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ABSTRACT

This paper addresses the problem of explaining execution failures

in TemporalMultiagent Plans (TMAPs). A diagnosis identifies faulty

actions (primary failures), and those that were affected by fault

propagation (secondary failures). Temporal explanations group di-

agnoses for increasing understanding.

KEYWORDS

Temporal Multi-agent Plans; Diagnosis; Explanation; SMT

ACM Reference Format:

Gianluca Torta, Roberto Micalizio, and Samuele Sormano. 2019. Explaining

Failures Propagations in the Execution of Multi-Agent Temporal Plans. In

Proc. of the 18th International Conference on Autonomous Agents and Multia-

gent Systems (AAMAS 2019), Montreal, Canada, May 13–17, 2019, IFAAMAS,

3 pages.

1 INTRODUCTION

Multiagent plans (MAPs) accomplish complex goals by decompos-

ing them into subgoals, and then organizing the activities of a team

of agents. Plan execution, however, is not always straightforward.

The actual execution of actions, in fact, can be affected by failures.

When a failure occurs, detecting and diagnosing it is of primary

importance in order to resume the nominal execution.

Some recent works [1, 4, 5] have addressed the problem of di-

agnosing the execution of a MAP. These works, however, do not

model time explicitly, but only implicitly by assuming a sequence

of discrete time steps at which atomic actions are performed. As

a consequence, anomalous deviations on the duration of actions

cannot be detected and diagnosed. Other approaches [6–8], on the

other hand, have focused only on the temporal dimension disre-

garding that a faulty action may not achieve all (or some) of its

expected effects. Both families of approaches, thus, can’t handle ap-

plications where durative actions may take longer than expected,

as well as fail in producing the expected results.

This paper addresses the diagnosis of the execution of a Temporal-

MAP (TMAP), that is a plan where both missing effects and tem-

poral deviations can occur. We adopt a consistency-based notion

of diagnosis: a MAP diagnosis is a subset of actions whose non-

nominal behavior is consistent with the observations received so
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far. The Z3 Satisfiability Modulo Theories (SMT) solver [2], is ex-

ploited for inferring all the minimal rank (i.e., most likely) diag-

noses consisting in an attribution of a (possibly faulty) modality

to each plan action. Diagnoses are then complemented with a set

of temporal explanations highlighting contingent causal dependen-

cies that might have occurred, and help a user gain the awareness

of how a primary action failure has caused other secondary ones.

2 PLAN EXECUTION FAILURE PROBLEM

A rigorous formalization of a TMAP and of a Plan Execution Fail-

ure (PEF) problem can be found in [9], due to lack of space we give

here just some intuitive notions. Figure 1 exemplifies a TMAP in

the logistic domain. The picture shows the causal (dashed edges)

and precedence (solid edges) constraints between actions. It is ex-

pected that a nominal execution of the plan will satisfy all these

constraints. However, the actual execution could be affected by ac-

tion failures whose consequencesmay lead an agent to violate both

types of constraints. Indeed, the temporal aspect is modeled by as-

sociating each actionawith a set ofmodalitiesM(a):{N , F1, F2, . . .}.

The nominal modality N denotes the duration (as an interval) of

the action under normal condition, and has rank 0, meaning that

is preferred to other, faulty modes. The remaining faulty modes

in M(a) are associated with ever greater durations and ranks and

with the specification of what effects will be missing when a is

performed in that mode. As usual in model-based diagnosis, a PEF

problem arises when, given a set of observationsObs , the nominal

hypothesis, that is the assumption that each action behaves in its
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Figure 1: An example TMAP.
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normal mode N , is no longer consistent. Note that in our frame-

work observations have the form 〈e, t〉, where e is a literal (e.g.,

at(aд1,p1) and ¬at(aд1,p1)), and t is the time at which the ob-

servation is captured. When the nominal hypothesis is no longer

consistent with Obs , a diagnostic inference is needed to find a set

∆ of alternative hypotheses that are consistent with Obs . The set

∆ is a solution to a PEF problem if each hypothesis δ ∈ ∆ is an

assignment of modes to every action in the TMAP, such that it is

consistent withObs and its rank (order-of-magnitude inverse prob-

ability, see [3]) is minimal. Where the rank of δ is simply defined as

the sum of the ranks of the action modes in δ . A solution δ to a PEF

problem highlights with a special mode FP that some actions have

been affected by previously occurred action failures. For example

(Fig. 1), the move(loc3, loc2) may have a delay (mode F1), so that

the object released by aд1 at loc2 is actually loaded by aд4. This sit-

uation makes actions ac22, ac24, ac32, and ac34 fail with mode FP .

The diagnosis δex (except for N modes) lists: ac21(F1), ac22(FP ),

ac24(FP ), ac32(FP ), ac34(FP ).

3 EXPLAINING FAILURE PROPAGATIONS

A diagnosis as the one just discussed above is not sufficient, for the

user, to understand what has actually happened. In general, fail-

ures can propagate via the shared literals, that is, via the services

produced by an action and consumed by another one. For example,

an action may fail because one of the required inputs is not avail-

able at the right time, and this may happen because the producer

failed in supplying it (including supplying it with too much delay),

or because another action has erroneously consumed the service

in its place. Explaining δ , thus, means tracing back the temporal

relations among the actions that are related to some shared literal

of interest, and whose occurrence justifies a secondary failure.

To this end, we define a Temporal Explanation E(δ ,R) of δ w.r.t.

a shared literal R as a set of Allen algebra relations (i.e., before,

after, during, . . .) among the actions in P that produce/consume R.

A (full) explanation of a diagnosis δ is simply a set E(δ ) of several

sub-explanations E(δ ,R), one for each shared literal 1.

Let us refer to diagnosis δex from section 2. The producers of

literal R = at(o, loc2) are ac13, and ac34; while the consumers of R

are: ac22, and ac44. Figure 2 shows E(δex ,R) graphically on a di-

agram where time increases from left to right. Note that, besides

the actions related with R and their Allen algebra relations speci-

fied by E(δ ,R) (black), the schema also shows some other actions

with mode assignments specified by the diagnosis δ (gray); such

actions are depicted just to further increase the information con-

veyed by the schema to the reader.

The set of non-FP actions that have to do with R are just ac13
and ac44, so that the timeline is partitioned in five regions (dot-

ted vertical bars): before ac13; during ac13; between ac13 and ac44;

during ac44; after ac44. The definition of explanation requires us

to relate ac13 and ac44, and a possible scenario is ac13 before ac44,

i.e., when ac13 ends, some time passes before ac44 becomes ready

and consumes at(o, loc2). Note that R would be available for other

consumers between the end of ac13 to the start of ac44. However,

according to explanation E(δex ,R), ac22 becomes ready and then

1Note that, given a diagnosis δ , it is in general possible to find several alternative
explanations, corresponding to different orders of events compatible with δ .

Figure 2: A Temporal Explanation of Diagnosis δex =

{ac21(F1), ac22(FP ), ac24(FP ), ac32(FP ), ac34(FP )}.

CBFS
time #sol time/sol #expl

ag 2
ac 8 (R2) 0.48 2.0 0.24 2.0

ag 4
ac 10 (R2) 1.32 2.5 0.53 3.0
ac 20 (R2) 6.83 4.0 1.71 6.1
ac 20 (R4) 25.53 15.6 1.64 23.2

Table 1: avg time (sec), sols, time/sol, and expls in experi-

ments.

fails with mode FP (segment starting with > and ending with ^)

only after ac44 ends. By looking at the figure, it is easy to see that

such a delay is due to the failure with mode F1 of action ac21. The

figure also shows actions ac24 and ac32, that are respectively a put

and load related to another literal at(o, loc4) (indicated by the ր

after the actions), which fail as a consequence of the failure of ac22
(see Fig. 1). Also ac34 fails as a consequence of the failure of ac32.

4 IMPLEMENTATION AND TESTS

We have encoded the check of consistency of a hypothesis δ as an

SMT problem for the solver Z3, and used a conflict-based best first

search (CBFS) written in Java to find all the minimal rank diag-

noses and explanations. For more details about CBFS see [9]. The

tests have been run on a machine running Ubuntu 18.04.1 LTS,

equipped with an i7 7700HQ CPU at 2.80 GHz, and 8 GB RAM. We

have considered a Logistic domain where agents can move, load,

and put objects, giving rise to several kinds of inter-agent interac-

tions. We have experimented our approach by running a number

of software simulated tests under different configurations, defined

by varying the following dimensions: #ag (2 and 4 agents), #ac (8,

10, 20) actions per agent, #rnk (injected failures of ranks 2, 4). The

observability rate (i.e., ratio between the number of actions with

observable effects and the total number of actions) was 30%. In Ta-

ble 1, we show results obtained with 4 different configurations of

increasing complexity. The average total time for solving the PEF

problems goes from 0.48s (2 agents x 8 actions, rank 2), up to 25.53s

(4 agents x 20 actions, rank 4). However, it should be noted that the

total time includes the computation of all the preferred diagnoses,

as well as their temporal explanations. If we look at the average

time taken for computing each preferred diagnosis (including its

explanations), the increase is more limited, since, as the test cases

become more challenging, the average number of preferred diag-

noses increases (from 2.0 to 15.6), as well as the average number

of associated explanations (from 2.0 to 23.2).
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