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ABSTRACT
The success or failure of any learning algorithm is partially
due to the exploration strategy it exerts. However, most
exploration strategies assume that the environment is sta-
tionary and non-strategic. This work investigates how to de-
sign exploration strategies in non-stationary and adversarial
environments. Our experimental setting uses a two agents
strategic interaction scenario, where the opponent switches
between different behavioral patterns. The agent’s objec-
tive is to learn a model of the opponent’s strategy to act
optimally, despite non-determinism and stochasticity. Our
contribution is twofold. First, we present drift exploration
as a strategy for switch detection. Second, we propose a new
algorithm called R-max# that reasons and acts in terms of
two objectives: 1) to maximize utilities in the short term
while learning and 2) eventually explore implicitly looking
for opponent behavioral changes. We provide theoretical
results showing that R-max# is guaranteed to detect the
opponent’s switch and learn a new model in terms of finite
sample complexity.
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1. INTRODUCTION
Regardless of a task’s nature and whether an agent is in-

teracting with another agent, a human or is isolated in its
environment, it is reasonable to expect some conditions will
change in time. Unfortunately, a non-stationary environ-
ment invalidates assumptions behind many current learning
algorithms. Examples include charging vehicles in the smart
grid, poker playing, robot soccer teams and human-machine
interaction scenarios. All these scenarios have one thing in
common: agents must learn how their counterpart is acting
and react quickly to changes in the opponent behavior.

Game theory provides the foundations for acting opti-
mally under competitive and cooperative scenarios. How-
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ever, its common assumptions that opponents are fully ra-
tional and their strategies are stationary are too restrictive
to be useful in many real interactions. This work relaxes
some assumptions about the environment, and focuses on
the concrete setting where an opponent switches from one
stationary strategy to a different stationary strategy.

We start by showing how an agent facing a stationary op-
ponent strategy in a repeated game can treat such an oppo-
nent as a stationary (Markovian) environment, so that any
RL algorithm can learn the optimal strategy against such
opponents. We then show that this is not the case for non-
stationary opponent strategies, and argue that classic explo-
ration strategies (e.g. ε-greedy or softmax) are the cause of
such failure. First, classic exploration techniques tend to de-
crease exploration rates over time so that the learned (opti-
mal) policy can be applied. However, against non-stationary
opponents it is well-known that exploration should not de-
crease so as to detect changes in the structure of the envi-
ronment at all times. Second, exploring “blindly” can be a
dangerous endeavour because some exploratory actions can
cause the opponent to switch strategies, which may be harm-
ful. Here, we use recent algorithms that perform efficient
exploration [2] as stepping stone to derive a new exploration
strategy against non-stationary opponent strategies.

2. DRIFT EXPLORATION
In order to motivate drift exploration, take the example

depicted in Figure 1, where the learning agent faces a switch-
ing opponent in the iterated prisoner’s dilemma. First, at
time t1 the opponent starts with a strategy that defects
all the time, i.e., Bully. The learning agent using counts
can recreate the underlying MDP that represents the op-
ponent’s strategy (i.e., the learned Bully model) by trying
out all actions in all states (exploring). Second, (t2 in the
figure) the agent can solve for the optimal policy against
this opponent because it has learned a correct model — the
agent learns to defect, which will produce a sequence of vis-
its to state Dopp,Dlearn. Third, at time t3, the opponent
switches its selfish Bully strategy to a fair TFT strategy.
But because the transition ((Dopp,Dlearn), D) = Dopp,Dlearn

in both MDPs, the switch in strategy (Bully → TFT) will
never be visited by the learning agent.

This problem occurs because opponent strategies may share
similarities in their induced MDP (specifically, between tran-
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Figure 1: States are ovals — the state space is formed

by the last action (C and D) of the learning agent (learn)

and the opponent (opp). Each arrow has a corresponding

triplet: learning agent action, transition probability and

reward to the next state. An example of a learning agent

against a Bully-TFT switching opponent. This example

shows two MDPs: the opponent starts with Bully at time

t1 and switches to TFT at time t3.

sition functions) when they share the same state and action
spaces. This happens when the agent’s optimal policy pro-
duces the same ergodic set of states, for two or more op-
ponent strategies. It turns out this is not uncommon; for
example the optimal strategy against Bully produces the
sole state Dopp,Dlearn, however, this part of the MDP is
shared with TFT. Therefore, if the agent is playing against
Bully, and is stuck in that ergodic set, and a change of the
opponent strategy to (say) TFT will pass unnoticed. After
this shift, the unobservant learning agent will no longer be
using the optimal strategy. This effect is known as shadow-
ing and can only be avoided by continuously checking far
visited states. The solution to this is to explore even when
an optimal policy has been learned. Exploration schemes
like ε-greedy or softmax, can be used for such purpose and
will work as drift exploration with the added cost of not
efficiently exploring the state space.

Against this background, our novel approach to drift ex-
ploration allows us to efficiently explores the state space,
looking for changes in the transition function. The core idea
of our new algorithm, R-max# [4], is to force the agent to
revisit state-action pairs. These pairs 1) are considered to
be known and 2) have not been updated in τ rounds. To en-
courage exploration, the algorithm resets its reward value for
these pairs to rmax in order to promote exploration of that
pair, which implicitly rechecks to determine if the opponent
model has changed. We show that R-max# will eventu-
ally relearn a new model for the MDP after the opponent
switches and compute a near-optimal policy [4].

Theorem 1. Let τ = 2m|S||A|T
ε

log |S||A|
δ

and M’ be the
new L-round MDP after the opponent switches its strategy.
For any δ > 0 and ε > 0, the R-max# algorithm guarantees

an expected return of U∗M′(ct)−2ε within O(m|S|
2|A|T3

ε3
log2 |S||A|

δ
)

timesteps with probability greater than 1−δ, given timesteps
t ≤ L.

We tested two different domains: the iterated prisoner’s
dilemma and a negotiation task. Our results suggest that
switch detection mechanisms [3] were not enough to deal
with non-stationary opponent. Similarly, R-max [2] failed
to update its model, and when keeping a non-decreasing
learning rate and exploration WOLF-PHC [1] is capable of
adapting, but it does so slowly (see Figure 2). The general
approach of drift exploration by means of ε-greedy or soft-
max, solves the problem since this exploration re-visits some
parts of the state space that eventually will lead to detect
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Figure 2: On top its depicted how the opponent changes

among four strategies during the interaction. Immediate

rewards of R-max# (τ = 90), R-max and WOLF-PHC in

a negotiation domain.

switches in the opponent strategy. However, the main lim-
itation is that such algorithms are not very efficient since
they explore in an undirected way. R-max#which implic-
itly handles drift exploration, is generally better equipped
to handle non-stationary opponents of different sorts.

3. CONCLUSIONS
Our contribution is twofold. First, we present drift explo-

ration as a strategy for switch detection and encode this in a
new algorithm, MDP-CL(DE). This approach keeps explor-
ing during the complete interaction and performs an undi-
rected exploration of the state space. The second contri-
bution is a new algorithm with implicit drift exploration,
R-max# which makes efficient use of exploration experi-
ences, taking into account which parts of the space state
need to be re-visited, which results in rapid adaptation and
efficient drift exploration, to deal with the non-stationary
nature of the opponent behavior. We provided theoreti-
cal results of R-max# that guarantee switch detection and
near-optimal expected rewards. Experiments performed in
two domains showed that R-max# with a good parameter-
ization converges to the optimal policy and is capable of
adapting quickly to non-stationary opponent strategies ei-
ther deterministic or stochastic. Its parameter, τ , shows a
tradeoff: a large value enough to learn a sufficiently good
model, yet small value to promote exploration for possible
switches.
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