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ABSTRACT
We aim to find a winning strategy that determines the arguments
a proponent should assert during a dialogue such that it will suc-
cessfully persuade its opponent of some goal arguments, regardless
of the strategy employed by the opponent. By restricting the strate-
gies we consider for the proponent to what we call simple strategies
and by modelling this as a planning problem, we are able to use an
automated planner to generate optimal simple strategies for real-
istically sized problems. These strategies guarantee with a certain
probability (determined by the proponent’s uncertain model of the
arguments available to the opponent) that the proponent will be suc-
cessful no matter which arguments the opponent chooses to assert.
Our model accounts for the possibility that the proponent, when
asserting arguments, may give away knowledge that the opponent
can subsequently use against it; we examine how this affects both
time taken to find an optimal simple strategy and its probability of
guaranteed success.
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1. INTRODUCTION
Argumentation theory allows reasoning with inconsistent and

uncertain information and is a key sub-field of artificial intelligence
[2], due in part to its potential to act as a bridge between human
and machine reasoning [31]. Argument dialogues provide a prin-
cipled way of structuring rational interactions between agents (be
they human or machine) who argue about the validity of certain
claims and each aim for a dialogue outcome that achieves their di-
alogue goal (e.g., to persuade the other participant to accept their
point of view [34], to reach agreement on an action to perform [3],
or to persuade a human user to change their behaviour [23, 39]).
Achievement of an agent’s dialogue goal typically depends on both
the arguments that the agent chooses to make during the dialogue,
determined by its strategy, and the arguments asserted by its inter-
locutor. The strategising agent, which we refer to as the proponent,
thus has the difficult problem of having to consider not only which
arguments to assert but also the possible responses of its opponent.
Since the opponent may make use of knowledge from arguments
asserted by the proponent to construct new arguments, the propo-
nent must also take care not to divulge information that its opponent
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can use against it. Recent works have considered how the propo-
nent might use an uncertain (probabilistic) model of its opponent
in order to guide its choice of which arguments to assert (e.g., [4,
18, 22, 24, 25, 26, 36, 39]).

We consider a strategic argumentation setting where two agents
exchange arguments, and the proponent aims to persuade its op-
ponent of some goal arguments. Our proponent has an uncertain
model of the opponent’s arguments but no knowledge of its strat-
egy, and so we aim to find a strategy that will be successful no
matter which arguments the opponent asserts. This problem is
PSPACE-complete [29] however by restricting the proponent strate-
gies we consider to what we call simple strategies and translating
our problem to a planning problem, we can use an automated plan-
ner to find strategies that have a certain probability of being effec-
tive, regardless of the strategy employed by the opponent.

The planning problem involves finding a sequence of permissible
actions that will transform a given initial state into a state that satis-
fies the goal. In general, propositional planning is PSPACE-hard [8]
however decades of research has led to scalable planning systems
capable of solving realistic problems. Our contribution is to trans-
late our strategic argumentation problem to a planning problem in
the standard planning language PDDL2.1 [16] so that a solution
to the problem (which we find using the POPF planner [13]) has a
certain probability of being a winning strategy for the proponent no
matter which arguments the opponent asserts. By repeatedly solv-
ing the proposed planning problem, each time updating the target
probability to be greater than that of the previous solution, we can
maximise the probability of guaranteed success and generate an op-
timal simple strategy. This does not necessarily imply that a solu-
tion found by our approach is an optimal strategy in general, since
(to improve scalability) we restrict the planner to only search for
simple strategies, which predetermine a sequence of arguments for
the proponent to assert (in contrast, e.g., to a policy where the pro-
ponent’s assertions can depend on those of its opponent); however
our results show that the solutions found by our approach typically
perform well, with reasonable probability of guaranteed success.

The important challenge of how to generate proponent strate-
gies for persuasion has not been widely explored [41]. Hadoux
et al. [18], Rosenfeld and Kraus [39], Hadoux and Hunter [20]
and Rienstra et al. [36], respectively, employ mixed observability
Markov decision processes [32], partially observable Markov deci-
sion processes [28], decision trees, and a variant of the maxmin al-
gorithm [11], to determine an effective proponent strategy; in con-
trast to our approach, none of these works aims to find a strategy
that guarantees a certain probability of success no matter which
arguments the opponent chooses to assert. Black et al. [4] and
Hunter [22, 24, 25] also consider how a model of the arguments
either known [4] or believed [22, 24, 25] by the opponent can be
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used to determine optimal dialogues, but for an asymmetric persua-
sion setting, where only the proponent may assert arguments.

Other related works take a game-theoretic approach to investi-
gate strategic aspects of argumentation (e.g., [27, 30, 35, 37]), but
these typically depend on complete knowledge and the assumption
that each participant will play optimally to maximise their utility.
These assumptions are too strong for many settings (particularly
if we are engaged in agent-human persuasion, as recent work has
shown that humans do not typically conform to optimal strategies
in an argumentative context [38]). We focus here on settings where
the proponent may be unaware of the opponent’s goal(s) and has no
information about the opponent’s strategy; we aim to find a strategy
for the proponent that has a reasonable chance of being effective no
matter which arguments the opponent chooses to make.

Hunter and Thimm [26] introduce the notion of argumentation
lotteries, which can be used to capture uncertainty over the argu-
ments and attacks known to an opponent and thus to determine the
expected utility of a particular assertion with regards to whether it
will bring about a desired dialectical outcome. In contrast, our ap-
proach considers the outcome that is determined from the eventual
result of the dialogue, taking into account all possible assertions
that the opponent may make in order to find an effective strategy.

Caminada [10] presents an argument dialogue system that can
be used to explain why an argument is justified under the grounded
semantics [14] and shows that this is sound and complete with re-
spect to existence of a winning strategy for the proponent (under
the assumption that the arguments available to the opponent are
precisely known to the proponent). Our approach, in contrast, is
applicable to any argumentation semantics, deals with uncertainty
over the opponent’s arguments, and aims to persuade the opponent
no matter whether the goal argument(s) are justified by the chosen
semantics.

We believe this is the first work to present an automated plan-
ning approach for producing effective strategies for symmetric per-
suasion that accounts for the uncertainty of the proponent’s model
of the opponent by finding strategies that have a certain probabil-
ity of guaranteed success no matter which arguments the opponent
chooses to assert. Furthermore, we believe the work presented here
is the first to generate proponent strategies that account for the pos-
sibility that the opponent may exploit information obtained from
the arguments asserted by the proponent to construct arguments un-
known to it at the start of the dialogue.

This work expands a previous extended abstract [5], which gives
an overview of our approach but no results. The remainder of the
paper is structured as follows: In Section 2 we define the strategic
argumentation problem addressed here. Section 3 introduces some
formal preliminaries of planning with propositional and numeri-
cal variables, while in Section 4 we define the translation of our
strategic argumentation problem to a planning problem. Section 5
investigates the performance of our approach, considering both the
time taken to find an optimal simple strategy and its probability of
success. We conclude with a discussion in Section 6.

2. STRATEGIC ARGUMENTATION
We focus on dialogues in which the proponent P and opponent
O exchange sets of arguments. The proponent aims to persuade its
opponent of the acceptability of some set of goal arguments G. We
make no assumptions about the opponent’s dialogue goal. The ar-
guments exchanged during a dialogue and the conflicts between
these arguments can be represented as an argumentation frame-
work [14].

DEFINITION 1. An argumentation framework is a pair AF =

(A,→), whereA is a non-empty set of arguments and→⊆ (A×
A) is a binary attack relation on A.

Different semantics, capturing different rationality criteria, can
be applied to an argumentation framework in order to determine
subsets of arguments (called extensions) that can collectively be
considered acceptable, given the conflicts present in the argumen-
tation framework [14]. We define here particularly the grounded
semantics, which we use in our evaluation (Section 5).

DEFINITION 2. A semantics is a function η that is applied to
an argumentation framework AF = (A,→) and returns a set of
extensions η(AF) ⊆ 2A. An extension E ∈ η(AF) is conflict-free
if there are no x, y ∈ E such that x → y. An extension E ⊆ A
defends an argument x ∈ A if for every y ∈ A such that y → x,
there is some z ∈ E such that z → y. Let ED denote that set of
arguments defended byE. The grounded semantics gr(AF) returns
the (unique) subset-minimal conflict-free extension E of AF such
that E = ED .

Using some chosen semantics, we can identify those arguments
deemed to be acceptable with respect to a given framework. In
the evaluation we present in Section 5, we use the grounded ac-
ceptability function (defined below) however our translation to a
planning problem does not depend on the grounded semantics. Our
approach requires only that some acceptability function is defined;
one can instantiate this with either a credulous or sceptical attitude
(see below) and with one’s chosen semantics as desired.

DEFINITION 3. Let accθη be an acceptability function that as-
signs to each argumentation framework AF a set of acceptable ar-
guments with respect to some semantics η and either a credulous
(θ = c) or sceptical (θ = s) attitude as follows: acccη = {a :
a ∈

⋃
E∈η(AF)E}, accsη = {a : a ∈

⋂
E∈η(AF)E}. Note that

since the grounded semantics returns a unique extension, we de-
note the grounded acceptability function as accgr(AF) = {a : a ∈
gr(AF)}.

Agents are represented by arguments available to them at the
start of the dialogue, together with a closure operator that is used
to ‘derive’ new arguments from a given set of arguments. This al-
lows us to handle the case where the opponent can construct new
arguments unknown to them at the start of the dialogue by combin-
ing constituent elements of arguments asserted by the proponent
with its own knowledge. This same feature is achieved in [40] by
means of a set of ‘derivation rules’ of the form a0, . . . , ak ⇒ b,
where a0, . . . , ak, b are arguments. We assume agents share the
same attack relation and so represent the set of all arguments that
can be available to either agent by the argumentation framework
AF = (A,→).

DEFINITION 4. An agent model is a tuple Ag = (KAg, µAg),
where KAg ⊆ A is the set of arguments available to the agent,
and µAg : 2A → 2A describes a closure operator on A such that,
for all B, C ⊆ A, the following conditions hold:

– (extensivity) B ⊆ µAg(B),

– (monotonicity) if B ⊆ C then µAg(B) ⊆ µAg(C),

– (idempotence) µAg(µAg(B)) = µAg(B).

Our proponent has an uncertain model of its opponent, described
by a probability distribution over a set of possible agent models.
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DEFINITION 5. An (uncertain) opponent model is a pairM =
(E , p), where E is a finite set of agent models (which we refer to
as possible opponent models) and p : E → Q is a probability dis-
tribution over E such that p(Oi) > 0, for each Oi ∈ E , and∑
Oi∈E p(Oi) = 1, where p(Oi) denotes the proponent’s per-

ceived likelihood that its opponent can be represented by the agent
model Oi.

We consider dialogues where the agents take turns to assert sets
of arguments, not repeating arguments previously asserted, and that
terminate only when each has nothing further they wish to assert.
A dialogue is successful for the proponent if its goal arguments are
determined to be acceptable under the chosen acceptability func-
tion, given the arguments asserted during the dialogue.

DEFINITION 6. We define a dialogue to be a sequence of moves
D = [M0,M1, . . . ,Mn] where each move Mk ⊆ A is a finite set
of arguments, such that Mi ∩Mj = ∅, for i 6= j, and Mk−1 ∪
Mk 6= ∅, for k < n. Let args(D) =

⋃
k≤nMk denote the set of

arguments asserted during the dialogue. A dialogue is terminated
iff Mn = Mn−1 = ∅. A dialogue D is successful with respect to
a set of goal arguments G ⊆ A iff G ⊆ accθη(AFD), where accθη
is the chosen acceptability function and AFD = (args(D),→D) is
the argumentation framework induced byD on AF, where→D=→
∩ (args(D)× args(D)).

Note that we do not aim here to model human persuasion, which
may involve richer interactions than the simple exchange of argu-
ments. Nevertheless, understanding how an agent can select which
arguments to assert in a strategic argumentation setting such as we
define here is an important and timely challenge (see, e.g., [18, 20,
29, 36, 39, 41]) key to understanding how an agent can select per-
suasive arguments. Furthermore, recent works have shown how
dialogues in which a proponent agent is able only to assert argu-
ments can be applied in order to bring about behaviour change in a
human user [24, 39].

An agent’s strategy determines the moves it makes during a di-
alogue. We assume that agents only assert arguments from their
private knowledge KAg together with any inferred arguments that
they can derive (with their closure operator µAg) from their private
knowledge and the arguments asserted thus far. As the success of
a dialogue is determined only by the arguments that have been as-
serted and not the order in which they have been asserted, we con-
sider strategies that, likewise, consider only those arguments that
have been asserted, regardless of their position in the dialogue.

DEFINITION 7. A (general) strategy for Ag = (KAg, µAg) is a
function σAg : 2A → 2A such that σAg(B) ⊆ µAg(KAg ∪ B)
and σAg(B) ∩ B = ∅, for all B ⊆ A. Given a pair of strategies
(σP , σO), let D(σP ,σO) = [M0, . . . ,Mn] be the dialogue such
that Mk = σAg(M0 ∪ · · · ∪Mk−1), for all k ≤ n, where Ag = P
whenever k is even and Ag = O whenever k is odd.

We aim to find a strategy that will lead to a successful dialogue
no matter which possible opponent model is accurate and regard-
less of the opponent’s strategy. As it may be the case that no such
strategy exists, we consider instead strategies with greater than λ
probability of being a winning strategy, with respect to the propo-
nent’s model of the opponent.

DEFINITION 8. A strategy σP is effective against an opponent
O if there is no strategy σO that O could play such that D(σP ,σO)

is terminated but unsuccessful. Let (E , p) be P’s opponent model
and E ′ ⊆ E be the set of possible opponent models against which
σP is effective, then σP is a λ-winning strategy iff

∑
Oi∈E′ p(Oi) >

λ.

|A| All strategies All simple strategies
4 4.29× 109 26
6 6.28× 1057 1,081
8 1.80× 10308 94,586

Table 1: Number of possible simple strategies compared with
the total number of possible strategies.

a

b

c

d e

f

Figure 1: Illustration of AF and µ from Example 1

Our strategic argumentation problem is as follows:

Instance: Given an agent model P together with an opponent
modelM, and a target probability λ ∈ [0, 1],

Problem: Find a λ-winning strategy for P , with respect to
M.

For examples with more than 6 arguments, the number of pos-
sible general strategies exceeds the number of atoms in the known
universe (estimated to be between 1078 and 1082) (Table 1). To
improve scalability of our approach, we restrict the strategies we
consider to simple strategies that can be specified by a finite se-
quence of (non-intersecting) moves S = [S0, . . . , Sn], such that
Si ⊆ KP for i ≤ n. These moves are followed sequentially by
the proponent unless the dialogue thus far is successful, in which
case the proponent chooses not to assert any arguments (asserting
∅). If the opponent also chooses not to assert any arguments at this
point then the dialogue will terminate; otherwise if the opponent
makes an assertion that causes the dialogue to change to unsuc-
cessful, the proponent will continue with the next unasserted move
in its sequence S. If the proponent exhausts its sequence of moves
S then it will respond with ∅ until the responder also asserts ∅,
thereby terminating the dialogue. More formally, the simple strat-
egy σSP , associated with S, is defined such that for every dialogue
D = [M0, . . . ,M2k−1],

σSP(D) =

{
∅ if D is successful or j > n

Sj otherwise.

where j = |{i < k : M2i 6= ∅}| (i.e., Sj is the earliest element of
S that P has not yet asserted in dialogue D).

Simple strategies form a proper subclass of general strategies,
since they cannot capture more elaborate policies that depend on
previous moves. Our approach must, therefore, take into account
all possible dialogues that may arise given the proponent’s oppo-
nent model, in order to find a simple strategy that maximises λ, the
probability of guaranteed success no matter what strategy the oppo-
nent employs. While success of a specific dialogue does not depend
on the order arguments are asserted in, the order and grouping of
arguments to assert does affect the effectiveness of simple strate-
gies (as we see in Example 1) since different arguments may be
effective against different possible opponent models.

EXAMPLE 1. Let AF = (A,→) be the argumentation frame-
work illustrated in Figure 1, where A = {a, b, c, d, e, f} and →
= {(e, d), (d, b), (b, a), (c, a), (f, c)}, and let µ : 2A → 2A be a
closure operator such that for all B ⊆ A, if f ∈ B then µ(B) =
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B ∪ {e}, otherwise µ(B) = B (i.e., the closure operator gener-
ated by the inference rule f ⇒ e). Consider the following sets of
arguments:

K0 = {b}, K1 = {c}, K2 = {b, c}.
Suppose P = (A, µ) is a proponent with goal G = {a}, and is us-
ing the grounded acceptability function. Let (E , p) be an opponent
model, where E comprises three possible modelsOi = (Ki, µ), for
i < 3, and p : E → Q is such that p(O0) = 0.4, p(O1) = 0.5 and
p(O2) = 0.1.

The simple strategy S = [{a, d}] is effective against O0, but not
against O1 or O2, and so is a 0.4-winning strategy. The simple
strategy S′ = [{a, d, f}] is a 0.5-winning strategy, as it is effective
against O1, but not against O0 because the argument e, unknown
initially to O0, can be inferred from f . The simple strategy S′′ =
[{a, d}, {f}] is a 0.9-winning strategy, failing only in the case that
the opponent knows both b and c.

3. NUMERIC PLANNING
We consider the classical planning problem with conditional ef-

fects and bounded numerical variables. Here we define a planning
problem over the subset of the Planning Domain Definition Lan-
guage PDDL2.1 [16] needed to support our translation.

Let ΣP be a finite set of propositional variables and ΣN be a
finite set of numerical variables, such that ΣP ∩ΣN = ∅. A propo-
sitional condition takes the form (P = t), while a propositional
effect takes the form (P ← t), for P ∈ ΣP and t ∈ {>,⊥}. For
readability, we abbreviate both propositional conditions and effects
with a single literal P if t = >, or ¬P if t = ⊥. A numerical
condition takes the form (V ./ q), while a numerical effect takes
the form (V ← q) or (V ← V + q), for V ∈ ΣN , q ∈ Q and
./ ∈ {=, <,>}.

Our state space Ω comprises a set of functions that assign a value
t ∈ {>,⊥} to each P ∈ ΣP and a value q ∈ Q to each V ∈
ΣN . A state ω ∈ Ω satisfies a propositional condition (P = t) iff
ω(P ) = t, and a numerical condition (V ./ q) iff ω(V ) ./ q. We
write ω |= Lwhen ω satisfies the conditionL, and ω |= (L∨L′) iff
ω |= L or ω |= L′. For any set of conditions C, we write ω |= C
iff ω |= L, for all L ∈ C.

DEFINITION 9. A planning problem is specified by a tuple P =
〈ΣP ,ΣN , I, G,A〉, where:

• ΣP is a set of propositional variables,
• ΣN is a set of numerical variables,
• I is a finite set of initial conditions,
• G is a finite set of goal conditions,
• A is a set of actions of the form α = 〈pre(α), eff (α)〉,

where pre(α) is a set of (pre-)conditions and eff (α) is a
set of conditional effects of the form (if C then L), where
C is a (possibly empty) set of conditions, and L is an effect.

The transition function δ : Ω × A → Ω is such that δ(ω, α) =
ω′ iff (i) ω |= pre(α), (ii) if ω |= C then ω′(L) = t, for all
(if C then (L← t)) ∈ eff (α), and (iii) ω′(L) = ω(L) if L does
not occur in any effect of eff (α). We extend this transition function
to sequences of actions, recursively by taking δ∗(ω, [ ]) = ω and
δ∗(ω, [α0, . . . , αk]) = δ(δ∗(ω, [α0, . . . , αk−1]), αk), for all ω ∈
Ω and α0, . . . , αk ∈ A. The planning problem is well-defined
whenever δ is a well-defined function.

DEFINITION 10. A solution to a well-defined planning problem
P is a sequence of actions ~α = [α0, . . . , αn] such that δ∗(ωI , ~α) |=
G, whenever ωI |= I .

proponent(a) opponent probCount>

stage = 1 stage = 2

stage = 0

stage = 1

Figure 2: Order in which actions may be applied

4. MODELLING STRATEGIC ARGUMEN-
TATION AS A PLANNING PROBLEM

We show how our strategic argumentation problem can be mod-
elled as a planning problem with conditional effects and bounded
numerical variables. The major challenge here is that the initial
state is unknown (since the proponent does not know which of the
possible opponent models holds true) and the possible actions are
non-deterministic (since the proponent cannot know which moves
the opponent will make). We would like to find a conformant plan,
i.e., one that will be successful no matter how the uncertainty in the
problem is resolved.

The state-of-the-art for solving conformant planning problems
is to compile away the uncertainty inherent in the problem so that
it can be solved by a planner that assumes complete knowledge
and deterministic actions [1]. Following this approach, we push
the uncertainty about the opponent’s arguments and strategy into
the state description, so that, for each possible opponent model,
we keep track of every possible dialogue that could arise given the
proponent’s moves. We determine the probability of success λ for
a particular plan by considering all possible dialogues associated
with each possible opponent model; only if all such dialogues are
successful is the plan guaranteed to be effective against that pos-
sible opponent model, regardless of how the opponent chooses to
play. We sum the probability of each such model to give λ.

Our translation comprises three types of actions. For each argu-
ment a known to the proponent, there is a (proponent(a)) action,
which emulates the act of the proponent asserting a. A single move
is built up by iterated application of these actions (simulating the
assertion of a set of arguments). The opponent’s move is captured
by a single (opponent) action, which simulates all possible re-
sponses for each possible opponent model, adding them to a ‘pool’
of possible dialogue states associated with that model. Finally the
(probCount) action is applied after each (opponent) action and
sums the total probability of guaranteed success, against each of
the possible opponent models Oi ∈ E . We regulate the order that
different types of actions may appear in the plan with a numerical
variable (stage), whose value determines which preconditions are
satisfied and is updated by the effects of each action. This ordering
is illustrated in Figure 2. We now formally define our translation.

Let P = (KP , µP) be our proponent model, with goal argu-
ments G ⊆ A, uncertain opponent modelM = (E , p), and target
probability λ ∈ [0, 1]. In what follows, let AP = µP(KP) be the
set of arguments available toP , andAO =

⋃
Oi∈E µOi(KOi ∪ AP)

be the set of all arguments belonging to any Oi ∈ E , together with
any arguments that can be inferred with the help of any arguments
from AP (i.e., AO comprises all arguments that may be available
to any possible opponent model throughout a dialogue). The plan-
ning problem Pλ(P,M) is then described as follows.

Variables We require the following numerical variables: (stage),
(probSuccess), and (prob(i)), for each Oi ∈ E . The variable
(stage), as described above, regulates the order in which actions
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may appear in the plan, while (probSuccess) and (prob(i)) are
used to calculate the probability of success for a given plan. In
addition to these numerical variables we have the following propo-
sitional variables:

– canAssertP(a) means P has not yet asserted a ∈ AP ,

– canAssertO(M, i,D) says thatM ⊆ AO is a possible move
that can be played by Oi ∈ E , given that P has asserted
D ⊆ AP (and so M consists of arguments that are either
known to Oi or that it can infer from the arguments in D
using its closure operator µi),

– dialogueP(D) says that D ⊆ AP is the set of arguments
that have been asserted by P ,

– dialogueO(i,D) says that D ⊆ AO could have been as-
serted by Oi ∈ E (and so keeps track of all possible dia-
logues that could arise for each possible opponent model),

– temp(i,D) acts as a temporary ‘storage’ variable for captur-
ing dialogueO(i,D),

– successful(DP , DO) says that DP ∪DO determines a suc-
cessful dialogue, where DP ⊆ AP comprises the arguments
asserted by the proponent, and DO ⊆ AO comprises argu-
ments that may be asserted by the opponent,

– effective(i) means the plan is effective against Oi ∈ E ,

– addP(a,D,D′) says that D′ is the result of adding a single
argument a ∈ AP to D (i.e., D′ = D ∪ {a}),

– addO(M,D,D′) says that D′ is the result of adding the set
M to D (i.e., D′ = D ∪M ).

The reason for the discrepancy between addP and addO is that, for
the purposes of optimisation, we recursively add proponent argu-
ments one at a time, while opponent arguments must be considered
as a single move.

Initial Conditions Our set of initial conditions I comprises the
following numerical conditions:

(stage = 0), (probSuccess = 0), (prob(i) = p(Oi))

for all Oi ∈ E , where p(Oi) ∈ Q is the probability of Oi. We also
require the following propositional initial conditions:

– canAssertP(a), for all a ∈ AP ,

– dialogueP(∅) and dialogueO(i, ∅), for all Oi ∈ E ,

together with the following conditions that, once set, remain unal-
tered by the effects of any of the actions:

– canAssertO(M, i,DP) iff M ⊆ µOi(KOi ∪DP),

– successful(DP , DO) iff G ⊆ accθη(DP ∪DO),

– addP(a,DP , D
′
P) iff D′P = DP ∪ {a},

– addO(M,DO, D
′
O) iff D′O = DO ∪M ,

where accθη is the agreed acceptability function for AF (and so our
translation is applicable to any instantiation of accθη).
Goal Conditions The planning goal G comprises a single condi-
tion (probSuccess > λ).
Actions Our set of actions A comprises the three types of action
discussed above, whose preconditions and effects are described in
Tables 2–4, where all free parameters are universally quantified.
So, for example, the proponent(a) action contains an effect of the
form (if dialogueO(i,DO) then temp(i,DO),¬dialogueO(i,DO)),
for all Oi ∈ E and DO ⊆ AO .

Action: proponent(a) for all a ∈ AP
pre

(i) canAssertP(a)
(ii) (stage = 0) ∨ (stage = 1)

eff

(a) ¬canAssertP(a)
(b) (stage← 1)
(c) if dialogueP(DP), addP(a,DP , D

′
P)

then dialogueP(D′P), ¬dialogueP(DP)
(d) if dialogueO(i,DO)

then temp(i,DO), ¬dialogueO(i,DO)
(e) effective(i)

Table 2: Preconditions and effects for (proponent(a))

Action: opponent
pre (i) (stage = 1)

eff

(a) (stage← 2)
(b) if dialogueP(DP), temp(i,DO),

canAssertO(M, i,DP),
addO(M,DO, D

′
O), ¬successful(DP , D

′
O)

then dialogueO(i,D′O), ¬effective(i)
(c) ¬temp(i,DO)

Table 3: Preconditions and effects for (opponent)

For each a ∈ AP there is an action (proponent(a)) with pre-
conditions and effects defined in Table 2. The (proponent(a))
action can be applied if the canAssertP(a) proposition is true (Ta-
ble 2:(i)), and the stage variable takes a value of 0 or 1 (Table 2:(ii)).
These actions emulate the proponent asserting the argument a dur-
ing their turn of the dialogue. Iterated application allows the pro-
ponent to assert a set of arguments in a move. The effects of
(proponent(a)) include: negating canAssertP(a), preventing an
argument from being asserted more than once (Table 2:(a)); up-
dating the stage variable to 1 (Table 2:(b)); and updating the con-
tents of the dialogueP variable with the argument a (Table 2:(c)).
There is a ‘book-keeping’ effect which copies the contents of the
dialogueO variable into a temporary variable temp (Table 2:(d));
this is to prevent conflicts between ‘add’ and ‘delete’ effects in the
following action. Finally, effective(i) is set to true for each pos-
sible opponent model Oi ∈ E (Table 2:(e)), indicating that the
current plan is (potentially) effective against that model; when the
(opponent) action is applied, if there are any dialogues that may
have occurred against Oi such that Oi can make a move such that
the dialogue is then unsuccessful for the proponent, then effective(i)
will be set to false and the subsequent (probCount) action will not
collect the probability of Oi.

A single (opponent) action (Table 3) emulates the effect of the
opponent’s move in the dialogue. It achieves this by considering
each possible set of arguments DP ∪ DO that could have been
asserted thus far against each possible opponent model Oi (Ta-
ble 3:(b):line 1), and considers all possible moves M ⊆ AO that
Oi could assert, in this instance (taking into account the knowledge
obtained from the closure operator) (Table 3:(b):line 2). If the result
of adding M to the dialogue is advantageous to the opponent (Ta-
ble 3:(b):line 3), we update the contents of the dialogueO variable
from DO to D′O = DO ∪M and record this strategy as ineffective
against that possible opponent model (Table 3:(b):line 4). Without
loss of generality, we need not consider the case where the dialogue
is successful for the proponent after the opponent’s move, since the
response of our simple strategy will then be to assert ∅ until the
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Action: probCount
pre (i) (stage = 2)

eff

(a) (stage← 0)
(b) if effective(i)

then (probSuccess← probSuccess + prob(i)),
(prob(i)← 0)

Table 4: Preconditions and effects for (probCount)

opponent chooses to assert an argument for which we must reply.
As the opponent will not gain any new information from the propo-
nent in this case, anything they may later chose to assert could have
been asserted in their previous move. Since we are considering all
possible dialogues that the proponent could encounter, this possi-
bility is already considered. Another ‘book-keeping’ effect clears
the contents of temp(i′, DO) (Table 3:(c)).

A single (probCount) action is applied after each (opponent)
action (Table 4:(i)) and accumulates the probability of any pos-
sible opponent models against which the current plan is effective
(Table 4:(b):lines 1–2). This is precisely those models for which
there is no move that opponent can play that will make the dialogue
unsuccessful. After the probability of a possible opponent model
has been counted, it is set to zero to prevent double-counting (Ta-
ble 4:(b):line 3).

It follows from these definitions that Pλ(P,M) has a solution if
and only if there is a λ-winning simple strategy for P , with respect
to the opponent modelM. Moreover, one can read off such a strat-
egy directly from the planning solution by collecting together all
consecutive (proponent(a)) actions into a single move, with each
move separated by the (opponent) and (probCount) actions. To
find an optimal simple strategy that maximises λ, we first find a
solution where λ > 0 and then iteratively seek solutions where λ
is greater than the probability of success of the previous solution,
until no such solution exists, guaranteeing the last solution found
to be an optimal simple strategy.

5. EVALUATION
We automated the above translation and used an implementation

of the POPF planner [13], which natively supports ADL (the Ac-
tion Description Language, which provides universal and existen-
tial quantification [33]) and conditional effects, to generate optimal
simple strategies for several examples, described below. Native
support for ADL allows us to represent the problem more com-
pactly and is why we use this planner, which is sound and com-
plete, and applies a heuristic forward search. We were unable to use
planners that ground out quantification before search (e.g., Metric-
FF [21]) as, for larger examples, this exhausts available memory.

We benchmark against a naive brute-force algorithm, that enu-
merates every possible simple strategy and calculates the probabil-
ity of success for each. This involves a depth-first-search, for each
possible opponent modelOi ∈ E , of all the possible dialogues that
can be generated byOi, until an unsuccessful terminating dialogue
is found. The probability of success is the sum of the probabilities
p(Oi) for which no such dialogue can be found. If a strategy is
found to be effective against all Oi ∈ E then this strategy is op-
timal and we terminate the search, otherwise the naive algorithm
must check every possible simple strategy to determine which are
optimal. To ensure fairness of comparison with the times reported
by the planner, we include only the search time and not the time
taken to calculate whether a particular set of arguments is success-
ful, which is supplied at run-time.

a

c0 c1 c2 c3

b0 b1 b2 b3

Figure 3: Illustration of cycle4.

To compare the performance of the two approaches, we ran ex-
periments on a selection of argumentation frameworks, using the
grounded acceptability function to determine dialogue success. Note
that the information about which sets of arguments determine the
goal argument(s) to be acceptable is supplied at run time (with the
successful predicate) and thus the search times we report here are
unaffected by the complexity of determining this. The complexity
of credulous and sceptical acceptance decision problems is well-
understood (e.g., [15]) and known to be intractable in the worst case
for some of the standard semantics. Nevertheless, many advanced
argument solvers have been developed (see [12] for a review) and
shown to be capable of reasoning with large argumentation frame-
works (e.g., [42]). For the argumentation frameworks considered
here, the pre-processing time required to set the initial conditions
of the planning problem was negligible.

The argumentation frameworks we used in our evaluation in-
clude those described in [18], labelled as they are referred to in
that paper: Ex 1, Dv., 7, 8, and 9. We do not have space to re-
peat the description of those frameworks here but note that their
sizes range from 7 to 9 arguments and, excepting Dv., they are all
bipartite and so the proponent need not worry about undermining
their own arguments. In order to examine the performance of our
approach in more diverse settings and with larger problems, we
consider two other (non-bipartite) families of argumentation frame-
work: one with cycles and one where arguments can be both attack-
ers and supporters of the goal argument (referred to here as type
ladder). We chose these framework types because of the challenges
posed by the existence of arguments that may be either helpful or
harmful for the proponent, depending on the opponent’s actual ar-
guments and strategy.

DEFINITION 11. Examples labelled cyclen comprise of an ar-
gumentation framework with arguments A = {a} ∪ {bi, ci : i <
n} and attack relation→= {(bi, a), (ci, bi) : i < n}∪{(bi−1, bi),
(ci−1, ci) : 0 < i < n} ∪ {(bn−1, b0), (cn−1, c0)}, such that goal
arguments G = {a}, AP = {a} ∪ {ci : i < n} and for all
(KOi , µOi) ∈ E (where (E , p) is the proponent’s uncertain oppo-
nent model) KOi ⊆ {bi : i < n}.

Figure 3 shows an example of a cycle argumentation framework,
cycle4, where the grey arguments are those available to the propo-
nent and the white arguments are those available to the opponent.
We see here that, for example, asserting the argument c0 could be
beneficial to the proponent if the opponent knows the argument b0
(as c0 attacks b0) but if the opponent knows b1 then asserting c0
could be detrimental to the proponent’s goal (since c0 attacks c1,
which is the only argument available that attacks b1). The propo-
nent must therefore take care to consider all the possible opponent
models in order to determine whether an argument is likely to be
detrimental to achieving its goal.
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Example Ex 1 Dv. 7 8 9 cycle4
size |E| 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

Planner (s) 0.03 0.07 0.17 0.36 0.03 0.07 0.16 0.36 0.01 0.03 0.07 0.14 0.03 0.06 0.16 0.42 0.06 0.22 0.69 1.99 0.1 0.27 0.93 2.8
Naive (s) 0.97 1.75 3.75 7.33 0.12 0.26 0.50 1.04 0.00 0.00 0.01 0.02 0.18 0.34 0.71 1.40 0.19 0.47 0.88 1.50 0.11 0.23 0.45 0.89
Prob. λ 1.00 1.00 1.00 1.00 0.45 0.48 0.53 0.50 0.56 0.6 0.57 0.58 1.00 1.00 1.00 1.00 0.74 0.77 0.77 0.79 0.46 0.42 0.42 0.40

Example cycle5 cycle6 ladder4 ladder5 ladder6
size |E| 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

Planner (s) 1.31 6.08 24.8 55.3 23.0 162.9 244.3 204.4 0.08 0.20 0.75 2.35 0.97 4.05 10.7 25.2 12.8 53.9 155.8 202.1
Naive (s) 2.07 4.04 8.37 16.7 120.1 301.4 526.1 973.7 0.63 1.17 2.40 5.14 9.27 18.7 37.2 77.4 2547.7 3309.2 3595.1 3601.0
Prob. λ 0.3 0.34 0.33 0.33 0.28 0.23 0.28 0.23 0.71 0.79 0.74 0.76 0.56 0.62 0.61 0.64 0.79 0.72 0.75 0.76

Table 5: Average search times (secs.) to find an optimal simple strategy and average probability of guaranteed success

a

b0

c0

b1

c1

b2

c2

b3

c3

Figure 4: Illustration of ladder4.

DEFINITION 12. Examples labelled laddern comprise of an
argument framework with arguments A = {a} ∪ {bi, ci : i < n}
and attack relation→= {(b0, a), (c0, a)}∪{(bi, bi−1), (ci, ci−1) :
0 < i < n} ∪ {(bi, ci) : i < n}, such that goal arguments
G = {a}, AP = {a} ∪ {bi, ci : i = 1, 3, . . . } and for all
(KOi , µOi) ∈ E (where (E , p) is the proponent’s uncertain op-
ponent model) KOi ⊆ {bi, ci : i = 0, 2, . . . }.

An example of a ladder argumentation framework, ladder4, is
shown in Figure 4, where the grey arguments are those available
to the proponent and the white arguments are those available to the
opponent. Here we see that, for example, asserting the argument
b3 would be beneficial to the proponent if the opponent knows only
b0 and b2, while asserting b3 would prevent the proponent from
achieving its goal if the opponent knows only c0 and c2. The ex-
amples seen in Figures 3 and 4 illustrate the challenges posed by
cycle and ladder frameworks that are not present in bipartite graphs,
where asserting an argument from the partition that does not con-
tain a goal argument can never hinder achievement of that goal.
We chose to examine these argumentation framework families in
order to explore the performance of our approach in particularly
challenging settings.

We ran our experiments on a machine with a 2.8GHz proces-
sor, limited to 32Gb of memory. Our problems and the imple-
mentations of our translation and naive algorithm are available at:
https://goo.gl/IlcPc3.
Time to find optimal simple strategy. For each example argu-
mentation framework, we compared the search times taken to find
an optimal simple strategy by the planner and by the naive algo-
rithm, for opponent models of size |E| = 1, 2, 4, 8. To account for
variations in performance across opponent models of the same size,
we ran our experiments on 100 randomly selected opponent mod-
els of each size with uniformly distributed probabilities (so each
possible opponent model is equally likely) and empty closure op-
erators. The average search times are shown in Table 5, with the
fastest time for each setting in bold. Both approaches take < 1
second to solve almost all of the examples taken from [18] (which
are, except for Dv., bipartite and each have < 10 arguments); the
exception is Ex 1, which the naive algorithm finds more difficult.
The planner is generally faster than the naive algorithm, but to see a

significant difference we must consider the more challenging cycle
and ladder examples. For the smaller instances of the cycle exam-
ples, the naive approach is faster than the planner, however for the
largest instance cycle6 (which comprises 13 arguments) the plan-
ner is significantly faster. The planner outperforms the naive search
in all ladder examples, doing so by several orders of magnitude for
ladder6, which also comprises 13 arguments. Increasing improve-
ment with problem size indicates much greater scalability of the
planning approach.

Effectiveness of simple strategies. Table 5 also shows the average
probability of guaranteed success of the optimal simple strategies
found for each example, against the 100 randomly selected oppo-
nent models of size |E| = 1, 2, 4, 8, with uniform probabilities and
no closure. Note that λ captures the probability of guaranteed suc-
cess, no matter what strategy the opponent employs, and thus gives
a lower-bound on likelihood of success, since a simple strategy may
still succeed against a possible opponent model against which it
cannot guarantee success.

Since we find optimal simple strategies, λ is determined by the
problem, not our approach. We see that size of the problem and
of the opponent model has little effect on the effectiveness of sim-
ple strategies, whose probability of success depends more on the
structure of the underlying argumentation framework. For 5 of the
11 examples, our optimal simple strategies give a good probabil-
ity (> 0.7) of guaranteed success, while the lowest probabilities
are seen for the cycle examples. We cannot know in general how
much better a policy (such as those generated by the approach of
Hadoux et al. [18]) might perform, however for the bipartite exam-
ples from [18] we can see from inspection of the problems that it is
not possible to outperform an optimal simple strategy.

Opponent models with complete uncertainty. To test the lim-
its of our approach, we also considered the case where there is
no knowledge about the likelihood of the possible opponent mod-
els (and so the proponent believes all possible opponent models
are equally likely, i.e., its opponent model contains every element
of the powerset of the arguments that are available to the oppo-
nent, each assigned the same probability). For this, we ran a sin-
gle experiment with each of the examples cyclen and laddern, for
n = 4, 5, 6, with the (unique) opponent model of size |E| = 2k,
where k is the number of distinct arguments that could appear in
an opponent model. (Note that since both the planner and the naive
algorithm are deterministic it was not necessary to run multiple ex-
periments for this setting.)

The results (Table 6) reveal that in some cases the problem re-
mains solvable, even in the absence of any information about the
opponent. Moreover, it is sometimes possible to find simple strate-
gies that achieve a reasonable probability of success, even with
complete uncertainty about the opponent’s arguments. This is, once
again, contingent on the underlying argumentation framework.
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No. args Size of Planner Naive Probability
Example |A| model |E| time time of success
cycle4 9 16 5.2 1.8 0.313
cycle5 11 32 63.8 244.3 0.250
cycle6 13 64 � � > 0.203
ladder4 9 16 9.6 6.1 0.750
ladder5 11 32 457.0 107.3 0.688
ladder6 13 64 � � > 0.688

Table 6: Search times (secs.) to find an optimal simple strategy
and probability of guaranteed success, with opponent models
of size |E| = 2k, where k is the number of arguments that can
appear in the opponent model. (� denotes time > 1 hour.)

Example no closure ||µ|| = 1 ||µ|| = 2
Planner Naive Planner Naive Planner Naive

cycle4 0.61 0.45 1.96 0.49 2.49 0.47
(probability) (0.41) (0.36) (0.24)
cycle5 19.19 8.02 36.79 8.32 51.48 8.05
(probability) (0.30) (0.23) (0.17)
ladder4 0.9 2.54 1.26 2.67 1.71 2.44
(probability) (0.74) (0.65) (0.57)
ladder5 12.53 50.35 15.13 42.12 23.39 34.93
(probability) (0.66) (0.61) (0.47)

Table 7: Average search times (secs.) to find an optimal simple
strategy and average probability of guaranteed success, with
opponent models of size |E| = 4, without closure and with clo-
sure operators of size ||µ|| = 1, 2.

With examples cycle6 and ladder6, both the planner and the
naive search took longer than one hour to complete their searches
and were terminated prematurely. Consequently we are unable to
report the optimal probability of success that can be obtained for
these examples. However from the naive search we are able to
place a lower bound on the optimal success rate by reporting the
highest probability reported after one hour.

Effect of closure. We may measure the ‘size’ or sophistication of
a closure operator µ by the maximal number of new arguments it is
able to deduce from any given set, i.e., ||µ|| = maxB⊆A |µ(B) −
B|. To investigate the effect the closure operator has on the per-
formance of both the planner and the naive search, for each of the
examples cyclen and laddern, for n = 4, 5, we selected a random
sample of 100 opponent models of size |E| = 4, where each possi-
ble opponent model is equally likely and whose closure operators
all have size ||µ|| = k, for k = 0, 1, 2. We report the average times
taken by both the approaches to find an optimal simple strategy,
together with the average probability of guaranteed success of the
optimal simple strategies found (Table 7).

We found that the addition of a closure operator has negligible
effect on the speed of the naive search but a modest negative effect
on the performance of the planner; e.g., for cycle5 (resp. ladder5),
the addition of a closure operator of size 2 increased the average
planner time from 19.19 to 51.48 secs. (resp. 12.53 to 23.39 secs.).
There is also a steady decrease in the probability of success of our
simple strategies as we allow our opponent to employ more sophis-
ticated reasoning, with the addition of a closure operator of size 2
decreasing the average probability of guaranteed success by≈ 0.2.

6. DISCUSSION
We believe our approach is the first to use an automated plan-

ner to generate proponent strategies for symmetric persuasion that,

with a certain probability, guarantee success no matter which argu-
ments the opponent asserts. Furthermore, our approach accounts
for the fact that the opponent may use knowledge from arguments
asserted by the proponent to construct new arguments not known
to the opponent at the start of the dialogue (using the closure op-
erator). It is important to account for this when strategising, as the
opponent may be able to use such arguments against the proponent.
As the works of Rienstra et al. [36] and Rosenfeld and Kraus [39]
treat arguments as abstract entities and do not provide a mechanism
for inferring new arguments, these cannot account for such phe-
nomena. While Hadoux et al. [18] and Hadoux and Hunter [20] do
not explicitly consider that the opponent may be able to infer new
arguments from knowledge gained from the opponent, the repre-
sentations they use to model the strategic argumentation problems
they address (respectively, executable logic for dialogical argumen-
tation [6], and a mass distribution that captures the opponent’s be-
lief in the available arguments) seem rich enough to capture such
cases; it is unclear, however, what effect this would have on the
performance of these approaches.

Like our approach, those of Hadoux et al. [18], Hadoux and
Hunter [20] and Ronsenfeld and Kraus [39] assume that the pro-
ponent is aware of all the arguments that may be available to the
opponent. The approach of Rienstra et al. [36] allows the propo-
nent to consider arguments that it itself is not aware of but believes
are known to the opponent (referred to as virtual arguments); how-
ever this requires that the proponent is aware of exactly the attack
relationships between each virtual and all other arguments, which
can be captured equivalently in our model by an argument that ap-
pears in the proponent’s model of the opponent, but is not part of
the arguments available to the proponent. It may occur during a di-
alogue that the opponent asserts an argument that is not part of the
proponent’s opponent model (whatever form this takes) in which
case the effectiveness of the generated strategy is no longer assured.
We plan in future work to investigate how, in such a case, we might
update our opponent model (as is considered in, e.g., [7, 17, 19, 22,
24, 25, 26, 36]) in order to replan our simple strategy.

We have shown we can deal with challenging examples with
up to 13 arguments, where cycles in the underlying argumenta-
tion framework mean that an argument may be either helpful or
harmful for the proponent, depending on the arguments actually
available to the opponent and the opponent’s strategy. Our results
show that, despite our restriction to simple strategies, we can guar-
antee reasonable chance of success, regardless of how the opponent
plays. While other approaches [18, 20, 39] generate richer policies
than our simple strategies, their performance on examples involv-
ing cycles in the underlying argumentation framework is yet to be
explored. Scalability is still an issue for our approach, due to the
PSPACE-hardness of the problem [29], however a study of 19 de-
bates from Debatepedia found an average of 11 arguments per de-
bate [9], suggesting we can deal with realistically sized dialogues.
In future, we aim to improve both scalability and effectiveness of
our approach by solving for partitions of the opponent model and
investigating ways to combine the resulting simple strategies to cre-
ate a more effective policy. We also plan to adapt our planning
model to take account of information about the expected behaviour
of the opponent when this is available, and to explore further the
relationship between the problem structure and the effectiveness of
an optimal simple strategy.
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