ exhibit a different level of inequality—they only
have the same level if they are the same. At this stage, we
cannot speak of real allocations and I yet, since we are only
considering the utilities of bundles for a subset consisting
of two agents. We therefore also cannot compute I, but a
similar value by taking into account only those agents that
are already involved. We make this more formal below.)

We generalise this property to bigger collections of entries
of the matrix P . Let 1 6 ` 6 n and 1 6 k 6 2m. Suppose
we have already fixed values for the entries of the first `− 1
rows and for the first k− 1 entries of the `th row. For every
1 6 i 6 `− 1, we define

Pi := {pi,j : 1 6 j 6 2m} ⊂ R

as the set of entries in the ith row of P , corresponding to
the utilities that agent i assigns to the possible bundles,
and the Cartesian product P (`−1) := P1 × . . . × P`−1. For
the elements p = (p(1), p(2), . . . , p(` − 1)) of P (`−1) (con-
sisting of one entry from each of the already filled rows
of P ), we use the shorthand notation

∏
p =

∏`−1
i=1 p(i) and∑

p =
∑`−1
i=1 p(i).

We call a collection of the first ((`−1) ·2m+k−1) entries
from P feasible, if—sloppily speaking—for every choice of
one entry from each already filled row, i.e., for each set of
utilities for the possible bundles, any two ‘allocations’ would
exhibit a different value of inequality (again, we cannot re-
ally speak of I yet, as we only consider a partial allocation
as long as the matrix is not entirely filled, but this helps
for the intuition). More formally, this means in the case of
k = 1 (when the first entry of each row is computed) that

1−
`−1

√∏
p

1
`−1

(
∑
p)

= 1−
`−1

√∏
q

1
`−1

(
∑
q)

implies p = q and i = j for any p, q ∈ P (`−1) and
1 6 i, j 6 2m. If k > 2, we call the collection of the
(`− 1) · 2m + k − 1 already fixed entries of P feasible if

1−

√̀∏
p ·p`,i

1
`
(
∑
p +p`,i)

= 1−

√̀∏
q ·p`,j

1
`
(
∑
q +p`,j)

implies p = q and i = j for any p, q ∈ P (`−1) and 1 6 i, j < k.
The recursion step now is to fix the value for p`,k such that

the new collection of the (`− 1) · 2m + k − 1 + 1 then fixed
entries of P is also feasible. Table 1 illustrates the situation
of the recursion step. The entry to be fixed is marked by
an x. As we have seen in the remark after Lemma 9, just
taking powers of primes is not helpful. We therefore define
real functions that feature the property used in Lemma 10.

Table 1: The partially filled matrix P in the recur-
sion step in the proof of Lemma 11.

p1,1 . . . . . . . . . . . . . . . p1,2m
...

. . .
. . .

. . .
. . .

. . .
...

p`−1,1 . . . p`−1,k−1 p`−1,k p`−1,k+1 . . . p`−1,2m

p`,1 . . . p`,k−1 x ∗ . . . ∗
∗ . . . ∗ ∗ ∗ . . . ∗
...

. . .
. . .

. . .
. . .

. . .
...

∗ . . . ∗ ∗ ∗ . . . ∗



We will start with the recursion step for k = 1. We now
have to fix the value for p`,1. We define the family of func-
tions (fp)p∈P (`−1) with

fp : [0,∞) → [0, 1]

x 7→ 1−

√̀∏
p ·x

1
`
(
∑
p +x)

.

Any pair of distinct functions of this family cannot inter-
sect more than once if we restrict them to a suitable interval
of the form [π1,∞[ for some π1 ∈ R (which will be deter-
mined later on). To see this, we observe the connection to
Lemma 10. The equation

1−

√̀∏
p ·x1

1
`
(
∑
p +x1)

= 1−

√̀∏
p ·x2

1
`
(
∑
p +x2)

is equivalent to ∏
p ·x1

(
∑
p +x1)`

=

∏
p ·x2

(
∑
p +x2)`

.

Let p, q ∈ P (`−1) be given. If x1 and x2 are large enough
(for example 0 <

∑
p /`,

∑
q /` � x1 < x2), then fp(x1) =

fq(x1) and fp(x2) = fq(x2) imply p = q. This is true due to
Lemma 10.

Let π1 = maxp∈P (`−1)

∑
p /`. Then if we restrict the fam-

ily (fp)p∈P (`−1) to values greater than π1, any pair of those
functions can intersect not more than once by the above
analysis. Let π2 be the largest x-value such that two of these
functions intersect. If we choose for p`,1 a value greater than
π2, we obtain that

1−

√̀∏
p ·p`,1

1
`
(
∑
p +p`,1)

= 1−

√̀∏
q ·p`,1

1
`
(
∑
q +p`,1)

implies p = q for any p, q ∈ P (`−1).
The recursion step for k > 1 is almost the same.

We basically just have to replace p`,1 by p`,k. Fur-
thermore, we have to choose for p`,k a value not only
greater than the corresponding π2, but also greater that
some other lower bound implicitly given by the set Z ={

1−
√̀∏

q ·p`,i
1
`
(
∑
q +p`,i)

}
q∈P (`−1),16i<k

. As maxZ < 1, choosing x

large enough will result in 1 > fp(x) > z for all p ∈ P (l−1)

and z ∈ Z. This can be done since (i) limx→∞ fp(x) =
1, and (ii) fp(0) = 1 if an only if x = 0 hold for all
fp ∈ (fp)p∈P (`−1) . So, choosing x large enough to obtain

1 > fp(x) > z for all p ∈ P (l−1) and z ∈ Z is possible.
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We also refer to Figure 2 for an intuition: All functions
fp have the shape of the function shown in the plot. In
particular, all functions of this type are differentiable with

d

dx
fp(x) = −

√̀∏
p

·

 √̀
x
`

(
(
∑
p +x)

`·x − 1
)

( 1
`+1

)2(
∑
p +x)2

 ,

so the sign of
d

dx
fp(x) is determined by the term(

(
∑
p +x)

(`+1)x
− 1
)

. It is easy to check that

d

dx
fp(x)


< 0 if x ∈ ]0,

∑
p /`[,

= 0 if x =
∑
p /` and

> 0 if x ∈ ]
∑
p /`,∞[.

5 10 15 20

1

x� 1000

x

f(2,3)(x)

Figure 2: A sketch of the function fp ∈ (fp)p∈P (`−1)

with ` = 3 and p = (2, 3). All functions used in the
proof of Lemma 11 have a similar shape, in particu-
lar we use that limx→∞ fp(x) = 1 for all fp.

Now let us check P = (pi,j)
j=1,...,2m

i=1,...,n . By construction, the

function F : P (n) → [0, 1], p 7→ 1−
n
√∏

p
1
n
(
∑
p)

is injective. We

define UN ,G := {u(A) : A is an allocation in 〈N ,G,U〉}. Then

UN ,G⊆P (n) and F|UN ,G =I|UN ,G , completing the proof.

The uniqueness property just established now is key to
proving the result announced earlier (recall once more that
n is the number of agents and m is the number of goods):

Theorem 12. A sequence of Atkinson deals leading to an
allocation that minimises inequality, as defined by the Atkin-
son index, can consist of up to nm − 1 deals, but not more.

Proof. There are nm possible allocations (each of the m
items may be given to any of the n agents). By Lemma 11,
there exist scenarios for which each of these allocations has
a unique value of I. Then, by ordering all allocations in
descending order by their value of I and by defining the
corresponding deals between these allocations, we obtain a
sequence of nm − 1 deals. Each of these deals decreases
inequality and therefore is an Atkinson deal. The argument
for why there can never be more than nm−1 Atkinson deals
in a row has been given at the beginning of Section 4.5.

5. CONCLUSION
We have shown that the Atkinson index, one of the most
important social fairness criteria in the literature, can be

optimised in a distributed manner (Theorem 4) and thus is
suitable for implementation as an objective in a multiagent
system. We have been able to do so despite two inherent
difficulties: the fact that the problem of finding an opti-
mal allocation (with perfect equality) is NP-hard (Proposi-
tion 2), and the fact that the essence of what it means to re-
duce inequality cannot be captured locally (Proposition 3).
While most other social criteria studied in the context of
multiagent resource allocation also require us to solve com-
putationally intractable optimisation problems [9], the only
other such criterion that also shares the second difficulty
and that nevertheless has been analysed successfully using
the distributed approach is envy-freeness [10].

While Theorem 4 is encouraging, our additional results
show that implementing this solution still comes with sig-
nificant practical challenges. First, agents must be able to
agree on arbitrarily complex exchanges of resources, without
any limits on either the number of agents or the number of
resources involved (Theorem 5). Second, the number of ex-
changes implemented before an optimal allocation is reached
can get very high and in the most extreme case we might
end up visiting every logically possible allocation along the
way (Theorem 12). For these negative results in particular,
we have made use of analytical techniques from the basic
calculus toolbox, which is unusual in the field of multiagent
resource allocation and which we hope might be useful to
others working on related problems.

We also hope that our work will inspire other researchers
in multiagent systems, first, to use the formal notion of social
inequality in the design of practical multiagent systems and,
second, to further advance our state of knowledge regarding
the algorithmic challenge of minimising inequality in a mul-
tiagent system. Both aspects are currently underrepresented
in multiagent systems research (the very few exceptions in-
clude the works of Lesca and Perny [19] and Endriss [13]),
even though inequality indices are widely studied and used
in practice across much of the social sciences.

Our work also suggests a number of very concrete avenues
for future research. First, is a similar analysis possible for
other inequality indices? For the Gini index [16], we con-
jecture that it would be difficult to achieve optimisation in
a distributed manner without making major concessions re-
garding the definition of the ‘locality’ of a deal. For the Theil
index [28], another popular inequality index, our own prelim-
inary results show that distributed optimisation likely will be
possible, but in a less elegant manner than for the Atkinson
index. Second, how obstructive are our negative results in
practice? To address this question, we might generate a sce-
nario (using synthetic preferences or preferences extracted
from a real-world problem) and simulate what happens when
agents randomly choose between one of the Atkinson deals
currently available to them (possibly giving more weight to
structurally simpler deals). One could investigate how often
such a system gets stuck in a state where all available deals
exceed some given structural complexity threshold (to assess
the practical relevance of Theorem 5). One could also count
the average number of deals contracted in such a system (to
assess the practical relevance of Theorem 12).
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