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ABSTRACT
Fictitious play has been a classic algorithm to solve two-player ad-
versarial games with discrete action spaces. In this work we develop
an approximate extension of fictitious play to two-player games
with high-dimensional continuous action spaces. We use generative
neural networks to approximate players’ best responses while also
learning a differentiable approximate model to the players’ rewards
given their actions. Both these networks are trained jointly with
gradient-based optimization to emulate fictitious play. We explore
our approach in zero-sum games, non zero-sum games and security
game domains.
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1 INTRODUCTION
Computing Nash Equilibrium (NE) is an important intermediate
step in game theoretic domains and finds major applications in
economics, planning, security domains etc. In this work, we con-
sider the problem of finding approximate mixed strategy Nash
equilibrium in two-player games with continuous action spaces for
players.

We are particularly motivated by security domains which in-
volve protecting geographic areas and often lead to continuous
action spaces [7, 11, 14, 21]. Though previous approaches focus on
discretized action spaces [6, 7, 22], special spatio-temporal structure
in games [1, 2, 5, 23] and numerical solutions using approximate
differential equations in special cases [11], these do not extend
generally to most two-player game settings.

Hence we focus on extending a classic algorithm namely ficti-
tious play (FP) to two-player games with continuous action spaces.
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Fictitious play involves players repeatedly playing the game and
best responding to each other’s history of play. FP has been shown
to converge to a NE for specific classes of discrete action games with
exact best responses [16] and with approximate best responses [3].
We surmise that it can be extended to two-player continuous action
space games with approximate best responses. This hypothesis is
partly supported by a variant of FP called Stochastic Fictitious Play
(SFP) [10] which adds an entropy-maximizing objective to FP and
has been shown to converge under more diverse settings: discrete
time [10], continuous time [20] and with continuous action sets [19]
under reasonable regularity assumptions over underlying domains.

Motivated by these properties, we develop an approximate ficti-
tious play algorithm for two-player games with continuous action
spaces. We make the following key contributions: (a) We use novel
state-of-the-art generative neural networks to implicitly represent
stochastic best responses for players. These networks are very
flexible at learning arbitrary distributions with no explicit shape
assumptions on players’ action spaces, (b) We also learn a game-
model neural network which is a differentiable approximation of
the players’ payoffs given their actions, (c) we train the game-model
network and the best response networks end-to-end in a decou-
pled manner to approximate the Nash equilibrium of games with
continuous action spaces.

We also address certain limitations of previous multiagent learn-
ing methods. Since deterministic player policies work only in col-
laborative settings [18] but are easily exploited from an adversar-
ial viewpoint, we work in the stochastic policy regime. Existing
methods which employ stochastic policies do it in domains with
discrete action sets since explicit distributions can be maintained
over them [4, 8, 9, 17]. However it is challenging to maintain dis-
tributions over continuous action spaces and existing approaches
often assume explicit distributions for players’ strategies which
may not span the full space of strategies to which Nash equilibrium
distributions belong (e.g. OptGradFP [12, 13] assumes independent
multivariate logit-normal distributions for players’ strategies). Our
use of generative neural networks alleviates this issue and provides
stronger modeling capabilities for the best response strategies since
they can implicitly approximate arbitrary probability densities. Fur-
ther, our approach does not require any likelihood estimates and
thereby converges stably with minimal or no regularization.
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2 APPROXIMATING FICTITIOUS PLAY
We consider a two-player game with continuous action sets for
players 1 and 2. We will often use the index p ∈ {1, 2} for one of
the players and −p for the other player. Letting Up be the compact,
convex action set of player p and P (Up ) be the set of all probability
measures on Up , the mixed strategy of player p is πp ∈ P (Up )
with πp (Bp ) denoting the probability of player p selecting an action
in the set Bp ⊆ Up . We further denote the probability density
function for player p at action up ∈ Up as σp (up ) i.e. πp (Bp ) =∫
Bp

σp (up )dup . An actionup ∈ Up can be sampled from a playerp’s
mixed strategy (up ∼ πp ) or from the associated density (up ∼ σp ),
andwe use these notations interchangeably.We denote joint actions,
joint action sets, joint distributions and joint densities without any
player subscript i.e. as u = (u1,u2),U = U1 ×U2,π = (π1,π2) and
σ = (σ1,σ2) respectively.

Each player has a bounded and Lipschitz continuous reward
function rp : U → R. For zero-sum games, rp (u)+r−p (u) = 0 ∀u ∈
U . With players’ mixed strategy densities σp and σ−p , the expected
reward of player p is:

Eu∼σ [rp ] =
∫
Up

∫
U−p

rp (u)σp (up )σ−p (u−p )dupdu−p

The best response of playerp against player−p’s current strategy
σ−p is defined as the set of strategies which maximizes his expected
reward:

BRp (σ−p ) := arg max
σp

{
Eu∼(σp,σ−p )[rp ]

}
,

A pair of strategies σ = (σ1,σ2) is said to be a Nash equilibrium if
neither player can increase his expected reward by changing his
strategy while the other player sticks to his current strategy. In
such a case both these strategies belong to the best response sets
to each other i.e.

σ1 ∈ BR1 (σ2),

σ2 ∈ BR2 (σ1).

To compute NE for the game of interest, we introduce an approx-
imate realization of fictitious play in high-dimensional continuous
action spaces. Let the empirical distribution of player p’s previ-
ous actions (a.k.a. belief distribution) be π̄p and the corresponding
density function (a.k.a. belief density) be σ̄p . Then fictitious play in-
volves player p repeatedly best responding to his opponent’s belief
density σ̄−p :

BRp (σ̄−p ) := arg max
σp

{
Eu∼(σp, σ̄−p )[rp ]

}
,

Repeating this procedure for both players is guaranteed to converge
to the Nash equilibrium densities for both players for certain classes
of games [16]. This implies that approximating FP in continuous
action spaces requires approximations to two essential ingredients:

(1) Belief densities over players’ actions, and
(2) Best responses for each player.
In this work we employ two novel ways to approximate both the

above mentioned essential ingredients thereby extending fictitious
play to games with continuous action spaces.

Maintaining belief densities: Representing belief densities
compactly is challenging in continuous action spaces.We propose to

maintain belief density σ̄p of each player p via a non-parameterized
population based estimate i.e. via memory of all actions played by
p so far. Directly sampling up from the memory gives an unbiased
sample from σ̄p .

Approximating best responses: Computing exact best response
is intractable for most games. But when the expected reward for
a player p is differentiable w.r.t. the player’s action up and admits
continuous and smooth derivatives, best responses can be approx-
imated. We approximate the best response function of player p
with deep neural networks represented as BRp (·;θp ) with trainable
parameters θp and keep them updated with gradient ascent in every
iteration of fictitious play. These are essentially implicit density
models [15] but are trained differently using another differentiable
game model network which takes all players’ actions i.e. {up ,u−p }
as inputs and predicts rewards {r̂p , r̂−p } for each player. The game
model can be pre-trained or learnt simultaneously with the best
response networks directly from gameplay data.

When the expected reward is not differentiable w.r.t. players’
actions or the derivatives are non-smooth or zero in a large part of
the action space, one can also employ an approximate best response
oracle (BROp ) for player p. The oracle can be a non-differentiable
approximation algorithm employing LP or MIP, since it will never
be trained. In many security games, Mixed-integer programming
based algorithms are proposed to compute best responses and our
algorithm provides a novel way to incorporate them as subroutines
in a deep learning framework, as opposed to most existing works
which require end-to-end differentiable policy networks and cannot
utilize non-differentiable solutions even when available.

3 CONCLUSION
In this work, we focus on an approximate fictitious play algorithm
for games with continuous action spaces. Our proposed method
implicitly represents players’ stochastic best responses via gener-
ative neural networks without prior shape assumptions and opti-
mizes them with gradient-based training. It can also utilize approxi-
mate best response oracles whenever available, thereby harnessing
prowess in approximation algorithms from discrete planning and
operations research. Also, our proposed algorithm is off-policy be-
cause of the learnt smoothly parameterized game model. It trains
significantly faster than on-policy methods like OptGradFP by di-
rectly estimating rewards from the game-model network and alle-
viating the need to replay previously played games thereby signif-
icantly speeding up the training and scaling better with growing
number of players’ resources.

We test our proposed variants of approximate fictitious play in
zero-sum, non zero-sum and security game domains with improved
results in achieving complex and flexible Nash equilibrium strate-
gies. We further introduce a novel exploitability analysis using a
genetic algorithm to evaluate the learnt strategies. Our approach
is easily extended to multi-player applications, with each player
p best responding to the joint belief density over all other players
σ̄−p using an oracle or a best response network.
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