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ABSTRACT
Machine predictions that are highly confident yet incorrect, i.e.
unknown unknowns, are crucial errors to identify, especially in
high-stakes settings like medicine or law. We describe a hybrid
approach to identifying unknown unknowns that combines the pre-
vious algorithmic and crowdsourcing strategies. Our method uses
a set of decision rules to approximate how the model makes high
confidence predictions. We present the rules to crowd workers, and
challenge them to generate instances that contradict the rules. To
select the most promising rule to next present to workers, we use a
multi-armed bandit algorithm. We evaluate our method by conduct-
ing a user study on Amazon Mechanical Turk. Experimental results
on three datasets indicate that our approach discovers unknown
unknowns more efficiently than state-of-the-art baselines.
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1 INTRODUCTION
Predictive models are becoming increasingly prevalent in real world
applications, from facial recognition to fraud detection. With more
sophisticated learning algorithms, the accuracy of these models
has increased; however, it is often at the expense of transparency.
An important challenge lies in characterizing the errors made by
black-box models, whose inner workings are inaccessible or poorly
understood.

A confidence score is typically used to convey the level of un-
certainty of a model in its prediction. This signal can be misleading
when instances are predicted incorrectly with high-confidence.
These mistakes are called the unknown unknowns (UUs). Atten-
berg et al. observed that UUs are generally present as systematic
errors in specific regions of the feature space [2, 3]. These “blind
spots" generally occur due to discrepancies between the training
and target data distributions (dataset shift [5]). The underlying
source of this discrepancy might be, for example, uncorrected bias
in the training data.
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Whatever their cause, UUs are critical errors to identify in de-
ployed predictive models. Decision makers are likely to use the
model’s uncertainty as a basis for how much to trust a prediction;
hence, any incorrect predictions that are made with high confidence
can have serious consequences.

Two approaches currently exist for identifying UUs. The first is
a crowdsourcing approach, in which candidates are proposed by
workers [2, 3]. The second is an algorithmic approach, in which can-
didates are automatically selected from a fixed set of test instances
[4, 7]. We devise a framework that combines both approaches. Ex-
periments are performed with three datasets on Amazon Mechan-
ical Turk, and results indicate that our hybrid approach achieves
superior performance in terms of cumulative utility.

2 PROBLEM STATEMENT
For any instance x ∈ X , the black-box modelM provides a predicted
label, ŷ ∈ C , where C is the set of classes, and a confidence score
s ∈ [0, 1]. We define a UU as an instance that is predicted incorrectly,
ŷ , y, with a confidence score above some threshold τ , s > τ . For
simplicity, we target UUs predicted to some critical class c , for which
false positives are particularly costly and need to be identified.

We also have access to a set of (unlabelled) test instances,Xtest ⊆ X .
To obtain the label, the system can give a query to a worker. In par-
ticular, the system only queries those instances in Xcand ⊆ Xtest
which are valid UU candidates:

Xcand = {x |x ∈ Xtest , ŷ = c, s > τ } (1)

Given a query instance xi ∈ Xcand , we assume that the worker
knows the label yi and has three actions available:

(1) UU identification: if yi , c , return identify, (xi ,yi )
(2) modification: if yi = c , modify xi to produce some new

instance xj ∈ X such that yj , c , and return
modify, (xj ,yj )

(3) rejection: if yi = c , but the worker is unable to modify xi to
produce some new instance xj ∈ X such that yj , c , return
reject, (xi ,yi )

We assign a fixed cost to each of the three actions, and give unit
utility to the discovery of a UU. Hence, the utility function for a
given query qt is the following:

u(qt ) = disc(qt ) − cost(qt ) (2)

Here, disc(qt ) is a function that returns 1 if the query qt resulted
in a UU discovery and 0 otherwise. cost(qt ) is the cost of the action
performed by the worker for that query. The objective is to find the
sequence of queries that maximizes the total utility,

∑n
t=1 u(qt ).
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Figure 1: Crowdsourcing interface. In this case, the label has
been successfully modified from positive (the critical class)
to negative, but the rule is not yet satisfied.

3 METHODOLOGY
Our method proceeds in two phases. In the first phase, a set of
decision rules is generated to approximate how the model makes
high confidence predictions to the critical class. The second phase
entails a crowdsourcing task in which workers are sequentially
queried. The querying strategy is formulated as a multi-armed
bandit.

3.1 Phase 1: Decision Rule Learning
The first phase aims to learn set of decision rules that distinguish
instances predicted with high confidence to the critical class (class 1)
from the rest (class 0). The left-hand side of the rule is a conjunction
of predicates. Each predicate is of the form (attribute=value), where
the attribute is an interpretable feature, and the value is 1 or 0 to
indicate the presence or absence of that feature. For example, if
the critical class is positive movie reviews, a rule might take the
form (best=1 AND bad=0 => 1). To encourage interpretability,
we favor short rules and set Lmax to be the maximum number of
predicates in any rule. To ensure decomposability, the rules must
be non-overlapping, such that each instance is covered by at most
one rule. These rules can be efficiently generated by adapting the
Classification And Regression Tree (CART) algorithm [6].

3.2 Phase 2: Contradict the Machine
In the second phase, we use the decision rules to search for UUs via a
crowdsourcing task that we call Contradict the Machine (CTM). For
this task, the worker is given an instance fromXcand that is covered
by a decision rule. If the label is not the critical class, it is confirmed
to be a UU and the worker returns the instance (identify action).
Otherwise, the worker is challenged to modify the instance such
that its label changes, while ensuring that it is still covered by
the rule (modify action). The result is a contradictory example
— one that according to the decision rule, should be confidently
predicted to the critical class, yet whose label is not the critical
class. The worker then returns the modified instance. If the worker
is somehow unable to generate such an example, a third reject
action is available (see Figure 1).

To select which rule and instance to present to the worker, the
rules are treated as arms of a multi-armed bandit. At each step, we
query the rule with the highest expected utility, and present the

Figure 2: UUs proposed by algorithm vs. worker using CTM.

worker with a random candidate instance that is covered by that
rule. To compute expected utility, we maintain statistics on the fre-
quency of reject actions, the posterior probability that an instance
covered by rule R will already be a UU (i.e. identify action), and
the posterior probability that a modified instance covered by rule
R will be predicted to the critical class with high confidence (i.e.
modify action resulting in a UU). The posteriors are represented
with Beta distributions. Thompson sampling is used to trade off
exploitation of the most promising rules with exploration [10].

4 EXPERIMENTAL RESULTS
We performed experiments on Amazon Mechanical Turk with three
datasets: Pang2005, comprised of 10k movie reviews from Rotten
Tomatoes classified as negative or positive [9]; McAuley2013, con-
taining 500k reviews from the Amazon Fine Food Store classified as
low (1-2 stars) or high (4-5 stars) [8]; and Almeida2011, comprised
of 5k SMS messages classified as spam or non-spam [1]. A logistic
regression classifier was used as the black-box model, trained on
a bag-of-words representation of the text. We induced bias in the
training data to ensure that there were sufficient UUs to be discov-
ered by (1) clustering the training data and discarding data from an
arbitrary cluster and (2) class balancing.

Ourmethodwas evaluated against several baselines. Our primary
comparison was with UUB, the algorithmic approach proposed by
Lakkaraju et al. [7]. We also tested a variant of CTM that does
not present the worker with any rule to satisfy (CTM-NoRule) and
a variant that randomly selects which rule to present to workers
instead of the bandit algorithm (CTM-Random).

We find that CTM outperforms UUB in terms of cumulative
utility, achieving gains of 67.5% 32.1%, and 68.5% on Pang2005,
McAuley2013, and Almeida2011 respectively. No large difference
in utility is observed between querying strategies (CTM vs. CTM-
Random). Comparison of CTM with CTM-NoRule suggests that
rules vastly improve performance, with the exception of Pang2005.
This finding is not surprising because the Pang2005 rule set has
relatively poor precision (60.7%). Figure 2 shows the quantity of
UUs discovered from the test set (i.e. algorithm proposed) and UUs
generated by the workers (i.e. worker proposed). Both contributions
are substantial, showing the merit of a hybrid approach.

5 CONCLUSION
Two general directions of research have emerged for identifying
UUs of predictive models: crowdsourcing and algorithms. We de-
scribe a promising new framework that combines both approaches.
Possible areas of future work include adapting CTM to other types
of data and incorporating mechanisms to take advantage of worker
expertise.
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