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ABSTRACT
We initiate the systematic algorithmic study for gerrymandering

over graphs that was recently introduced by Cohen-Zemach, Lewen-

berg and Rosenschein. Namely, we study a strategic procedure for

a political districting designer to draw electoral district boundaries

so that a particular target candidate can win in an election. We

focus on the existence of such a strategy under the plurality voting

rule, and give interesting contrasts which classify easy and hard

instances with respect to polynomial-time solvability. For example,

we prove that the problem for trees is strongly NP-complete (thus

unlikely to have a pseudo-polynomial-time algorithm), but has a

pseudo-polynomial-time algorithm when the number of candidates

is constant. Another example is to prove that the problem for com-

plete graphs is NP-complete when the number of electoral districts

is two, while is solvable in polynomial time when it is more than

two.
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1 INTRODUCTION
Control in voting is one of the main topics in computational so-

cial choice. For example, Faliszewski and Rothe [8] dedicated one

chapter on “Control and Bribery in Voting” for Handbook of Com-
putational Social Choice, and gave an overview of the topic. One of

the earliest papers was written by Bartholdi, Tovey, and Trick [13]
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who studied the manipulability of elections from the viewpoint of

computational complexity. Among others, they studied the manip-

ulation of the election result by partitioning the set of voters. They

called the problem “Control by Partition of Voters,” but in fact, this is

quite similar to the problem that is usually called gerrymandering
in the political geography literature.

We study the gerrymandering model that is proposed by Cohen-

Zemach, Lewenberg and Rosenschein [4]. For brevity, we describe

their model only for the plurality voting rule, which we adopt in

this paper. Namely, we consider a hierarchical voting process as

follows. The set of voters is partitioned into several groups, and

each of the groups holds an independent election. From each group,

one candidate is elected as a nominee. Then, among the elected

nominees, a final voting is held to determine the winner. In the

plurality voting rule, a candidate who gets the majority votes is a

nominee in the first stage, and a nominee who won in the most

groups is a final winner.

Gerrymandering is a word that means a strategic procedure for

a political districting designer to draw electoral district boundaries

so that the outcome of the election can be under control. Typically,

such control implies the win of a particular candidate in the elec-

tion. Gerrymandering is considered a bad practice, and one of the

main motivations of research in political (re)districting is to avoid

gerrymandering.

To model geographic constraints, Cohen-Zemach et al. [4] used

a network structure, i.e., an undirected graph. Cohen-Zemach et

al. [4] called the framework the gerrymandering over graphs. In
gerrymandering over graphs, we are given an undirected graph

G = (V , E), a natural number k , a set C of candidates, a target

candidate p ∈ C, the weight w(v) of each vertex v ∈ V , and a

candidate c(v) preferred by each vertex v ∈ V . (See also Figure 1.)

We want to decide if there exists a partition ofV into exactly k non-

empty parts V1,V2, . . . ,Vk such that (1) each part in the partition

induces a connected subgraph of G and (2) the number of parts in

which p wins is larger than the number of parts in which any other

candidate wins. (Section 2 will give a more formal description.)

The contributions of their paper [4] were two-fold. First, they

proved that it is NP-complete to decide if there is a partition of a

given graph such that each part contains at least two vertices and

the target candidate p wins in at least b parts, for a given positive

integer b. Second, they conducted simulation studies on random

graphs and real-world networks for their original problem setting.
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Figure 1: (a) Input graph G = (V , E), C = {p,q1,q2} and k = 3,
where the weight w(v) of each vertex v is written inside the
vertex (circle) and the candidate c(v) ∈ C preferred by v is
written inside the square attached to v. (b) A desired parti-
tion of V into k = 3 parts V1,V2,V3. In the first stage of the
voting process, q1 wins inV1 and the target candidate p wins
inV2 andV3. Thus, p is elected in the second stage as the final
winner.

Our Results. In this paper, we pursue theoretical studies of

gerrymandering over graphs from the algorithmic point of view, and

give a more systematic treatment to the problem. More specifically,

we aim at classifying easy and hard instances of gerrymandering

over graphs with respect to polynomial-time solvability. The results

are summarized as follows.

On the negative side, we prove that the problem is NP-complete

even for very restricted cases. First, we prove the hardness even

when k = 2, |C| = 2, and G is complete. The same hardness also

applies when G is a planar graph of pathwidth two (K2,n ). Second,

we prove the hardness when all vertex weights are identical and

|C| = 4. Third, we prove that the problem is strongly NP-complete

whenG is a tree of diameter four (thus, cannot be solved in pseudo-

polynomial time unless P = NP).
On the positive side, we provide polynomial-time algorithms for

the following special cases of trees. First, we solve the problem for

stars (i.e., trees of diameter two) in polynomial time. Second, we

give a polynomial-time algorithm for paths when |C| is constant.

Third, we give a pseudo-polynomial-time algorithm for trees when

|C| is constant; this gives an interesting contrast to the strong NP-
completeness for trees when |C| is a part of the input. We note

that it is easy to see that the problem can be solved in polynomial

time for trees when k is constant (nevertheless, we give a proof for

completeness).

As another interesting contrast, we give a polynomial-time algo-

rithm for complete graphs when k ≥ 3; recall that the problem is

NP-complete when k = 2. We also give a pseudo-polynomial-time

algorithm when k = 2.

We note that the following two cases are unsettled: a polynomial-

time algorithm for paths (when |C| is not constant) and one for

trees (when |C| is constant). They form main open problems from

this paper.

Past Work. As mentioned before, control in voting is one of

the major topics in computational social choice theory. After the

paper by Bartholdi, Tovey, and Trick [13], numerous authors studied

several variants, e.g., [1, 5–7, 11, 12, 14].

To cope with gerrymandering, several authors have studied the

political (re)districting problem. In the political districting problem,

we are given a geographic region with population, and want to

partition the region into several parts as to satisfy given constraints

such as the shape of each part, small variance of the populations

among parts, etc. In the operations research literature, heuristic

algorithms have been developed, e.g., [2, 3, 15, 17]. To the best of the

authors’ knowledge, there seems no algorithm with a theoretical

guarantee for the quality of the output.

As theoretical studies for gerrymandering, we are aware of three

papers in which NP-hardness is proved. Puppe and Tasnádi [16]

treated geographic constraints by combinatorics (i.e., certain sets

of voters cannot form parts in the partition). Fleiner, Nagy and

Tasnádi [9] treated geographic constraints by geometry, and each

group needs to be induced by a simply connected region in the plane.

Cohen-Zemach, Lewenberg and Rosenschein [4] treated geographic

constraints by networks, and each group needs to be induced by a

connected subgraph. We adopt the model by Cohen-Zemach et al.

in this paper.

Organization. We start with the formal problem description

in Section 2. The NP-completeness is discussed in Section 3. Algo-

rithms for trees are given in Section 4. We provide algorithms for

complete graphs in Section 5, and conclude the paper in Section 6.

2 PROBLEM DESCRIPTION
Let G = (V , E) be an undirected graph. For a positive integer k , a
partition of V into non-empty k subsets V1,V2, . . . ,Vk is called a

connected partition ofG if the induced subgraphG[Vi ] is connected
for every i ∈ {1, 2, . . . ,k}. We sometimes call each connected com-

ponent G[Vi ] a constituency in the connected partition of G. Note
that k ≤ |V | holds.

Let C be a finite set called the set of candidates. One element p
of C is designated as the target candidate. We often denote C =

{p,q1,q2, . . . ,qℓ}. Each vertex v ∈ V has an associated positive

integer weightw(v), and an associated candidate c(v) ∈ C that the

vertex v prefers. Since each vertex v prefers only one candidate

c(v), we assume without loss of generality that |C| ≤ |V |. For a

vertex subsetU ⊆ V of G, the set of all candidates that receive the
largest total weight in U is denoted by top(U ), that is,

top(U ) B arg max

q∈C


∑

v ∈U : c(v)=q

w(v)

 .
(See also Figure 2.) An element of top(U ) is often referred to as a

top candidate inU (or inG[U ]). We sometimes say that a candidate

q ∈ C wins in a constituency G[U ] if q ∈ top(U ); in particular,

q ∈ C wins alone in G[U ] if top(U ) = {q}.
The gerrymandering problem over a graph can be formulated

as follows. We are given an undirected graph G = (V , E), the set
C of candidates, the target candidate p ∈ C, and a positive integer

k . For each vertex v ∈ V , we are also given an associated positive

integer weight w(v) and an associated candidate c(v). Then, we
want to decide if there exists a connected partition ofG into k parts

V1,V2, . . . ,Vk such that p is the unique top candidate in the most

constituencies of the partition; namely

|{i ∈ {1, 2, . . . ,k} : {p} = top(Vi )}|

> |{i ∈ {1, 2, . . . ,k} : q ∈ top(Vi )}| ∀ q ∈ C \ {p}.

The left-hand side represents the number of constituencies in which

p wins alone, and the right-hand side represents the number of
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Figure 2: (a) A connected partition of a path G (which is not
a feasible solution), and (b) a feasible solution, where k = 5,
p is the target candidate, and top(Vi ) is written below each
constituency Vi .

constituencies in which q is one of the top candidates. Therefore,

the condition means that in the connected partition V1,V2, . . . ,Vk
of G, the target candidate p can win in the most constituencies no

matter which tie-breaking rule is adopted among the top candidates.

Such a connected partition of G is often referred to as a feasible
solution in this paper. (See also Figure 2.)

Algorithmic Complexity. An algorithm is said to be pseudo-

polynomial-time if its running time is bounded by a polynomial in

the numerical values of the input. A problem is said to be strongly

NP-complete if it remains NP-complete even when the numerical

values of the input are bounded by a polynomial in the encoding

length of the input. Thus, a strongly NP-complete problem does

not admit a pseudo-polynomial-time algorithm unless P = NP.

3 HARDNESS OF GERRYMANDERING
In this section, we prove that the gerrymandering problem is com-

putationally intractable even for very restricted cases. Due to the

page limitation, we only explain the constructions of our reductions

here, and omit their correctness proofs.

We first consider the case where both k and |C| are fixed to two.

Theorem 3.1. The gerrymandering problem is NP-complete even
if k = 2, |C| = 2, andG is either a complete bipartite graph K2,n or a
complete graph.

Reduction. We give a polynomial-time reduction from Parti-

tion: an instance is given by a list ofn positive integersa1,a2, . . . ,an ,
and the problem asks to decide if there exists a set S ⊆ {1, 2, . . . ,n}
such that

∑
i ∈S ai =

∑
i<S ai . It is known [10] that Partition is

NP-complete. We now construct an instance of the gerrymander-

ing problem. Let G = (U ,V ;E) be a complete bipartite graph with

U B {u1,u2} and V B {v1,v2, . . . ,vn }. For each v ∈ U ∪ V , we
define

w(v) B

{
ε + 1

2

∑n
i=1

ai if v ∈ U ;

ai if v = vi for i ∈ {1, 2, . . . ,n},

where ε is a sufficiently small positive number (e.g., ε = 1

3
). We

note that we can make eachw(v) an integer by scaling the weight

function, but we use the fractional weight function as above to

simplify the description. Let C B {p,q}, where p is the target

candidate, and define c(v) B p if v ∈ U , and c(v) B q if v ∈ V . Let

k B 2.

For theNP-completeness on complete graphs, we join every pair

of vertices in the bipartite graph G = (U ,V ;E) above. □

We note that a complete bipartite graphK2,n is of pathwidth two.

Thus, the gerrymandering problem remains NP-complete even for

bounded pathwidth graphs and k = |C| = 2. In contrast to the

NP-completeness on complete graphs for k = |C| = 2, we will

prove in Section 5 that the problem is solvable in polynomial time

if G is a complete graph and k ≥ 3; note that |C| is not necessarily

fixed.

We then consider the case where every vertex has a unit weight.

Theorem 3.2. The gerrymandering problem is NP-complete even
ifw(v) = 1 for every v ∈ V and |C| = 4.

Reduction. We give a polynomial-time reduction from 3-Parti-

tion: given a list of 3n positive integersa1,a2, . . . ,a3n as an instance,

the problem asks to decide if there exists a partition S1, S2, . . . , Sn
of {1, 2, . . . , 3n} such that

∑
i ∈Sj ai =

1

n
∑

3n
i=1

ai for every j ∈

{1, 2, . . . ,n}. It is known that 3-Partition remains NP-complete

even when each integer ai is bounded by some polynomial in n
(see, e.g., [10]). We may assume that t B 1

n
∑

3n
i=1

ai is an integer,

since otherwise we can immediately conclude that there exists no

solution.

We construct an instance of the gerrymandering problem. As

Figure 3(a) illustrates, consider a graph G = (V , E) defined as fol-

lows:

U B {u1,u2, . . . ,un }

∪ {ui ,h : i ∈ {1, 2, . . . ,n}, h ∈ {1, 2, . . . , t}},

W B {wi ,h : i ∈ {1, 2, . . . ,n}, h ∈ {1, 2, . . . , t}}

∪ {v1,v2, . . . ,vn },

X B {x1, x2, . . . , x3n }

∪ {xi ,h : i ∈ {1, 2, . . . , 3n}, h ∈ {1, 2, . . . ,ai − 1}}

∪ {vn+1,vn+2, . . . ,v2n },

V B U ∪W ∪ X ∪ {v2n+1,v2n+2, . . . ,v3n+1},

E B {(ui ,ui ,h ), (ui ,h,wi ,h ) : i ∈ {1, 2, . . . ,n}, h ∈ {1, 2, . . . , t}}

∪ {(xi , xi ,h ) : i ∈ {1, 2, . . . , 3n}, h ∈ {1, 2, . . . ,ai − 1}}

∪ {(xi ,uj ) : i ∈ {1, 2, . . . , 3n}, j ∈ {1, 2, . . . ,n}}.

Let C B {p,q1,q2,q3}, where p is the target candidate. For each

v ∈ V , we define c(v) as c(v) B p if v = vi for some i ∈ {2n +
1, 2n + 2, . . . , 3n + 1}; c(v) B q1 if v ∈ U ; c(v) B q2 if v ∈W ; and

c(v) B q3 if v ∈ X . Let k = 4n + 1. □

We note that the graph in the reduction can be made connected.

We finally consider the case for trees.

Theorem 3.3. The gerrymandering problem is strongly NP-com-
plete even for trees of diameter four.

Reduction. We give a polynomial-time reduction from 3-SAT.

Consider an instance of 3-SAT with n (≥ 2) variables x1, x2, . . . , xn
andm clausesC1,C2, . . . ,Cm , in which each clause contains exactly

three distinct literals. It is well-known that this problem is NP-
complete (see, e.g., [10]). Furthermore, we may assume that n is
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Figure 3: Constructions for (a) Theorem 3.2 and (b) Theo-
rem 3.3.

odd, since we can add a new variable that appears in none of the

clauses.

We construct an instance of the gerrymandering problem. Set

t B n − 1 +
m(n−1)

2
and k B n(t + 1) + 1. As Figure 3(b) illus-

trates, consider a treeG = (V , E) defined as follows:V B {vroot} ∪

{vi , v̄i : i ∈ {1, 2, . . . ,n}} ∪ {vi , j , v̄i , j : i ∈ {1, 2, . . . ,n}, j ∈

{1, 2, . . . , t}} and E B {(vroot,vi ), (vroot, v̄i ) : i ∈ {1, 2, . . . ,n}} ∪
{(vi ,vi , j ), (v̄i , v̄i , j ) : i ∈ {1, 2, . . . ,n}, j ∈ {1, 2, . . . , t}}. We regard

G as a rooted tree with the root vroot. LetM be a sufficiently large

integer (e.g.,M = |V | + 1), and define the weight of each vertex as

w(v) B


M2

if v = vroot;

1 if v = vi or v = v̄i for some i ∈ {1, 2, . . . ,n};

M otherwise.

We note that the weight of each vertex is bounded by a polynomial

in |V |. Define the set C of candidates as

C B {p,q1, . . . ,qn, r1, . . . , rm } ∪ {sroot}

∪ {si , j : i ∈ {1, 2, . . . ,n}, j ∈ {1, 2, . . . , t}}.

Here, p is the target candidate, while qi and r j correspond to the

variable xi and the clauseCj , respectively. The candidates sroot and

si , j will act as dummy candidates. Define c(vi , j ) for each leaf vi , j
of G as follows.

• For each i ∈ {1, 2, . . . ,n}, pick up n − 1 children of vi and
associate them with qi , that is,

|{v ∈ V : v is a child of vi , c(v) = qi }| = n − 1.

Similarly, pick up n − 1 children of v̄i and associate them

with qi .
• If Cj contains xi for i ∈ {1, 2, . . . ,n} and j ∈ {1, 2, . . . ,m},

then pick up
n−1

2
children of v̄i and associate them with r j ,

that is, |{v ∈ V : v is a child of v̄i , c(v) = r j }| =
n−1

2
.

• If Cj contains x̄i for i ∈ {1, 2, . . . ,n} and j ∈ {1, 2, . . . ,m},

then pick up
n−1

2
children of vi and associate them with r j ,

that is, |{v ∈ V : v is a child of vi , c(v) = r j }| =
n−1

2
.

• If vi , j is associated with none of {q1, . . . ,qn, r1, . . . , rm } in

the above procedures, then set c(vi , j ) B si , j .

Define c(vi ) B p, c(v̄i ) B p for each i ∈ {1, 2, . . . ,n} and c(vroot) B
sroot. □

4 ALGORITHMS FOR TREES
In contrast to Theorem 3.3, we show some tractable cases for trees

in this section. We first note the following observation.

Theorem 4.1. The gerrymandering problem is solvable in polyno-
mial time for trees when k is a fixed constant.

Proof. Since a given graph G = (V , E) is a tree, we need to

delete exactly k − 1 edges to obtain a partition V1,V2, . . . ,Vk of V
such that G[Vi ] is connected for each i ∈ {1, 2, . . . ,k}. Notice that
there are only O(nk−1) possible sets of edges to be deleted. Thus,

we enumerate all possible sets of k − 1 edges, and check whether

each set results in a feasible solution. This yields a polynomial-time

algorithm for trees when k is fixed. □

In the remainder of this section, we thus assume thatk is not fixed
and is part of the input. Theorem 3.3 implies that the problem does

not admit even a pseudo-polynomial-time algorithm for trees unless

P = NP. We thus consider subclasses of trees (more specifically,

stars and paths), and/or assume that |C| is a fixed constant; note

that however k is not fixed.

4.1 Polynomial-Time Algorithm for Stars
As the first polynomial-time solvable case, we deal with stars in this

subsection. We note that neither |C| nor k is fixed in the following

theorem.

Theorem 4.2. The gerrymandering problem is solvable in polyno-
mial time for stars.

We give such an algorithm as a proof of Theorem 4.2. Suppose

in this subsection that a given graph G = (V , E) is a star having
n vertices, whose center vertex is r . For each candidate q ∈ C,

let L(q) = {v ∈ V \ {r } : c(v) = q}. Consider any connected

partition V1,V2, . . . ,Vk of G; we assume without loss of generality

that r ∈ Vk always holds in this subsection. Then, we know that Vi
consists of a single vertexv for each i ∈ {1, 2, . . . ,k − 1}; and hence

top(Vi ) has only one top candidate c(v), that is, top(Vi ) = {c(v)}.
Therefore, for the given partition, we can compute the number of

constituencies where the target candidate p wins by checking (i)

whether top(Vk ) = {p} or not, and (ii) the number of vertices v in

V \Vk such that c(v) = p, that is, |L(p) \Vk |.
Based on (i) and (ii), we now classify the feasible solutions as

follows: for a candidate q∗ ∈ C and an integer x ∈ {1, 2, . . . , |L(p)|},
a feasible solution V1,V2, . . . ,Vk to the gerrymandering problem is

called a (q∗, x)-partition of G if the following holds:

• if q∗ = p, then top(Vk ) = {p} and |L(p) \Vk | = x ; otherwise
top(Vk ) ∋ q∗ and |L(p) \Vk | = x + 1 (that is, p wins alone in

exactly x + 1 constituencies);

• each candidate q ∈ C \ {p} wins in at most x constituencies.
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In this subsection, we will construct a polynomial-time algorithm

to check whether there exists a (q∗, x)-partition of G for a given

pair of a candidate q∗ ∈ C and an integer x ∈ {1, 2, . . . , |L(p)|}.
Since |C| ≤ n and |L(p)| ≤ n, by applying this algorithm to all pairs

(q∗, x) we can solve the gerrymandering problem in polynomial

time.

From now on, we fix a candidate q∗ ∈ C and an integer x ∈

{1, 2, . . . , |L(p)|}. Our algorithm indeed determines whether there

exists a particular (q∗, x)-partition of G, characterized as follows.

Lemma 4.3. Assume that G has a (q∗, x)-partition. Then, there
exists a (q∗, x)-partition V1,V2, . . . ,Vk of G satisfying the following
conditions:

• w(u) ≥ w(v) holds for every pair of vertices u ∈ L(q∗) ∩ Vk
and v ∈ L(q∗) \Vk ; and

• w(u) ≤ w(v) holds for every candidate q ∈ C \ {q∗} and every
pair of vertices u ∈ L(q) ∩Vk and v ∈ L(q) \Vk .

Proof. Let V1,V2, . . . ,Vk be any (q∗, x)-partition of G. Assume

that there exists a pair of vertices u ∈ L(q∗) ∩Vk and v ∈ L(q∗) \Vk
such thatw(u) < w(v); we assume without loss of generality that

V1 = {v}. Then, we define V ′
1
,V ′

2
, . . . ,V ′

k , as follows:

V ′
i B


{u} if i = 1;

(Vk \ {u}) ∪ {v} if i = k ;

Vi otherwise.

(1)

We now prove thatV ′
1
,V ′

2
, . . . ,V ′

k form a (q∗, x)-partition ofG . Since

u,v ∈ V \ {r }, we first note that V ′
1
,V ′

2
, . . . ,V ′

k form a connected

partition of G. We then note that top(V ′
k ) = {q∗} holds, since it

holds for any candidate q ∈ C \ {q∗} that∑
z∈L(q∗)∩V ′

k

w(z) >
∑

z∈L(q∗)∩Vk

w(z)

≥
∑

z∈L(q)∩Vk

w(z) =
∑

z∈L(q)∩V ′
k

w(z);

the first inequality holds since V ′
k = (Vk \ {u}) ∪ {v} and w(v) >

w(u), and the second inequality holds since q∗ ∈ top(Vk ). We finally

prove that p wins alone in exactly x + 1 constituencies, and any

other candidate q ∈ C \ {p} wins in at most x constituencies in

the partition. To see this, it suffices to notice that, for all q ∈ C, we

have

|{i ∈ {1, 2, . . . ,k − 1} : top(V ′
i ) = {q}}|

= |{i ∈ {1, 2, . . . ,k − 1} : top(Vi ) = {q}}|;

recall that u,v ∈ L(q∗) and hence c(u) = c(v) = q∗. In this way,

we conclude that V ′
1
,V ′

2
, . . . ,V ′

k form a (q∗, x)-partition of G. By

repeatedly applying this operation, we obtain a (q∗, x)-partition of

G that satisfies the first condition of the lemma.

We next consider any (q∗, x)-partition V1,V2, . . . ,Vk ofG satis-

fying the first condition of the lemma. Assume that there exist a

candidate q ∈ C \ {q∗} and a pair of vertices u ∈ L(q) ∩ Vk and

v ∈ L(q) \ Vk such that w(u) > w(v); we assume without loss of

generality that V1 = {v}. Then, we define V ′
1
,V ′

2
, . . . ,V ′

k by (1). We

note that top(V ′
k ) = top(Vk ) \ {q}, since we have∑

z∈L(q)∩V ′
k

w(z) <
∑

z∈L(q)∩Vk

w(z)

≤
∑

z∈L(q∗)∩Vk

w(z) =
∑

z∈L(q∗)∩V ′
k

w(z).

Therefore, if q∗ = p and hence top(Vk ) = {p}, then top(V ′
k ) = {p}

holds; and if q∗ , p and hence q∗ ∈ top(Vk ), then q∗ ∈ top(V ′
k )

holds. Then, by the same arguments above for the first condition,

we conclude that V ′
1
,V ′

2
, . . . ,V ′

k form a (q∗, x)-partition of G. By

repeatedly applying this operation, we obtain a (q∗, x)-partition of

G that satisfies both first and second conditions of the lemma. □

We here give a precise description of our algorithm to deter-

mine whether there exists a (q∗, x)-partition of a star G satisfy-

ing the conditions in Lemma 4.3. For each q ∈ C, we denote

L(q) = {v
q
1
,v

q
2
, . . . ,v

q
|L(q) |} and assume that

• w(v
q
1
) ≥ w(v

q
2
) ≥ · · · ≥ w(v

q
|L(q) |) if q = q

∗
; and

• w(v
q
1
) ≤ w(v

q
2
) ≤ · · · ≤ w(v

q
|L(q) |) if q , q

∗
.

SinceG = (V , E) is a star, a connected partition ofG is determined

by a subsetVk ofV such that r ∈ Vk . Our algorithm tries to construct

a subset Vk of V that yields a (q∗, x)-partition of G satisfying the

conditions in Lemma 4.3; if we fail to construct such a subset Vk ,
then Lemma 4.3 ensures that there is no (q∗, x)-partition of G.

We first decide the vertices in Vk ∩ L(p) for the target candidate
p. Recall that p wins in exactly x + 1 constituencies in any (q∗, x)-
partition of G. Then, the number of vertices in L(p) \ Vk can be

represented by α(p), defined as follows:

α(p) B

{
x if p = q∗;

x + 1 otherwise.

By Lemma 4.3, we then obtain that

Vk ∩ L(p) = {v
p
1
,v

p
2
, . . . ,v

p
|L(p) |−α (p)}. (2)

When q∗ , p, we guess the number of vertices in L(q∗) \ Vk .
That is, for α(q∗) = 1, 2, . . . ,min{x, |L(q∗)|}, we try to find a (q∗, x)-
partition of G under the assumption that |L(q∗) \Vk | = α(q∗). By
Lemma 4.3, we obtain that

Vk ∩ L(q∗) = {v
q∗

1
,v

q∗

2
, . . . ,v

q∗

|L(q∗) |−α (q∗)
}. (3)

We then decide the vertices in Vk ∩ L(q) for each candidate

q ∈ C \ {p,q∗}. By (2) and (3), we can define

W q∗

B


∑

u ∈Vk∩L(q∗)

w(u) +w(r ) if c(r ) = q∗;∑
u ∈Vk∩L(q∗)

w(u) otherwise.

For q ∈ C \ {p,q∗} and for ℓ ∈ {1, 2, . . . , |L(q)|}, define

W
q
ℓ
B



ℓ∑
i=1

w(v
q
i ) +w(r ) if c(r ) = q;

ℓ∑
i=1

w(v
q
i ) otherwise.
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For eachq ∈ C\{p,q∗}, let β(q) be a minimum non-negative integer

such that

• W
q
|L(q) |−β (q) <W

q∗

if q∗ = p;

• W
q
|L(q) |−β (q) ≤W q∗

if q∗ , p,

where we denote β(q) = +∞ if such β(q) does not exist. Notice that
β(q) represents the minimum number of vertices that have to be

contained in L(q) \Vk so that top(Vk ) satisfies the requirement.

Recall that each candidate q ∈ C \ {p,q∗} can win in at most x
constituencies in any (q∗, x)-partition of G. Thus, if β(q) ≥ x + 1

for some q ∈ C \ {p,q∗}, then we can immediately conclude that

G has no (q∗, x)-partition. We also observe that, if β(q) = x and

W
q
|L(q) |−β (q) =W

q∗

for some q ∈ C \ {p,q∗}, then q wins in x + 1

constituencies, and henceG has no (q∗, x)-partition. If neither of the
above conditions holds, then for q ∈ C \ {p,q∗}, |Vk ∩L(q)| can take

an arbitrary integer satisfying β(q) ≤ |Vk ∩ L(q)| ≤ min{x, L(q)}.
Therefore, the existence of a desired (q∗, x)-partition is equiva-

lent to ∑
q∈C\{p }

β(q) ≤ k − 1 − α(p) ≤
∑

q∈C\{p }

min{x, L(q)}

if q∗ = p, and∑
q∈C\{p,q∗ }

β(q) ≤ k − 1 − α(p) − α(q∗) ≤
∑

q∈C\{p,q∗ }

min{x, L(q)}

if q∗ , p.
Since the number of choices of α(q∗) is at most min{x, L(q∗)},

the algorithm above runs in polynomial time for each candidate

q∗ ∈ C and each integer x ∈ {1, 2, . . . , |L(p)|}. Therefore, we obtain
a polynomial-time algorithm for stars.

4.2 Polynomial-Time Algorithm for Paths with
Fixed |C|

As the second polynomial-time solvable case, we consider paths

when |C| is fixed.We note that the problem is not so straightforward

even for paths: Recall the example in Figure 2, where the vertex u
should form a singleton even if p can win alone in {u,v}; greedily
enlarging the constituency having a vertex z with c(z) = p does

not always yield a feasible solution. We thus construct a dynamic

programming algorithm, and obtain the following theorem.

Theorem 4.4. The gerrymandering problem is solvable in polyno-
mial time for paths when |C| is a fixed constant.

We give such an algorithm as a proof of Theorem 4.4. Suppose in

this subsection that a given graphG is a path with n vertices and |C|

is a fixed constant; for notational convenience, we assume that the

path is drawn from left to right. Roughly speaking, our algorithm

employs a dynamic programming method, which computes and

extends partial solutions for sub-paths from left to right by keeping

the frontier (i.e., the rightmost constituency) of a partial solution

together with the information on the way how the candidates in C

win in the partial solution.

We now define partial solutions for sub-paths. Let v1,v2, . . . ,vn
be the vertices inG ordered from left to right. For a pair of integers

i, j, 1 ≤ i ≤ j ≤ n, we denote by Gi , j the sub-path of G consisting

of vertices vi ,vi+1, . . . ,vj ; note thatGi ,i consists of a single vertex

vi . We call any mapping t : 2
C → {0, 1, . . . ,k} a top configuration,

which will characterize how the candidates in C win in a partial so-

lution. We note that there are only a polynomial number of distinct

top configurations t ; more specifically, it is O(k2
|C|

) = O(n2
|C|

). For

a pair of integers i, j, 1 ≤ i ≤ j ≤ n, and a top configuration t , we
call a partition V1,V2, . . . ,Vk ′ of V (G1, j ) an (i, j; t)-partition of G1, j
if the following four conditions hold:

1. k ′ =
∑
X ⊆C t(X );

2. Vk ′ = {vi ,vi+1, . . . ,vj };
3. G[Vz ] is connected for each z ∈ {1, 2, . . . ,k ′ − 1}; and

4. |{z ∈ {1, 2, . . . ,k ′} : top(Vz ) = X }| = t(X ) for all X ⊆ C.

We regard (i, j; t)-partitions of G1, j as partial solutions of G1, j , and

call the rightmost constituency Gi , j = G[Vk ′] the frontier of an
(i, j; t)-partition. We then define the following function: for integers

i, j, 1 ≤ i ≤ j ≤ n, and a top configuration t : 2
C → {0, 1, . . . ,k},

let

ϕ(i, j; t) B

{
yes if G1, j has an (i, j; t)-partition;

no otherwise.

Then, there is a feasible solution to a given instance of the gerryman-

dering problem if and only if there exists a pair of i ∈ {1, 2, . . . ,n}
and a top configuration t such that ϕ(i,n; t) = yes,

∑
X ⊆C t(X ) = k ,

and t({p}) >
∑
X ⊆C : q∈X t(X ) for all q ∈ C \ {p}.

Our algorithm computes ϕ(i, j; t) for all possible triples (i, j, t)
from left to right of a given path G as follows.

Initialization. We first compute ϕ(i, j; t) for all (i, j, t) such that

i = 1. Notice thatV (G1, j ) itself is the frontier when i = 1. Therefore,

ϕ(1, j, t) = yes, 1 ≤ j ≤ n, holds if and only if the top configuration

t : 2
C → {0, 1, . . . ,k} satisfies

t(X ) =

{
1 if X = top(V (G1, j ));

0 otherwise.

Update. The case where i ≥ 2 can be computed as follows. For

two integers i, j, 1 ≤ i ≤ j ≤ n, and a top configuration t , we have
ϕ(i, j; t) =

∨
ϕ(h, i − 1; t ′), where the or operation is taken over all

integers h, 1 ≤ h ≤ i − 1, and the top configuration t ′ defined as

follows: for each X ⊆ C,

t ′(X ) B

{
t(X ) − 1 if X = top(V (Gi , j ));

t(X ) otherwise.

Recall that there are O(k2
|C|

) = O(n2
|C|

) distinct top configura-

tions t , and |C| is fixed in this subsection. Therefore, our algorithm

above runs in polynomial time. This completes the proof of Theo-

rem 4.4.

4.3 Pseudo-Polynomial-Time Algorithm for
Trees with Fixed |C|

Recall again that the gerrymandering problem does not admit even

a pseudo-polynomial-time algorithm for trees in general unless

P = NP (Theorem 3.3). However, if |C| is a fixed constant, we have

the following theorem for trees.

Theorem 4.5. The gerrymandering problem is solvable in pseudo-
polynomial time for trees when |C| is a fixed constant.

We give such an algorithm as a proof of Theorem 4.5. Suppose

in this subsection that a given graphG is a tree with n vertices and
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Figure 4: (a) Subtree Gu in a whole tree G and (b) subtree Gi
u

in Gu .

|C| is a fixed constant. We choose an arbitrary vertex r in V (G)
as the root of G, and regard G as a rooted tree. Similarly to paths,

our algorithm employs a dynamic programming method, which

computes and extends partial solutions for subtrees from the leaves

to the root of G. However, in contrast to the path case, we need

a special care when we keep the frontier (i.e., the constituency

containing the root of each subtree) in a partial solution. Although

it sufficed to specify only two endpoints of the frontier (i.e., two

integers i and j) in the path case, the tree case may require us to

specify O(n) endpoints of the frontier, which would result in an

exponential-time algorithm. We thus characterize the frontier of

a partial solution only by the weight that each candidate obtains;

this will yield a pseudo-polynomial-time algorithm for trees.

We now define partial solutions for subtrees. For each vertex

u in V (G), let Gu be the subtree of G that is rooted at u and is

induced byu and all descendants ofu onG . (See Figure 4(a).) Denote
the children of u by v1,v2, . . . ,vℓ , ordered arbitrarily. For each

i ∈ {1, 2, . . . , ℓ}, we denote by Gi
u the subtree of G induced by

{u}∪V (Gv1
)∪V (Gv2

)∪· · ·∪V (Gvi ). For example, in Figure 4(b), the

subtreeGi
u is surrounded by a thick dotted rectangle. For notational

convenience, we denote byG0

u the tree consisting of a single vertex

u. Then, Gu = G0

u for each leaf u of G. LetW B
∑
u ∈V (G)w(u),

and let ZW B {0, 1, . . . ,W }. We call a vector ®x ∈ ZCW a weight
configuration, which characterizes the weight that each candidate

in C obtains in the frontier of a partial solution. For a subtreeGi
u , a

top configuration t : 2
C → {0, 1, . . . ,k}, and a weight configuration

®x ∈ ZCW , we call a partitionV1,V2, . . . ,Vk ′ ofV (Gi
u ) a (t, ®x)-partition

of Gi
u if the following four conditions hold:

1. k ′ − 1 =
∑
X ⊆C t(X );

2. G[Vz ] is connected for each z ∈ {1, 2, . . . ,k ′}, and u ∈ Vk ′ ;
3. |{z ∈ {1, 2, . . . ,k ′ − 1} : top(Vz ) = X }| = t(X ) for all X ⊆ C;

and

4.

∑
v ∈Vk′ : c(v)=q w(v) = ®x(q) for all q ∈ C.

We regard (t, ®x)-partitions ofGi
u as partial solutions ofGi

u , and call

the constituencyG[Vk ′] containing the rootu ofGi
u the frontier of a

(t, ®x)-partition. Note that, by the condition 3 of the definition above,

the set top(Vk ′) of top candidates in the frontier is not counted in the
top configuration t , since this frontierG[Vk ′]may be extended later.

However, top(Vk ′) = arg maxq∈C{®x(q)} holds, and hence top(Vk ′)
can be computed only from ®x . For a top configuration t and each

X ⊆ C, we define

t ®x (X ) B

{
t(X ) + 1 if X = arg maxq∈C{®x(q)};

t(X ) otherwise.

Gui-1 GviGui Gui-1 GviGui

Vk
u uu u

vi
vi

vi

(a) (b) 

' Vk'
vi

(a)

Gui-1 GviGui Gui-1 GviGui

Vk
u uu u

vi
vi

vi

(a) (b) 

' Vk'
vi

(b)

Figure 5: (t, ®x)-partitions of a subtree Gi
u , and their restric-

tions to subtrees Gi−1

u and Gvi .

We then define the following function: For a subtree Gi
u , a top

configuration t : 2
C → {0, 1, . . . ,k}, and a weight configuration

®x ∈ ZCW , we let

φ(Gi
u ; t, ®x) B

{
yes if Gi

u has a (t, ®x)-partition;

no otherwise.

Then, there is a feasible solution to a given instance of the ger-

rymandering problem if and only if there exists a pair of a top

configuration t and a weight configuration ®x such that φ(G; t, ®x) =
yes,

∑
X ⊆C t ®x (X ) = k , and t ®x ({p}) >

∑
X ⊆C : q∈X t ®x (X ) for all

q ∈ C \ {p}.
For a given tree G, our algorithm computes φ(Gi

u ; t, ®x) for all
possible triples (Gi

u , t, ®x) from the leaves to the root r as follows.

Initialization. We first compute φ(G0

u ; t, ®x) for all vertices u ∈

V (G) (including internal vertices in G). Recall that G0

u consists of

a single vertex u. Therefore, φ(G0

u ; t, ®x) = yes holds if and only if

t(X ) = 0 for all X ⊆ C and ®x satisfies

®x(q) =

{
w(u) if q = c(u);

0 otherwise

for each q ∈ C. Notice that we have computed φ(Gu ; t, ®x) for all
leaves of G, since Gu = G

0

u if u is a leaf.

Update. We now consider the case where i ≥ 1. To compute

φ(Gi
u ; t, ®x), we classify the partial solutions ofGi

u into the following

two groups (a) and (b).

(a) The vertices u and vi are contained in the same connected

component. (See also Figure 5(a).)

In this case, the edge uvi is not deleted, and the frontier in a

(t, ®x)-partition of Gi
u can be obtained by merging the frontier in

a (t ′, ®y)-partition ofGi−1

u with the frontier in a (t ′′, ®z)-partition of

Gvi . Thus, we define

φa (Gi
u ; t, ®x) B

∨ (
φ(Gi−1

u ; t ′, ®y) ∧ φ(Gvi ; t
′′, ®z)

)
,

where the or operation

∨
is taken over all top configurations

t ′, t ′′ : 2
C → {0, 1, . . . ,k} and all weight configurations ®y, ®z ∈ ZCW

such that t ′(X ) + t ′′(X ) = t(X ) for each X ⊆ C, and ®y(q) + ®z(q) =
®x(q) for each q ∈ C.

(b) The vertices u and vi are not contained in the same connected

component. (See also Figure 5(b).)

In this case, the edge uvi is deleted, and the frontier in a (t, ®x)-
partition ofGi

u is the frontier in a (t ′, ®x)-partition ofGi−1

u . Note that

the frontier Vk ′′ in a (t ′′, ®z)-partition of Gvi is merely a connected

component in the (t, ®x)-partition of Gi
u . Thus, we can compute
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top(Vk ′′), and have to take the top candidates in Vk ′′ into account.

Therefore, we define

φb (Gi
u ; t, ®x) B

∨ (
φ(Gi−1

u ; t ′, ®x) ∧ φ(Gvi ; t
′′, ®z)

)
,

where the or operation

∨
is taken over all top configurations

t ′, t ′′ : 2
C → {0, 1, . . . ,k} and all weight configurations ®z ∈ ZCW

such that t ′(X ) + t ′′
®z (X ) = t(X ) for each X ⊆ C.

Then, φ(Gi
u ; t, ®x) = φa (Gi

u ; t, ®x) ∨ φb (Gi
u ; t, ®x). Recall that there

are O(k2
|C|

) distinct top configurations t , and notice that |ZCW | =

O(W |C |). Since |C| is fixed in this subsection, our algorithm above

runs in pseudo-polynomial time. This completes the proof of Theo-

rem 4.5.

5 ALGORITHMS FOR COMPLETE GRAPHS
In this section, we consider complete graphs. Recall that the ger-

rymandering problem is NP-complete for complete graphs even

if k = |C| = 2 (Theorem 3.1). In this section, for each candidate

q ∈ C, we define T (q) B {v ∈ V : c(v) = q}.
We give the following theorem for complete graphs and k = 2;

note that |C| is not necessarily fixed. We omit the proof.

Theorem 5.1. The gerrymandering problem is solvable in pseudo-
polynomial time for complete graphs and k = 2.

Finally, we show an interesting contrast on complete graphs: the

problem is solvable in polynomial time for complete graphs and

any k ≥ 3. The feasibility of the gerrymandering problem for such

a case can be characterized by the following (4); furthermore, it

yields a polynomial-time algorithm.

Theorem 5.2. The gerrymandering problem is solvable in poly-
nomial time for complete graphs and any k ≥ 3. In particular, there
exists a feasible solution to such an instance if and only if it holds that

|T (p)| +
∑

q∈C\{p }

min{|T (q)|, |T (p)| − 1} ≥ k . (4)

Proof. It suffices to prove that there exists a feasible solution

for a complete graphG and any k ≥ 3 if and only if (4) holds, since

we can check in polynomial time whether (4) holds or not.

We first prove the necessity. Assume that there exists a feasible

solution V1,V2, . . . ,Vk to the gerrymandering problem. We define

α B |{i ∈ {1, 2, . . . ,k} : {p} = top(Vi )}|, and β(q) B |{i ∈

{1, 2, . . . ,k} : q ∈ top(Vi )}| for each q ∈ C \ {p}. Then, we have
α ≤ |T (p)| and β(q) ≤ |T (q)| for each q ∈ C \ {p}. Furthermore,

since V1,V2, . . . ,Vk is a feasible solution of the gerrymandering

problem, β(q) ≤ |T (p)| − 1 holds for each q ∈ C \ {p}. Thus, we
have

α +
∑

q∈C\{p }

β(q) ≤ |T (p)| +
∑

q∈C\{p }

min{|T (q)|, |T (p)| − 1}. (5)

On the other hand, we have

α +
∑

q∈C\{p }

β(q) = α +
k∑
i=1

|top(Vi ) \ {p}|

≥ α + |{i ∈ {1, 2, . . . ,k} : {p} , top(Vi )}| = k . (6)

Thus, (4) follows from (5) and (6).

We next show the sufficiency. Assume that (4) holds.

We first consider the case where |T (p)| ≥ k . LetX1,X2, . . . ,Xk−1

be an arbitrary partition of T (p). Then, we define Vi B Xi for
each i ∈ {1, 2, . . . ,k − 1} and Vk B V \ T (p). The definition of

V1,V2, . . . ,Vk implies that

• |{i ∈ {1, 2, . . . ,k} : {p} = top(Vi )}| = k − 1, and

• |{i ∈ {1, 2, . . . ,k} : q ∈ top(Vi )}| ≤ 1 for all q ∈ C \ {p}.

Since k ≥ 3 and hence k − 1 > 1, V1,V2, . . . ,Vk forms a feasible

solution of the gerrymandering problem.

Next we consider the case where |T (p)| < k . We denote C \

{p} = {q1,q2, . . . ,qℓ}; the candidates are ordered arbitrarily. Let

ℓ′ ∈ {1, 2, . . . , ℓ} be the integer such that

|T (p)| +
ℓ′−1∑
j=1

min{|T (qj )|, |T (p)| − 1} < k,

|T (p)| +
ℓ′∑
j=1

min{|T (qj )|, |T (p)| − 1} ≥ k .

Notice that (4) and |T (p)| < k imply the existence of such an in-

teger ℓ′. For each integer j ∈ {1, 2, . . . , ℓ′ − 1}, we define γj B
min{|T (qj )|, |T (p)| − 1}. Furthermore, we define γℓ′ by

γℓ′ B k − |T (p)| −
ℓ′−1∑
j=1

min{|T (qj )|, |T (p)| − 1}

≤ min{|T (qℓ′)|, |T (p)| − 1}.

Let X1,X2, . . . ,X |T (p) | be the partition of T (p) into singletons. For

each j ∈ {1, 2, . . . , ℓ′ − 1}, let Y
j
1
,Y

j
2
, . . . ,Y

j
γj be an arbitrary par-

tition of T (qj ). Furthermore, let Y ℓ′

1
,Y ℓ′

2
, . . . ,Y ℓ′

γℓ′ be an arbitrary

partition of {v ∈ V : c(v) < {p,q1,q2, . . . ,qℓ′−1
}}. Then, we define

a partition (V1,V2, . . . ,Vk ) of V by

(X1,X2, . . . ,X |T (p) |,Y
1

1
,Y 1

2
, . . . ,Y 1

γ1

, . . . ,Y ℓ′

1
,Y ℓ′

2
, . . . ,Y ℓ′

γℓ′ ).

The definition of V1,V2, . . . ,Vk implies that

• |{i ∈ {1, 2, . . . ,k} : {p} = top(Vi )}| = |T (p)|,
• |{i ∈ {1, 2, . . . ,k} : qj ∈ top(Vi )}| = γj ≤ |T (p)| − 1 for all

j ∈ {1, 2, . . . , ℓ′ − 1}, and

• |{i ∈ {1, 2, . . . ,k} : qj ∈ top(Vi )}| ≤ γℓ′ ≤ |T (p)| − 1 for all

j ∈ {ℓ′, ℓ′ + 1, . . . , ℓ}.

Thus,V1,V2, . . . ,Vk form a feasible solution of the gerrymandering

problem. □

6 CONCLUSION
In this paper, we gave several hardness results and polynomial-

time algorithms for gerrymandering over graphs. The main open

problem left in this paper is to settle the complexity status for

paths when the number of candidates is not fixed. The polynomial-

time solvability for trees also remains open when the number of

candidates is fixed, whereas we give a pseudo-polynomial-time

algorithm for this case. The complexity for trees of diameter three

also remains unclear. The problem under other voting rules should

also be investigated. Parameterized complexity of the problem is

also a natural direction of further research.
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