Many-to-Many Stable Matchings with Ties, Master Preference Lists, and Matroid Constraints

Naoyuki Kamiyama*
Kyushu University / JST PRESTO
Fukuoka, Japan
kamiyama@imi.kyushu-u.ac.jp

Abstract

In this paper, we consider a matroid generalization of the hospitals/residents problem with ties. Especially, we focus on the situation in which we are given a master list and the preference list of each hospital over residents is derived from this master list. In this setting, Kamiyama proved that if hospitals have matroid constraints and each resident is assigned to at most one hospital, then we can solve the super-stable matching problem and the strongly stable matching problem in polynomial time. In this paper, we generalize these results to the many-to-many setting. More specifically, we consider the setting where each resident can be assigned to multiple hospitals, and the set of hospitals that this resident is assigned to must form an independent set of a matroid. In this paper, we prove that the super-stable matching problem and the strongly stable matching problem in this setting can be solved in polynomial time.

KEYWORDS

Stable matching; Matroid; Tie

ACM Reference Format:

Naoyuki Kamiyama. 2019. Many-to-Many Stable Matchings with Ties, Master Preference Lists, and Matroid Constraints. In Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2019), Montreal, Canada, May 13-17, 2019, IFAAMAS, 9 pages.

1 INTRODUCTION

The two-sided matching market model proposed by Gale and Shapley [7] is one of the most fundamental mathematical models for real-world assignment problems. In this model, each agent has a preference list over potential partners. Gale and Shapley [7] proved that if there does not exist a tie in the preference lists (i.e., the preference lists are strict), then there always exists a stable matching and we can find a stable matching in polynomial time.

However, if there exist ties in the preference lists, then the situation dramatically changes (see, e.g., [12] and [21, Chapter 3] for a survey of stable matchings with ties). For the stable matching problem with ties, three stability concepts were proposed by Irving [8]. The first concept is called weak stability. This stability concept guarantees that there does not exist an unmatched pair $\{a, b\}$ such that a (resp., b) prefers b (resp., a) to the current partner. Irving [8] proved that there always exists a weakly stable matching and we can find a weakly stable matching in polynomial time by slightly

[^0]modifying the algorithm of Gale and Shapley [7]. The second concept is called strong stability. This stability concept guarantees that there does not exist an unmatched pair $\{a, b\}$ such that (i) a prefers b to the current partner, and (ii) b prefers a to the current partner, or is indifferent between a and the current partner. The last concept is called super-stability. This stability concept guarantees that there does not exist an unmatched pair $\{a, b\}$ such that a (resp., b) prefers b (resp., a) to the current partner, or is indifferent between b (resp., $a)$ and the current partner.

One of the most notable differences between the last two concepts and the stability concept in the stable matching problem with strict preferences is that there does not necessarily exist a stable matching [8]. From the algorithmic viewpoint, it is important to consider the problem of checking the existence of matchings satisfying these stability conditions. In the one-to-one setting, Irving [8] proposed polynomial-time algorithms for finding a super-stable matching and a strongly stable matching (see also [20]). In the many-toone setting, Irving, Manlove, and Scott [9] proposed a polynomialtime algorithm for finding a super-stable matching, and Irving, Manlove, and Scott [10] proposed a polynomial-time algorithm for finding a strongly stable matching. Kavitha, Mehlhorn, Michail, and Paluch [17] proposed faster algorithms for strong stability. In the many-to-many setting, Scott [26] considered super-stability, and Malhotra [19] and Chen and Ghosh [2] considered strong stability. Olaosebikanand and Manlove [23] considered super-stability in the student-project allocation problem with ties.

In this paper, we focus on the situation in which we are given a master list and the preference list of each hospital over residents is derived from this master list. Master lists are motivated by real-world applications (see [11]). In the one-to-one setting, Irving, Manlove, and Scott [11] gave simple polynomial-time algorithms for finding a super-stable matching and a strongly stable matching. O'Malley [24] gave polynomial-time algorithms for finding a super-stable matching and a strongly stable matching in the many-to-one setting. Furthermore, Kamiyama [14] gave polynomial-time algorithms for finding a super-stable matching and a strongly stable matching in the many-to-one setting with matroid constraints. Matroids can represent not only capacity constraints but also more complex constraints including hierarchical capacity constraints. Thus, matroid generalizations are important from not only the theoretical viewpoint but also the practical viewpoint. Matroid generalizations of several matching problems have been extensively studied (see, e.g., [4-6, 13-16, 18, 22, 27]).

In this paper, we consider the problem of finding a many-tomany super-stable matching and a many-to-many strongly stable matching with master preference lists and matroid constraints. Our results generalize the results of Kamiyama [14]. More specifically, in
the setting of [14], each resident is assigned to at most one hospital. On the other hand, in our setting, each resident can be assigned to multiple hospitals, and the set of hospitals that this resident is assigned to must form an independent set of a matroid. Notice that the extension from the many-to-one case to the many-to-many case is generally a non-trivial task (see, e.g., [1, 2]).

2 PRELIMINARIES

For each set X and each element x, we define $X+x:=X \cup\{x\}$ and $X-x:=X \backslash\{x\}$, respectively. For each positive integer n, we define $[n]:=\{1,2, \ldots, n\}$. Define $[0]:=\emptyset$.

A pair $\mathbf{M}=(U, \mathcal{I})$ of a finite set U and a non-empty family \mathcal{I} of subsets of U is called a matroid if for every pair of subsets I, J of U, the following conditions are satisfied.
(I1) If $I \in I$ and $J \subseteq I$, then $J \in \mathcal{I}$.
(I2) If $I, J \in I$ and $|I|<|J|$, then there exists an element u in $J \backslash I$ such that $I+u \in I$.
A subset of U belonging to I is called an independent set of M .
In this paper, we are given a finite simple (not necessarily complete) bipartite graph $G=(V, E)$ such that its vertex set V is partitioned into disjoint subsets R and H, and each edge in E connects a vertex in R and a vertex in H. We call a vertex in R (resp., H) a resident (resp., hospital). For each resident r in R and each hospital h in H, if there exists an edge in E connecting r and h, then we denote by (r, h) this edge. For each vertex v in V and each subset F of E, we denote by $F(v)$ the set of edges in F that are incident to v. For each resident r in R, we are given a matroid $\mathbf{P}_{r}=\left(E(r), \mathcal{F}_{r}\right)$ such that for every edge e in $E(r),\{e\} \in \mathcal{F}_{r}$. Furthermore, we are given a matroid $\mathbf{Q}=(E, \mathcal{G})$ such that for every edge e in $E,\{e\} \in \mathcal{G}$. We assume that we can decide whether each subset of E is an independent set of the above matroids in time bounded by a polynomial in the input size of G. (That is, we consider the oracle model.)

For each resident r in R, we are given a complete and transitive binary relation \succsim_{r} on $E(r)$. Furthermore, we are given a complete and transitive binary relation \gtrsim_{H} on R. For each resident r in R and each pair of edges e, f in $E(r)$ such that $e \succsim_{r} f$ and $f \nexists_{r} e$ (resp., $e \gtrsim_{r} f$ and $f \gtrsim_{r} e$), we write $e>_{r} f$ (resp., $e \sim_{r} f$). For each pair of residents r, s in R such that $r \gtrsim_{H} s$ and $s \not \nsucc H_{H} r$ (resp., $r \gtrsim_{H} s$ and $s \gtrsim_{H} r$), we write $r>_{H} s$ (resp., $r \sim_{H} s$).

A subset M of E is called a matching in G if the following conditions are satisfied.
(M1) $M(r) \in \mathcal{F}_{r}$ for every resident r in R.
(M2) $M \in \mathcal{G}$.
For each matching M in G and each edge $e=(r, h)$ in $E \backslash M$, we say that r weakly prefers (resp., strongly prefers) e on M if at least one of the following conditions is satisfied.
(R1) $M(r)+e \in \mathcal{F}_{r}$.
(R2) There exists an edge f in $M(r)$ such that $M(r)+e-f \in \mathcal{F}_{r}$ and $e \succsim_{r} f\left(\right.$ resp., $\left.e>_{r} f\right)$.
For each matching M in G and each edge $e=(r, h)$ in $E \backslash M$, we say that H weakly prefers (resp., strongly prefers) e on M if at least one of the following conditions is satisfied.
(H1) $M+e \in \mathcal{G}$.
(H2) There exists an edge (s, p) in M such that $M+e-(s, p) \in \mathcal{G}$ and $r \gtrsim_{H} s\left(\right.$ resp., $\left.r>_{H} s\right)$.

A matching M in G is said to be super-stable if there does not exist an edge (r, h) in $E \backslash M$ such that r and H weakly prefer (r, h) on M. A matching M in G is said to be strongly stable if there does not exist an edge (r, h) in $E \backslash M$ such that r and H weakly prefer (r, h) on M, and at least one of r and H strongly prefers (r, h) on M. The goal of the super-stable (resp., strongly stable) matching problem is to decide whether there exists a super-stable (resp., strongly stable) matching in G, and find a super-stable (resp., strongly stable) matching if a super-stable (resp., strongly stable) matching exists.

2.1 Notation

We denote by $R_{1}, R_{2}, \ldots, R_{n}$ the partition of R satisfying the following conditions.

- For every integer i in [n] and every pair of residents r, s in $R_{i}, r \sim_{H} s$
- For every pair of integers i_{1}, i_{2} in [n] such that $i_{1}<i_{2}$ and every pair of residents r in $R_{i_{1}}$ and s in $R_{i_{2}}, r>_{H} s$.
Then for each integer i in $[n]$, we define $R[i]:=\bigcup_{x=1}^{i} R_{x}$.
For each resident r in R, we denote by $E_{r}^{1}, E_{r}^{2}, \ldots, E_{r}^{m_{r}}$ the partition of $E(r)$ satisfying the following conditions.
- For every integer i in $\left[m_{r}\right]$ and every pair of edges e, f in E_{r}^{i}, $e \sim_{r} f$.
- For every pair of integers i_{1}, i_{2} in [m_{r}] such that $i_{1}<i_{2}$ and every pair of edges e in $E_{r}^{i_{1}}$ and f in $E_{r}^{i_{2}}, e>_{r} f$.
Then for each resident r in R and each integer i in $\left[m_{r}\right.$], we define $E_{r}[i]:=\bigcup_{x=1}^{i} E_{r}^{x}$. For each resident r in R, we define $E_{r}[0]:=\emptyset$.

2.2 Example

Here we give an example of our model. Assume that we are given a positive integer u_{r} for each resident r in R, and we are given a positive integer u_{h} for each hospital h in H. Then for each resident r in R, we define \mathcal{F}_{r} as the family of subsets F of $E(r)$ such that $|F| \leq u_{r}$. Furthermore, we define \mathcal{G} as the family of subsets F of E such that $|F(h)| \leq q_{h}$ for every hospital h in H. Then a subset M of E is a matching in G if the following conditions are satisfied.

- $|M(r)| \leq u_{r}$ for every resident r in R.
- $|M(h)| \leq u_{h}$ for every hospital h in H.

Assume that we are given a matching M in G and an edge $e=(r, h)$ in $E \backslash M$. Then r weakly (resp., strongly) prefers e on M if at least one of the following conditions is satisfied.

- $|M(r)|<u_{r}$.
- $e \succsim_{r} f$ (resp., $e>_{r} f$) for some edge f in $M(r)$.

Furthermore, H weakly (resp., strongly) prefers e on M if at least one of the following conditions is satisfied.

- $|M(h)|<u_{h}$.
- $r \gtrsim_{H} s$ (resp., $r>_{H} s$) for some edge (s, h) in $M(h)$.

Thus, our problem in this setting can be regarded as a many-tomany generalization of the hospitals/residents problem with ties and master lists.

3 MATROIDS

Assume that we are given a matroid $\mathbf{M}=(U, \mathcal{I})$. A subset C of U is called a circuit of \mathbf{M} if C is not an independent set of \mathbf{M}, but
every proper subset of C is an independent set of \mathbf{M}. The following property of circuits is known.

Lemma 3.1 (See, e.g., [25, Lemma 1.1.3]). Assume that we are given a matroid $\mathbf{M}=(U, I)$. Then for every pair of distinct circuits C_{1}, C_{2} of \mathbf{M} such that $C_{1} \cap C_{2} \neq \emptyset$ and every element u in $C_{1} \cap C_{2}$, there exists a circuit C of M such that $C \subseteq\left(C_{1} \cup C_{2}\right) \backslash\{u\}$.

Assume that we are given a matroid $\mathbf{M}=(U, I)$ and an independent set I of M. It is not difficult to see that for every element u in $U \backslash I$ such that $I+u \notin I, I+u$ contains a circuit of M as a subset, and (I1) implies that u belongs to this circuit. Furthermore, Lemma 3.1 implies that such a circuit is uniquely determined. We call this circuit the fundamental circuit of u with respect to I and M , and we denote by $\mathrm{C}_{\mathrm{M}}(u, I)$ this circuit. It is well known (see, e.g., [25, p.20, Exercise 5]) that for every element u in $U \backslash I$ such that $I+u \notin I, \mathrm{C}_{\mathrm{M}}(u, I)$ is the set of elements w in $I+u$ such that $I+u-w \in I$. For each element u in $U \backslash I$ such that $I+u \notin \mathcal{I}$, we define $\mathrm{D}_{\mathrm{M}}(u, I):=\mathrm{C}_{\mathrm{M}}(u, I)-u$.

For each matching M in G and each edge $e=(r, h)$ in $E \backslash M$ such that $M(r)+e \notin \mathcal{F}_{r}$, (R2) can be restated as follows.
(R2) $e \gtrsim_{r} f$ (resp., $e>_{r} f$) for some edge f in $\mathrm{D}_{\mathrm{P}_{\mathrm{r}}}(e, M(r))$.
For each matching M in G and each edge $e=(r, h)$ in $E \backslash M$ such that $M+e \notin \mathcal{G}$, (H2) can be restated as follows.
(H2) $r \gtrsim_{H} s$ (resp., $r>_{H} s$) for some edge (s, p) in $\mathrm{D}_{\mathrm{Q}}(e, M)$.
We can easily prove the following lemma by Lemma 3.1.
Lemma 3.2. Assume that we are given a matroid $\mathbf{M}=(U, \mathcal{I})$, independent sets I, J of \mathbf{M} such that $I \subseteq J$, and an element u in $U \backslash J$ such that $I+u \notin I$. Then $J+u \notin I$ and $\mathrm{C}_{\mathrm{M}}(u, I)=\mathrm{C}_{\mathrm{M}}(u, J)$.

Lemma 3.3 (See, e.g., [14, Lemma 2]). Assume that we are given a matroid $\mathbf{M}=(U, \mathcal{I})$, circuits $C, C_{1}, C_{2}, \ldots, C_{x}$ of \mathbf{M}, and distinct elements $u_{1}, u_{2}, \ldots, u_{x}$ in U satisfying the following conditions.

- $u_{i} \in C \cap C_{i}$ for every integer i in $[x]$.
- $u_{i_{1}} \notin C_{i_{2}}$ for any pair of distinct integers i_{1}, i_{2} in $[x]$.
- $C \backslash\left(C_{1} \cup C_{2} \cup \cdots \cup C_{x}\right) \neq \emptyset$.

Then there exists a circuit C^{\prime} of M such that C^{\prime} is a subset of $(C \cup$ $\left.C_{1} \cup C_{2} \cup \cdots \cup C_{x}\right) \backslash\left\{u_{1}, u_{2}, \ldots, u_{x}\right\}$.

Assume that we are given a matroid $\mathbf{M}=(U, I)$. Then a maximal independent set of \mathbf{M} is called a base of \mathbf{M}. The condition (I2) implies that all bases of \mathbf{M} have the same size. For each subset X of U, we define $I \mid X$ as the family of subsets I of X such that $I \in I$, and we define $\mathbf{M} \mid X:=(X, I \mid X)$. It is known [25, p.20] that for every subset X of $U, \mathbf{M} \mid X$ is a matroid. For each subset X of U, we define $\mathbf{r}_{\mathbf{M}}(X)$ as the size of a base of $\mathbf{M} \mid X$. Define $\mathbf{r}(\mathbf{M}):=\mathbf{r}_{\mathbf{M}}(U)$. Furthermore, for each pair of disjoint subsets X, J of U, we define $\mathrm{p}(J ; X)$ as $\mathbf{r}_{\mathbf{M}}(J \cup X)-\mathbf{r}_{\mathbf{M}}(X)$. For each subset X of U, we define I / X as the family of subsets I of $U \backslash X$ such that $\mathrm{p}(I ; X)=|I|$, and we define $\mathbf{M} / X:=(U \backslash X, \mathcal{I} / X)$. It is known [25, Proposition 3.1.6] that for every subset X of $U, \mathbf{M} / X$ is a matroid.

Lemma 3.4 (See, e.g., [25, Proposition 3.1.25]). Assume that we are given a matroid $\mathbf{M}=(U, \mathcal{I})$. Then for every pair of disjoint subsets X, Y of $U,(\mathbf{M} / X) \mid Y=(\mathbf{M} \mid(X \cup Y)) / X$.

Lemma 3.5 (See, e.g., [15, Lemma 1]). Assume that we are given a matroid $\mathbf{M}=(U, \mathcal{I})$, a subset X of U, and a base B of $\mathbf{M} \mid X$. Then
for every subset I of $U \backslash X$, I is an independent set (resp., a base) of M / X if and only if $I \cup B$ is an independent set (resp., a base) of M .

Assume that we are given k matroids $\mathbf{M}_{1}=\left(U_{1}, \mathcal{I}_{1}\right), \ldots, \mathbf{M}_{k}=$ $\left(U_{k}, I_{k}\right)$ such that $U_{1}, U_{2}, \ldots, U_{k}$ are pairwise disjoint. Define $\bigoplus_{i=1}^{k} \mathcal{I}_{i}:=\left\{X \subseteq \bigcup_{i=1}^{k} U_{i} \mid X \cap U_{i} \in \mathcal{I}_{i}\right.$ for every integer i in $\left.[k]\right\}$. $\bigoplus_{i=1}^{k} \mathbf{M}_{i}:=\left(\bigcup_{i=1}^{k} U_{i}, \bigoplus_{i=1}^{k} \mathcal{I}_{i}\right)$.

It is not difficult to see that $\bigoplus_{i=1}^{k} \mathbf{M}_{i}$ is a matroid.
Assume that we are given two matroids $\mathbf{M}_{1}=\left(U, \mathcal{I}_{1}\right)$ and $\mathbf{M}_{2}=$ $\left(U, \mathcal{I}_{2}\right)$. A subset I of U is called a common independent set of \mathbf{M}_{1} and \mathbf{M}_{2} if $I \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$. It is well known (see, e.g., [3]) that we can find a maximum-size common independent set of \mathbf{M}_{1} and \mathbf{M}_{2} in time bounded by a polynomial in $|S|$ and EO, where EO is the time required to decide whether X is an independent set of \mathbf{M}_{i} for every subset X of U and every integer i in $\{1,2\}$.

4 SUPER-STABLE MATCHINGS

In this section, we propose an algorithm for the super-stable matching problem (see Algorithm 1). This algorithm is based on the algorithm of [14] for the super-stable matching problem in the many-to-one setting with matroid constraints. For proving that Algorithm 1 is a polynomial-time algorithm, it is sufficient to prove that we can decide whether each subset of E is an independent set of the matroids in Algorithm 1 in time bounded by a polynomial in the input size of G. We can easily prove this by Lemma 3.5 as follows. At Line 7 of Algorithm 1, to check whether $\{e\}$ is an independent set of $\mathbf{Z}_{r} / D_{r}[i-1]$ for each edge e in $E_{r}^{i} \cap A_{t-1}$, it suffices to find a base B of $\mathbf{Z}_{r} \mid D_{r}[i-1]$ and check whether $\{e\} \cup B$ is an independent set of Z_{r}. If the time complexity of the independence oracle for the given matroids is EO, then it is not difficult to see that we can implement Algorithm 1 in $O(n|E| E O)$ time, where we assume that $\mathrm{EO}=\Omega(|E|)$ and $\max \{|R|,|H|\} \leq|E|$.

What remains is to prove the correctness of Algorithm 1. In the rest of this section, we assume that Algorithm 1 halts when $t=k$.

Lemma 4.1. If Algorithm 1 outputs M_{n}, then M_{n} is a super-stable matching in G.

Proof. Define $M:=M_{n}$. For every resident r in R, since $M(r)=$ T_{r}, Lines 12 and 13 of Algorithm 1 imply that $M(r) \in \mathcal{F}_{r}$. Furthermore, Lines 16 to 19 imply that $M \in \mathcal{G}$. Thus, M is a matching in G. What remains is to prove that M is super-stable. Let $e=(r, h)$ be an edge in $E \backslash M$. Notice that $e \notin T_{r}$. Assume that $r \in R_{z}$.

We first assume that $e \notin A_{z-1}$. Then there exists an integer ℓ in $[z-1]$ such that $e \in L_{\ell}$. Thus, $M_{\ell}+e \notin \mathcal{G}$ and $s>_{H} r$ for every edge (s, p) in $\mathrm{D}_{\mathrm{Q}}\left(e, M_{\ell}\right)$. Furthermore, since $M_{\ell} \subseteq M$, Lemma 3.2 implies that $M+e \notin \mathcal{G}$ and $\mathrm{C}_{\mathrm{Q}}(e, M)=\mathrm{C}_{\mathrm{Q}}\left(e, M_{\ell}\right)$. Thus, for every edge $f=(s, p)$ in $\mathrm{D}_{\mathrm{Q}}(e, M), s>_{H} r$. This completes the proof.

We next consider the case where $e \in A_{z-1} \backslash T_{r}$. Here we prove that $M \cap E_{r}[i]$ is a base of $Z_{r} \mid D_{r}[i]$ for every integer i in [$\left.m_{r}\right]$. Let i be an integer in $\left[m_{r}\right]$. Since $M(r)=T_{r}, M \cap E_{r}[i]=D_{r}[i]$. Since $M(r) \in \mathcal{F}_{r}$, this and (I1) imply that $D_{r}[i] \in \mathcal{F}_{r}$. Thus, $D_{r}[i]$ is an independent set of $\mathbf{Z}_{r} \mid D_{r}[i]$. Furthermore, for every independent set I of $\mathbf{Z}_{r} \mid D_{r}[i], I \subseteq D_{r}[i]$. Thus, $D_{r}[i]$ is a base of $\mathbf{Z}_{r} \mid D_{r}[i]$.

Assume that $e \in E_{r}^{x}$. Since $e \notin T_{r}, e \notin D_{r}^{x}$. This implies that $\{e\}$ is not an independent set of $\mathbf{Z}_{r} / D_{r}[x-1]$. Since $M \cap E_{r}[x-1]$ is a

```
Algorithm 1:
    Define \(M_{0}:=\emptyset\) and \(A_{0}:=E\).
    Set \(t:=1\).
    while \(t \leq n\) do
        for each resident \(r\) in \(R_{t}\) do
            Define \(\mathbf{Z}_{r}:=\mathbf{P}_{r} \mid A_{t-1}(r)\) and \(D_{r}[0]:=\emptyset\).
            for each integer \(i\) in \(\left[m_{r}\right]\) do
                Define \(D_{r}^{i}\) as the set of edges \(e\) in \(E_{r}^{i} \cap A_{t-1}\) such
                that \(\{e\}\) is an independent set of \(\mathbf{Z}_{r} / D_{r}[i-1]\).
                Define \(D_{r}[i]:=D_{r}[i-1] \cup D_{r}^{i}\).
            end
            Define \(T_{r}:=D_{r}\left[m_{r}\right]\).
        end
        if there exists a resident \(r\) in \(R_{t}\) such that \(T_{r} \notin \mathcal{F}_{r}\). then
            Output null, and halt.
        end
        Define \(F_{t}:=\bigcup_{r \in R_{t}} T_{r}\).
        if \(M_{t-1} \cup F_{t} \notin \mathcal{G}\) then
            Output null, and halt.
        end
        Define \(M_{t}:=M_{t-1} \cup F_{t}\).
        Define \(L_{t}\) as the set of edges \((r, h)\) in \(A_{t-1}\) such that
        \(r \notin R[t]\) and \(M_{t}+(r, h) \notin \mathcal{G}\).
        Define \(A_{t}:=A_{t-1} \backslash L_{t}\).
        Set \(t:=t+1\).
    end
    Output \(M_{n}\), and halt.
```

base of $\mathbf{Z}_{r} \mid D_{r}[x-1]$, Lemma 3.5 implies that

$$
\left(M \cap E_{r}[x-1]\right)+e \notin \mathcal{F}_{r}
$$

Thus, $M(r)+e \notin \mathcal{F}_{r}$. Furthermore, Lemma 3.2 implies that

$$
\mathrm{C}_{\mathbf{P}_{r}}(e, M(r))=\mathrm{C}_{\mathbf{P}_{r}}\left(e, M \cap E_{r}[x-1]\right)
$$

Thus, for every edge f in $\mathrm{D}_{\mathbf{P}_{r}}(e, M(r)), f>_{r} e$. This completes the proof.

Recall that we assume that Algorithm 1 halts when $t=k$.
Lemma 4.2. Assume that $k \in[n]$ and there exists a super-stable matching in G. Then for every super-stable matching N in G and every resident r in $R[k], N(r) \subseteq T_{r}$.

Proof. An edge (r, h) in E is called a bad edge if the following conditions (i) to (iii) are satisfied. (i) $r \in R[k]$. (ii) $(r, h) \notin T_{r}$. (iii) There exists a super-stable matching N in G such that $(r, h) \in N$. For proving this lemma, it is sufficient to prove that there does not exist a bad edge. We prove this by contradiction. Assume that there exists a bad edge in E. For every bad edge (r, h) in E such that $r \in R_{\ell}$, one of the following statements holds.

- $(r, h) \notin A_{\ell-1}$, i.e., $(r, h) \in L_{z}$ for some integer z in $[\ell-1]$.
- $(r, h) \in A_{\ell-1} \backslash T_{r}$.

We denote by Δ_{1} the set of integers ℓ in $[k-1]$ such that there exists a bad edge in L_{ℓ}. We denote by Δ_{2} the set of integers ℓ in $[k]$ such that for some resident r in R_{ℓ}, there exists a bad edge (r, h) in
$A_{\ell-1} \backslash T_{r}$. Notice that $\Delta_{1} \cup \Delta_{2} \neq \emptyset$. For each integer i in $\{1,2\}$, we denote by z_{i} the minimum integer in Δ_{i} (if $\Delta_{i}=\emptyset$, then we define $\left.z_{i}:=\infty\right)$.

We first assume that $z_{1}<z_{2}$. Define $z:=z_{1}$. Let $e=(r, h)$ be a bad edge in L_{z}. Furthermore, let N be a super-stable matching in G such that $e \in N$. Since $z \leq k-1$, Lines 16 to 19 of Algorithm 1 imply that $M_{z} \in \mathcal{G}$. Furthermore, since $e \in L_{z}, M_{z}+e \notin \mathcal{G}$. Thus, $\mathrm{C}_{\mathrm{Q}}\left(e, M_{z}\right)$ is well-defined. Define $C:=\mathrm{C}_{\mathrm{Q}}\left(e, M_{z}\right)$. Then since $C \subseteq N$ contradicts $N \in \mathcal{G}, C \backslash N \neq \emptyset$. Since $e \in L_{z}, r \notin R[z]$. Thus, for every edge (s, p) in $C \backslash N, s>_{H} r$ follows from $s \in R[z]$. For each edge f in $C \backslash N$ such that $N+f \notin \mathcal{G}$, we define $C_{f}:=\mathrm{C}_{\mathrm{Q}}(f, N)$.

Claim 1. For any edge f in $C \backslash N, N+f \notin \mathcal{G}$. Furthermore, for every pair of edges $f=(s, p)$ in $C \backslash N$ and (\hat{s}, \hat{p}) in $C_{f}-f, \hat{s}>_{H} s$.

Proof. To prove this claim, we prove that for every edge $f=$ (s, p) in $C \backslash N, N(s) \subseteq M_{z}$. Assume that there exists an edge $f=$ (s, p) in $C \backslash N$ such that $N(s) \nsubseteq M_{z}$. Let g be an edge in $N(s) \backslash M_{z}$. Since $s \in R[z], s \in R_{\ell}$ for some integer ℓ in $[z]$. Assume that $g \in A_{\ell-1} \backslash T_{s}$. Since N is super-stable and $g \in N, z_{2} \leq \ell$. However, this contradicts $z_{1}<z_{2}$. Thus, $g \notin A_{\ell-1} \backslash T_{s}$. If $g \in T_{s}$, then since $\ell \leq z \leq k-1, g \in T_{s} \subseteq M_{z}$. This contradicts $g \in N(s) \backslash M_{z}$. Thus, $g \notin A_{\ell-1}$. This implies that there exists an integer j in $[\ell-1]$ such that $g \in L_{j}$. Since N is super-stable and $g \in N, g$ is a bad edge. Thus, $j \in \Delta_{1}$. Since $j<\ell \leq z_{1}$, this contradicts the fact that z_{1} is the minimum integer in Δ_{1}. This completes the proof.

We are now ready to prove this claim. Assume that there exists an edge $f=(s, p)$ in $C \backslash N$ satisfying one of the following conditions. (i) $N+f \in \mathcal{G}$. (ii) $N+f \notin \mathcal{G}$ and there exists an edge (\hat{s}, \hat{p}) in $C_{f}-f$ such that $s \gtrsim_{H} \hat{s}$. Since N is super-stable, $N(s)+f \notin \mathcal{F}_{s}$. Define $C^{\prime}:=\mathrm{C}_{\mathbf{P}_{s}}(f, N(s))$. Since $C^{\prime}-f \subseteq N(s)$ and $N(s) \subseteq M_{z}, C^{\prime} \subseteq M_{z}$. However, this contradicts $M_{z}(s)=T_{s} \in \mathcal{F}_{s}$. This completes the proof.

For any edge $f=(s, p)$ in $C \backslash N$, since $e \in N, e \neq f$. Thus, for every edge $f=(s, p)$ in $C \backslash N$, since $s>_{H} r, e \notin C_{f}$ follows from Claim 1. For every edge f in $C \backslash N, f \in C \cap C_{f}$. Thus, Lemma 3.3 implies that there exists a circuit C^{\prime} of \mathbf{Q} such that

$$
C^{\prime} \subseteq\left(C \cup C^{*}\right) \backslash(C \backslash N)
$$

where C^{*} is $\bigcup_{f \in C \backslash N} C_{f}$. Thus, since $C_{f}-f \subseteq N$ for every edge f in $C \backslash N, C^{\prime} \subseteq N$. However, this contradicts $N \in \mathcal{G}$. This completes the proof.

We next assume that $z_{2} \leq z_{1}$. Define $z:=z_{2}$. Let r be a resident in R_{z} such that there exists an edge $e=(r, h)$ in $A_{z-1} \backslash T_{r}$. Let N be a super-stable matching in G such that $e \in N$.

We first prove that $N(r) \subseteq A_{z-1}$. Assume that $N(r) \nsubseteq A_{z-1}$. Let f be an edge in $N(r) \backslash A_{z-1}$. Then there exists an integer ℓ in [z-1] such that $f \in L_{\ell}$. Since N is super-stable and $f \in N, \ell \in \Delta_{1}$. This implies that $z_{1} \leq \ell<z_{2}$. However, this contradicts $z_{2} \leq z_{1}$. This completes the proof.

Assume that $e \in E_{r}^{x}$. Without loss of generality, we assume that

$$
\begin{equation*}
\left(A_{z-1} \backslash T_{r}\right) \cap E_{r}^{i} \cap N=\emptyset \tag{1}
\end{equation*}
$$

for every integer i in $[x-1]$. Since $N(r) \subseteq A_{z-1}$, (1) implies $N \cap$ $E_{r}[i] \subseteq D_{r}[i]$ for every integer i in $[x-1]$.

Claim 2. $N \cap E_{r}[x-1]$ is a base of $\mathrm{Z}_{r} \mid D_{r}[x-1]$.

Proof. Define $B:=N \cap E_{r}[x-1]$. Since $N(r) \in \mathcal{F}_{r}$, (I1) implies that B is an independent set of $\mathbf{Z}_{r} \mid D_{r}[x-1]$. Assume that B is not a base of $\mathbf{Z}_{r} \mid D_{r}[x-1]$. Then (I2) implies that there exists an edge f in $D_{r}[x-1] \backslash N$ such that $B+f \in \mathcal{F}_{r}$. Assume that $N(r)+f \notin \mathcal{F}_{r}$. Since $B+f \in \mathcal{F}_{r}, \mathrm{D}_{\mathbf{P}_{r}}(f, N(r))$ is not a subset of B. For every edge g in $\mathrm{D}_{\mathbf{P}_{r}}(f, N(r)) \backslash B$, since $f \in E_{r}[x-1]$ and $g \notin E_{r}[x-1], f>_{r} g$. Since N is super-stable, $N+f \notin \mathcal{G}$ and $s>_{H} r$ for every edge (s, p) in $\mathrm{D}_{\mathrm{Q}}(f, N)$.

Since $\{f\} \in \mathcal{G}, \mathrm{D}_{\mathrm{Q}}(f, N) \neq \emptyset$. Thus, $z \geq 2$. Since $f \in A_{z-1}$ and $A_{z-1}=A_{z-2} \backslash L_{z-1}, M_{z-1}+f \in \mathcal{G}$. In what follows, we prove that $\mathrm{D}_{\mathrm{Q}}(f, N) \subseteq M_{z-1}$. This contradicts $M_{z-1}+f \in \mathcal{G}$. Let $g=(s, p)$ be an edge in $\mathrm{D}_{\mathrm{Q}}(f, N)$. Then it is sufficient to prove that $g \in M_{z-1}$. Since $s>_{H} r, s \in R_{\ell}$ for some integer ℓ in $[z-1]$. If we can prove that $N(s) \subseteq T_{s}$, then $g \in N(s) \subseteq T_{s}=M_{z-1}(s)$. This completes the proof.

Assume that $N(s) \nsubseteq T_{s}$. Let \hat{g} be an edge in $N(s) \backslash T_{s}$. Assume that $\hat{g} \notin A_{\ell-1}$. Then there exists an integer j in $[\ell-1]$ such that $\hat{g} \in L_{j}$. Since N is super-stable and $\hat{g} \in N, j \in \Delta_{1}$. However, since $z_{1} \leq j<\ell<z_{2}$, this contradicts $z_{2} \leq z_{1}$. Thus, $\hat{g} \in A_{\ell-1}$. Recall that $\hat{g} \notin T_{s}$. This implies that $\hat{g} \in A_{\ell-1} \backslash T_{s}$. Since N is super-stable and $\hat{g} \in N, \ell \in \Delta_{2}$. Since $\ell<z_{2}$, this contradicts the fact that z_{2} is the minimum integer in Δ_{2}. This completes the proof.

Define

$$
B:=\left(N \cap E_{r}[x-1]\right)+e .
$$

Since $N(r) \in \mathcal{F}_{r},(\mathrm{I} 1)$ implies that $B \in \mathcal{F}_{r}$. Recall that $N(r) \subseteq A_{z-1}$. Thus, B is an independent set of \mathbf{Z}_{r}. Lemma 3.5 and Claim 2 imply that $\{e\}$ is an independent set of $\mathbf{Z}_{r} / D_{r}[x-1]$. That is, $e \in D_{r}^{x}$. This contradicts $e \notin T_{r}$. This completes the proof.

Lemma 4.3. Assume that $k \in[n]$ and there exists a super-stable matching in G. Then for every super-stable matching N in G and every resident r in $R[k-1], N(r)=T_{r}$.

Proof. Lemma 4.2 implies that for every super-stable matching N in G and every resident r in $R[k-1], N(r) \subseteq T_{r}$. Assume that there exist a super-stable matching N in G and a resident r in $R[k-1]$ such that $N(r) \subsetneq T_{r}$. Since $T_{r}, N(r) \in \mathcal{F}_{r}$ and $|N(r)|<\left|T_{r}\right|$, (I2) implies that there exists an edge e in $T_{r} \backslash N(r)$ such that $N(r)+e \in \mathcal{F}_{r}$. Thus, since N is super-stable, $N+e \notin \mathcal{G}$ and $s>_{H} r$ for every edge (s, p) in $\mathrm{D}_{\mathrm{Q}}(e, N)$. Assume that $r \in R_{z}$. Then since $e \in A_{z-1}$, $M_{z-1}+e \in \mathcal{G}$.

Let $f=(s, p)$ be an edge in $\mathrm{D}_{\mathrm{Q}}(e, N)$. Then since $s>_{H} r$, there exists an integer ℓ in $[z-1]$ such that $s \in R_{\ell}$. Thus, Lemma 4.2 implies that $N(s) \subseteq T_{s}$. This implies that $f \in N(s) \subseteq T_{s}=M_{z-1}(s)$. Thus, $\mathrm{D}_{\mathrm{Q}}(e, N) \subseteq M_{z-1}$. However, this contradicts $M_{z-1}+e \in \mathcal{G}$. This completes the proof.

Lemma 4.4. Assume that $k \in[n]$ and there exists a super-stable matching in G. Then for every super-stable matching N in G and every resident r in R_{k} such that $T_{r} \in \mathcal{F}_{r}, N(r)=T_{r}$.

Proof. Let r be a resident in R_{k} such that $T_{r} \in \mathcal{F}_{r}$. Notice that Lemma 4.2 implies that $N(r) \subseteq T_{r}$ for every super-stable matching N in G. Assume that there exist a super-stable matching N in G such that $N(r) \subsetneq T_{r}$. Since $T_{r}, N(r) \in \mathcal{F}_{r}$ and $|N(r)|<\left|T_{r}\right|$, (I2) implies that there exists an edge e in $T_{r} \backslash N(r)$ such that $N(r)+e \in \mathcal{F}_{r}$. Thus, since N is super-stable, $N+e \notin \mathcal{G}$ and $s>_{H} r$ for every edge (s, p) in $\mathrm{D}_{\mathrm{Q}}(e, N)$. Since $e \in A_{k-1}, M_{k-1}+e \in \mathcal{G}$.

Let $f=(s, p)$ be an edge in $\mathrm{D}_{\mathrm{Q}}(e, N)$. Then since $s>_{H} r$, there exists an integer ℓ in $[k-1]$ such that $s \in R_{\ell}$. Thus, Lemma 4.2 implies that $N(s) \subseteq T_{s}$. This implies that $f \in N(s) \subseteq T_{s}=M_{k-1}(s)$. Thus, $\mathrm{D}_{\mathrm{Q}}(e, N) \subseteq M_{k-1}$. However, this contradicts $M_{k-1}+e \in \mathcal{G}$. This completes the proof.

Lemma 4.5. If Algorithm 1 outputs null, then there does not exist a super-stable matching in G.

Proof. Notice that in this case, $k \in[n]$. We prove this lemma by contradiction. Assume that there exists a super-stable matching N in G.

We first assume that Algorithm 1 outputs null at Line 13. Since Algorithm 1 outputs null when $t=k$, there exists a resident r in R_{k} such that $T_{r} \notin \mathcal{F}_{r}$. Recall that Lemma 4.2 implies that $N(r) \subseteq T_{r}$. Thus, since $T_{r} \notin \mathcal{F}_{r}$ and $N(r) \in \mathcal{F}_{r}, N(r) \subsetneq T_{r}$.

Since $N(r) \subseteq T_{r}, N \cap E_{r}^{i} \subseteq D_{r}^{i}$ for every integer i in [m_{r}]. Let x be the minimum integer in $\left[m_{r}\right]$ such that $N \cap E_{r}^{x} \subsetneq D_{r}^{x}$. Let e be an edge in $D_{r}^{x} \backslash N$. Notice that $N \cap E_{r}^{i}=D_{r}^{i}$ for every integer i in $[x-1]$. Since $N(r) \in \mathcal{F}_{r}$, (I1) implies that

$$
N \cap E_{r}[x-1]=D_{r}[x-1]
$$

is an independent set of $\mathbf{Z}_{r} \mid D_{r}[x-1]$. Thus, since $I \subseteq D_{r}[x-1]$ for every independent set I of $\mathbf{Z}_{r} \mid D_{r}[x-1], N \cap E_{r}[x-1]$ is a base of $\mathbf{Z}_{r} \mid D_{r}[x-1]$. This and $e \in D_{r}^{x}$ imply that

$$
\left(N \cap E_{r}[x-1]\right)+e \in \mathcal{F}_{r}
$$

This implies that if $N(r)+e \notin \mathcal{F}_{r}$, then $\mathrm{D}_{\mathbf{P}_{r}}(e, N(r))$ is not a subset of $E_{r}[x-1]$. Furthermore, since $e \in E_{r}^{x}, e \gtrsim_{r} f$ for every edge f in $\mathrm{D}_{\mathbf{P}_{r}}(e, N(r)) \backslash E_{r}[x-1]$. Since N is super-stable, $N+e \notin \mathcal{G}$ and $s>_{H} r$ for every edge (s, p) in $\mathrm{D}_{\mathrm{Q}}(e, N)$.

Since $e \in T_{r}, e \in A_{k-1}$. Thus, $M_{k-1}+e \in \mathcal{G}$. On the other hand, Lemma 4.3 implies that $N(s)=T_{s}=M_{k-1}(s)$ for every resident s in $R[k-1]$. Furthermore, since $r \in R_{k}, s \in R[k-1]$ for every edge (s, p) in $\mathrm{D}_{\mathrm{Q}}(e, N)$. Thus, $\mathrm{C}_{\mathrm{Q}}(e, N)$ is a subset of $M_{k-1}+e$. However, this contradicts $M_{k-1}+e \in \mathcal{G}$. This completes the proof.

We next assume that Algorithm 1 outputs null at Line 17. Assume that there exists a super-stable matching N in G. Lines 12 and 13 of Algorithm 1 imply that $T_{r} \in \mathcal{F}_{r}$ for every resident r in $R[k]$. Thus, Lemmas 4.3 and 4.4 imply that $M_{k-1} \cup F_{k} \subseteq N$. Since Algorithm 1 outputs null at Line $17, M_{k-1} \cup F_{k} \notin \mathcal{G}$. Thus, $N \notin \mathcal{G}$. This contradicts $N \in \mathcal{G}$. This completes the proof.

Theorem 4.6. Algorithm 1 can solve the super-stable matching problem.

Proof. This theorem follows from Lemmas 4.1 and 4.5.

5 STRONGLY STABLE MATCHINGS

In this section, we propose an algorithm for the strongly stable matching problem (see Algorithm 2). This algorithm is based on the algorithm of [14] for the strongly stable matching problem in the many-to-one setting with matroid constraints. For proving that Algorithm 2 is a polynomial-time algorithm, it is sufficient to prove that we can decide whether each subset of E is an independent set of the matroids in Algorithm 2 in time bounded by a polynomial in the input size of G. We can easily prove this by Lemma 3.5 as Algorithm 1. By using the algorithm of [3] at Line 19 of Algorithm 2,
we can implement Algorithm 2 in $O\left(|E|^{3.5} \mathrm{EO}\right)$ time, where EO is the time complexity of the independence oracle for the given matroids.

```
Algorithm 2:
    Define \(M_{0}:=\emptyset, A_{0}:=E\), and \(F[0]:=\emptyset\).
    Set \(t:=1\).
    while \(t \leq n\) do
        for each resident \(r\) in \(R_{t}\) do
            Define \(\mathbf{Z}_{r}:=\mathbf{P}_{r} \mid A_{t-1}(r)\) and \(D_{r}[0]:=\emptyset\).
            for each integer i in \(\left[m_{r}\right]\) do
                Define \(D_{r}^{i}\) as the set of edges \(e\) in \(E_{r}^{i} \cap A_{t-1}\) such
                that \(\{e\}\) is an independent set of \(\mathbf{Z}_{r} / D_{r}[i-1]\).
                Define \(D_{r}[i]:=D_{r}[i-1] \cup D_{r}^{i}\).
                Define \(\mathbf{Z}_{r}^{i}:=\left(\mathbf{Z}_{r} / D_{r}[i-1]\right) \mid D_{r}^{i}\).
            end
            Define \(T_{r}:=D_{r}\left[m_{r}\right]\) and \(\mathrm{S}_{r}:=\bigoplus_{i \in\left[m_{r}\right]} \mathbf{Z}_{r}^{i}\).
        end
        Define \(F_{t}:=\bigcup_{r \in R_{t}} T_{r}\) and \(F[t]:=F[t-1] \cup F_{t}\).
        Define \(\mathrm{Q}_{t}:=(\mathrm{Q} / F[t-1]) \mid F_{t}\).
        Define \(\sigma_{t}:=\sum_{r \in R_{t}} \mathbf{r}\left(\mathbf{S}_{r}\right)\).
        if \(\mathbf{r}\left(\mathrm{Q}_{t}\right)>\sigma_{t}\) then
            Output null, and halt.
        end
        Find a maximum-size common independent set \(I_{t}\) of
        \(\bigoplus_{r \in R_{t}} \mathbf{S}_{r}\) and \(\mathbf{Q}_{t}\).
        if \(\left|I_{t}\right|<\sigma_{t}\) then
            Output null, and halt.
        end
        Define \(M_{t}:=M_{t-1} \cup I_{t}\).
        Define \(L_{t}\) as the set of edges \((r, h)\) in \(A_{t-1}\) such that
        \(r \notin R[t]\) and \(M_{t}+(r, h) \notin \mathcal{G}\).
        Define \(A_{t}:=A_{t-1} \backslash L_{t}\).
        Set \(t:=t+1\).
    end
    Output \(M_{n}\), and halt.
```

What remains is to prove the correctness of Algorithm 2. In the rest of this section, we assume that Algorithm 2 halts when $t=k$.

Lemma 5.1. For every integer ℓ in $[k-1]$, every resident r in R_{ℓ}, and every integer i in $\left[m_{r}\right], I_{\ell} \cap D_{r}[i]$ is a base of $\mathbf{Z}_{r} \mid D_{r}[i]$.

Proof. Let ℓ be an integer in [$k-1$]. Since I_{ℓ} is an independent set of $\bigoplus_{r \in R_{\ell}} \mathbf{S}_{r},\left|I_{\ell}\right| \leq \sigma_{\ell}$. Lines 20 and 21 of Algorithm 2 imply that $\sigma_{\ell} \leq\left|I_{\ell}\right|$. Thus, $\left|I_{\ell}\right|=\sigma_{\ell}$. Furthermore, since I_{ℓ} is an independent set of $\bigoplus_{r \in R_{\ell}} \mathrm{S}_{r}, I_{\ell}(r)$ is an independent set of S_{r} for every resident r in R_{ℓ}. Thus, $\left|I_{\ell}(r)\right|=\mathbf{r}\left(\mathrm{S}_{r}\right)$ for every resident r in R_{ℓ}. This implies that $I_{\ell}(r)$ is a base of S_{r} for every resident r in R_{ℓ}. Thus, $I_{\ell} \cap D_{r}^{i}$ is a base of \mathbf{Z}_{r}^{i} for every resident r in R_{ℓ} and every integer i in $\left[m_{r}\right]$.

Let r be a resident in R_{ℓ}. Let x be an integer in [m_{r}]. Assume that $I_{\ell} \cap D_{r}[x-1]$ is a base of $\mathbf{Z}_{r} \mid D_{r}[x-1]$. (That is, if $x=1$, then we make no assumption.) Notice that

$$
\mathbf{Z}_{r}\left|D_{r}[x-1]=\left(\mathbf{Z}_{r} \mid D_{r}[x]\right)\right| D_{r}[x-1] .
$$

Thus, since Lemma 3.4 implies that

$$
\mathbf{Z}_{r}^{x}=\left(\mathbf{Z}_{r} \mid D_{r}[x]\right) / D_{r}[x-1]
$$

and $I_{\ell} \cap D_{r}^{x}$ is a base of \mathbf{Z}_{r}^{x}, Lemma 3.5 imply that $I_{\ell} \cap D_{r}[x]$ is a base of $\mathbf{Z}_{r} \mid D_{r}[x]$. This completes the proof.

Lemma 5.2. For every integer ℓ in $[k-1], M_{\ell}$ is a base of $Q \mid F[\ell]$.
Proof. Let ℓ be an integer in $[k-1]$. Since I_{ℓ} is an independent set of $Q_{\ell},\left|I_{\ell}\right| \leq \mathbf{r}\left(\mathbf{Q}_{\ell}\right)$. Furthermore, Lines 16 and 20 of Algorithm 2 imply that $\mathbf{r}\left(\mathbf{Q}_{\ell}\right) \leq \sigma_{\ell}$ and $\sigma_{\ell} \leq\left|I_{\ell}\right|$. Thus, $\left|I_{\ell}\right|=\mathbf{r}\left(\mathbf{Q}_{\ell}\right)$. Since I_{ℓ} is an independent set of Q_{ℓ}, this implies that I_{ℓ} is a base of Q_{ℓ}.
Assume that $M_{\ell-1}$ is a base of $\mathrm{Q} \mid F[\ell-1]$. (That is, if $\ell=1$, then we make no assumption.) Notice that

$$
\mathrm{Q}|F[\ell-1]=(\mathrm{Q} \mid F[\ell])| F[\ell-1] .
$$

Since Lemma 3.4 implies that

$$
(\mathbf{Q} / F[\ell-1]) \mid F_{\ell}=(\mathbf{Q} \mid F[\ell]) / F[\ell-1]
$$

and I_{ℓ} is a base of $\mathbf{Q}_{\ell}=(\mathbf{Q} / F[\ell-1]) \mid F_{\ell}$, Lemma 3.5 implies that $M_{\ell-1} \cup I_{\ell}$ is a base of $\mathrm{Q} \mid F[\ell]$. This completes the proof.

Lemma 5.3. If Algorithm 2 outputs M_{n}, then M_{n} is a strongly stable matching in G.

Proof. Notice that in this case, $k=n+1$. Define $M:=M_{n}$. We first prove that for every resident r in $R, M_{n}(r) \in \mathcal{F}_{r}$. For proving this, it suffices to prove that for every integer ℓ in [n] and every resident r in $R_{\ell}, I_{\ell}(r) \in \mathcal{F}_{r}$. Lemma 5.1 implies that for every integer ℓ in $[n]$ and every resident r in $R_{\ell}, I_{\ell} \cap D_{r}\left[m_{r}\right]$ is a base of $\mathrm{Z}_{r} \mid D_{r}\left[m_{r}\right]$. Thus, for every integer ℓ in $[n]$ and every resident r in R_{ℓ}, since $I_{\ell}(r) \subseteq T_{r}, I_{\ell}(r) \in \mathcal{F}_{r}$. Furthermore, Lemma 5.2 implies that $M \in \mathcal{G}$. Thus, M is a matching in G. What remains is to prove that M is strongly stable. Let $e=(r, h)$ be an edge in $E \backslash M$. Assume that $r \in R_{z}$. Let x be the integer in $\left[m_{r}\right]$ such that $e \in E_{r}^{x}$.

We first assume that $e \notin A_{z-1}$. Then $e \in L_{\ell}$ for some integer ℓ in $[z-1]$. Thus, $M_{\ell}+e \notin \mathcal{G}$ and $s>_{H} r$ for every edge (s, p) in $\mathrm{D}_{\mathrm{Q}}\left(e, M_{\ell}\right)$. Since $M_{\ell} \subseteq M$, Lemma 3.2 implies that $M+e \notin \mathcal{G}$ and $\mathrm{C}_{\mathbf{Q}}(e, M)=\mathrm{C}_{\mathrm{Q}}\left(e, M_{\ell}\right)$. Thus, for every edge $f=(s, p)$ in $\mathrm{D}_{\mathbf{Q}}(e, M)$, $s>_{H} r$. This completes the proof.

We next assume that $e \in A_{z-1} \backslash T_{r}$. In this case, $e \notin D_{r}^{x}$. This implies that $\{e\}$ is not an independent set of $\mathbf{Z}_{r} / D_{r}[x-1]$. Since $M \cap E_{r}[x-1]=I_{z} \cap D_{r}[x-1]$, Lemma 3.5 and Lemma 5.1 imply that

$$
\left(M \cap E_{r}[x-1]\right)+e \notin \mathcal{F}_{r} .
$$

Thus, $M(r)+e \notin \mathcal{F}_{r}$. Furthermore, Lemma 3.2 implies that

$$
\mathrm{C}_{\mathbf{P}_{r}}(e, M(r))=\mathrm{C}_{\mathbf{P}_{r}}\left(e, M \cap E_{r}[x-1]\right) .
$$

Thus, for every edge f in $\mathrm{D}_{\mathbf{P}_{r}}(e, M(r)), f>_{r} e$. This completes the proof.

Lastly, we consider the case where $e \in T_{r}$, i.e., $e \in D_{r}^{x}$. Lemma 5.1 implies that $M \cap E_{r}[x]$ is a base of $\mathbf{Z}_{r} \mid D_{r}[x]$. This implies that

$$
\left(M \cap E_{r}[x]\right)+e \notin \mathcal{F}_{r}
$$

Thus, $M(r)+e \notin \mathcal{F}_{r}$. Furthermore, Lemma 3.2 implies that

$$
\mathrm{C}_{\mathbf{P}_{r}}(e, M(r))=\mathrm{C}_{\mathbf{P}_{r}}\left(e, M \cap E_{r}[x]\right) .
$$

This implies that for every edge f in $\mathrm{D}_{\mathbf{P}_{r}}(e, M(r)), f \gtrsim_{r} e$. What remains is to prove that $M+e \notin \mathcal{G}$ and for every edge $f=(s, p)$ in $\mathrm{D}_{\mathrm{Q}}(e, M), s \gtrsim_{H} r$.

Since Lemma 5.2 implies that M_{z} is a base of $\mathrm{Q} \mid F[z]$ and $e \in F_{z}$, $M_{z}+e \notin \mathcal{G}$. Thus, $M+e \notin \mathcal{G}$. Lemma 3.2 implies that $\mathrm{C}_{\mathrm{Q}}(e, M)=$ $\mathrm{C}_{\mathrm{Q}}\left(e, M_{z}\right)$. Thus, for every edge (s, p) in $\mathrm{D}_{\mathrm{Q}}(e, M), s \in R[z]$. This completes the proof.

Recall that we assume that Algorithm 2 halts when $t=k$.
Lemma 5.4. Assume that $k \in[n]$ and there exists a strongly stable matching in G. Then for every strongly stable matching N in G and every resident r in $R[k], N(r) \subseteq T_{r}$.

Proof. An edge (r, h) in E is called a bad edge if the following conditions (i) to (iii) are satisfied. (i) $r \in R[k]$. (ii) $(r, h) \notin T_{r}$. (iii) There exists a strongly stable matching N in G such that $(r, h) \in N$. For proving this lemma, it is sufficient to prove that there does not exist a bad edge. We prove this by contradiction. Assume that there exists a bad edge in E. For every bad edge (r, h) in E such that $r \in R_{\ell}$, one of the following statements holds.

- $(r, h) \notin A_{\ell-1}$, i.e., $(r, h) \in L_{z}$ for some integer z in $[\ell-1]$.
- $(r, h) \in A_{\ell-1} \backslash T_{r}$.

We denote by Δ_{1} the set of integers ℓ in $[k-1]$ such that there exists a bad edge in L_{ℓ}. We denote by Δ_{2} the set of integers ℓ in $[k]$ such that for some resident r in R_{ℓ}, there exists a bad edge (r, h) in $A_{\ell-1} \backslash T_{r}$. Notice that $\Delta_{1} \cup \Delta_{2} \neq \emptyset$. For each integer i in $\{1,2\}$, we denote by z_{i} the minimum integer in Δ_{i} (if $\Delta_{i}=\emptyset$, then we define $\left.z_{i}:=\infty\right)$.

We first consider the case where $z_{1}<z_{2}$. Define $z:=z_{1}$. Let $e=(r, h)$ be a bad edge in L_{z}. Furthermore, let N be a strongly stable matching in G such that $e \in N$. Since $z \leq k-1$, Lemma 5.2 implies that $M_{z} \in \mathcal{G}$. Furthermore, since $e \in L_{z}, M_{z}+e \notin \mathcal{G}$. Thus, $\mathrm{C}_{\mathrm{Q}}\left(e, M_{z}\right)$ is well-defined. Define $C:=\mathrm{C}_{\mathrm{Q}}\left(e, M_{z}\right)$. Then since $C \subseteq N$ contradicts $N \in \mathcal{G}, C \backslash N \neq \emptyset$. Since $e \in L_{z}, r \notin R[z]$. Thus, for every edge (s, p) in $C \backslash N, s>_{H} r$ follows from $s \in R[z]$. For each edge f in $C \backslash N$ such that $N+f \notin \mathcal{G}$, we define $C_{f}:=\mathrm{C}_{Q}(f, N)$.

Claim 3. For every edge $f=(s, p)$ in $C \backslash N$ such that $N(s)+f \notin \mathcal{F}_{s}$, there exists an edge g in $\mathrm{D}_{\mathbf{P}_{s}}(f, N(s))$ such that $f \gtrsim_{s} g$.

Proof. We first prove that $N(s) \subseteq T_{s}$ for every edge $f=(s, p)$ in $C \backslash N$. Assume that there exists an edge $f=(s, p)$ in $C \backslash N$ such that $N(s) \nsubseteq T_{s}$. Let g be an edge in $N(s) \backslash T_{s}$. Since $s \in R[z], s \in R_{\ell}$ for some integer ℓ in $[z]$. Assume that $g \in A_{\ell-1} \backslash T_{s}$. Then since N is strongly stable and $g \in N, z_{2} \leq \ell$. However, this contradicts $z_{1}<z_{2}$. Thus, $g \notin A_{\ell-1} \backslash T_{s}$. Since $g \notin T_{s}, g \notin A_{\ell-1}$. This implies that there exists an integer j in $[\ell-1]$ such that $g \in L_{j}$. Since N is strongly stable and $g \in N, g$ is a bad edge. Thus, $j \in \Delta_{1}$. However, since $j<\ell \leq z_{1}$, this contradicts the fact that z_{1} is the minimum integer in Δ_{1}. This completes the proof.

We now ready to prove this claim. Let $f=(s, p)$ be an edge in $C \backslash N$ such that $N(s)+f \notin \mathcal{F}_{s}$. Assume that $f \in E_{s}^{x}$. Then since $f \in C, f \in T_{s}$. Thus, $f \in D_{s}^{x}$. Since $N(s) \subseteq T_{s}$,

$$
N \cap E_{S}[x-1] \subseteq D_{S}[x-1]
$$

Thus, since (I1) implies that $N \cap E_{S}[x-1]$ is an independent set of $\mathbf{Z}_{r} \mid D_{s}[x-1]$, (I2) implies that there exists a base B of $\mathbf{Z}_{r} \mid D_{s}[x-1]$ such that $N \cap E_{S}[x-1] \subseteq B$. Since $f \in D_{s}^{x}$, Lemma 3.5 implies that $B+f \in \mathcal{F}_{s}$. This and (I1) imply that

$$
\left(N \cap E_{S}[x-1]\right)+f \in \mathcal{F}_{s}
$$

Thus, $\mathrm{D}_{\mathbf{P}_{s}}(f, N(s))$ is not a subset of $E_{S}[x-1]$. Let g be an edge in $\mathrm{D}_{\mathbf{P}_{s}}(f, N(s)) \backslash E_{s}[x-1]$. Since $f \in E_{s}^{x}$ and $g \notin E_{s}[x-1], f \gtrsim_{s} g$. This completes the proof.

Claim 4. For any edge f in $C \backslash N, N+f \notin \mathcal{G}$. Furthermore, for every pair of edges $f=(s, p)$ in $C \backslash N$ and (\hat{s}, \hat{p}) in $C_{f}-f, \hat{s} \gtrsim_{H} s$.

Proof. Assume that there exists an edge $f=(s, p)$ in $C \backslash N$ such that one of the following conditions is satisfied. (i) $N+f \in \mathcal{G}$. (ii) $N+f \notin \mathcal{G}$ and there exists an edge (\hat{s}, \hat{p}) in $C_{f}-f$ such that $s>_{H} \hat{s}$. Since N is strongly stable, $N(s)+f \notin \mathcal{F}_{s}$. Claim 3 implies that there exists an edge g in $\mathrm{D}_{\mathbf{P}_{s}}(f, N(s))$ such that $f \succsim_{s} g$. This contradicts that fact that N is strongly stable. This completes the proof.

For any edge $f=(s, p)$ in $C \backslash N$, since $e \in N, e \neq f$. Thus, for every edge $f=(s, p)$ in $C \backslash N$, since $s>_{H} r, e \notin C_{f}$ follows from Claim 4. For every edge f in $C \backslash N, f \in C \cap C_{f}$. Thus, Lemma 3.3 implies that there exists a circuit C^{\prime} of \mathbf{Q} such that

$$
C^{\prime} \subseteq\left(C \cup C^{*}\right) \backslash(C \backslash N)
$$

where C^{*} is $\bigcup_{f \in C \backslash N} C_{f}$. Thus, since $C_{f}-f \subseteq N$ for every edge f in $C \backslash N, C^{\prime}$ is a subset of N. This contradicts the fact that $N \in \mathcal{G}$. This completes the proof.

We next consider the case where $z_{2} \leq z_{1}$. Define $z:=z_{2}$. Let r be a resident in R_{z} such that there exists an edge $e=(r, h)$ in $A_{z-1} \backslash T_{r}$. Let N be a strongly stable matching in G such that $e \in N$.

Here we prove that $N(s) \subseteq A_{\ell-1}$ for every integer ℓ in $[z]$ and every resident s in R_{ℓ}. Assume that there exist an integer ℓ in $[z]$ and a resident s in R_{ℓ} such that $N(s) \nsubseteq A_{\ell-1}$. Furthermore, let f be an edge in $N(s) \backslash A_{\ell-1}$. Then there exists an integer j in $[\ell-1]$ such that $f \in L_{j}$. Since N is strongly stable and $f \in N, j \in \Delta_{1}$. This implies that $z_{1} \leq j<\ell \leq z_{2}$. This contradicts $z_{2} \leq z_{1}$.

We next prove that $N(s) \subseteq T_{s}$ for every integer ℓ in $[z-1]$ and every resident s in R_{ℓ}. Assume that there exist an integer ℓ in $[z-1]$ and a resident s in R_{ℓ} such that $N(s) \nsubseteq T_{s}$. Furthermore, let f be an edge in $N(s) \backslash T_{s}$. Then since $N(s) \subseteq A_{\ell-1}, f \in A_{\ell-1} \backslash T_{s}$. Since N is strongly stable and $f \in N, \ell \in \Delta_{2}$. This contradicts the fact that z_{2} is the minimum integer in Δ_{2}. This completes the proof.

Assume that $e \in E_{r}^{x}$. Without loss of generality, we assume that

$$
\begin{equation*}
\left(A_{z-1} \backslash T_{r}\right) \cap E_{r}^{i} \cap N=\emptyset \tag{2}
\end{equation*}
$$

for every integer i in $[x-1]$. Since $N(r) \subseteq A_{z-1}$, (2) implies $N \cap$ $E_{r}[i] \subseteq D_{r}[i]$ for every integer i in $[x-1]$.

CLAIm 5. $N \cap E_{r}[x-1]$ is a base of $\mathbf{Z}_{r} \mid D_{r}[x-1]$.
Proof. We prove this claim by contradiction. Define $B:=N \cap$ $E_{r}[x-1]$. Since $N(r) \in \mathcal{F}_{r}$, (I1) implies that B is an independent set of $\mathbf{Z}_{r} \mid D_{r}[x-1]$. Assume that B is not a base of $\mathbf{Z}_{r} \mid D_{r}[x-1]$. Then (I2) implies that there exists an edge f in $D_{r}[x-1] \backslash N$ such that $B+f \in$ \mathcal{F}_{r}. Assume that $N(r)+f \notin \mathcal{F}_{r}$. Since $B+f \in \mathcal{F}_{r}, \mathrm{D}_{\mathbf{P}_{r}}(f, N(r))$ is not a subset of B. For every edge g in $\mathrm{D}_{\mathbf{P}_{r}}(f, N(r)) \backslash B$, since $f \in E_{r}[x-1]$ and $g \notin E_{r}[x-1], f>_{r} g$. Thus, since N is strongly stable, $N+f \notin \mathcal{G}$.

Since $f \in A_{z-1}, M_{z-1}+f \in \mathcal{G}$. Thus, since Lemma 5.2 implies that M_{z-1} is a base of $\mathbf{Q} \mid F[z-1]$, Lemma 3.5 implies that $\{f\}$ is an independent set of $Q / F[z-1]$. Furthermore, since (I1) implies that $N \cap F[z-1]$ is an independent set of $Q \mid F[z-1]$, (I2) implies that
there exists a base \hat{B} of $Q \mid F[z-1]$ such that $N \cap F[z-1] \subseteq \hat{B}$. Since Lemma 3.5 implies that $\hat{B}+f \in \mathcal{G}$, (I1) implies that

$$
(N \cap F[z-1])+f \in \mathcal{G} .
$$

This implies that there exists an edge (s, p) in $\mathrm{D}_{\mathrm{Q}}(f, N) \backslash F[z-1]$. Assume that $s \in R_{\ell}$. If $\ell \leq z-1$, then since $N(s) \subseteq T_{s},(s, p) \in F_{\ell}$. This contradicts $(s, p) \notin F[z-1]$. Thus, $s \notin R[z-1]$. Since $r \in R_{z}$, $r \gtrsim_{H} s$. However, this contradicts the fact that N is strongly stable. This completes the proof.

Define

$$
B:=\left(N \cap E_{r}[x-1]\right)+e .
$$

Since $N(r) \in \mathcal{F}_{r},(\mathrm{I} 1)$ implies that $B \in \mathcal{F}_{r}$. Recall that $N(r) \subseteq A_{z-1}$. Thus, B is an independent set of \mathbf{Z}_{r}. Lemma 3.5 and Claim 5 imply that $\{e\}$ is an independent set of $\mathbf{Z}_{r} / D_{r}[x-1]$, i.e., $e \in D_{r}^{x}$. This contradicts $e \notin T_{r}$. This completes the proof.

Lemma 5.5. Assume that $k \in[n]$ and there exists a strongly stable matching in G. Then for every strongly stable matching N in G, every resident r in $R[k]$, and every integer i in $\left[m_{r}\right], N \cap E_{r}^{i}$ is a base of \mathbf{Z}_{r}^{i}.

Proof. Assume that we are given a strongly stable matching N in G, a resident r in $R[k]$, and an integer x in [$\left.m_{r}\right]$. Furthermore, we assume that for every integer i in $[x-1], N \cap E_{r}^{i}$ is a base of \mathbf{Z}_{r}^{x}. (That is, if $x=1$, then we make no assumption.) Then Lemmas 3.4 and 3.5 imply that $N \cap E_{r}[x-1]$ is a base of $\mathbf{Z}_{r} \mid D_{r}[x-1]$. Since $N(r) \in \mathcal{F}_{r}$ and $N(r) \subseteq T_{r}$ follows from Lemma 5.4, (I1) implies that $N \cap E_{r}[x]$ is an independent set of $\mathbf{Z}_{r} \mid D_{r}[x]$. Thus, Lemmas 3.4 and 3.5 imply that $N \cap E_{r}^{x}$ is an independent set of \mathbf{Z}_{r}^{x}. Assume that $N \cap E_{r}^{x}$ is not a base of \mathbf{Z}_{r}^{x}. Then (I2) implies that there exists an edge e in $D_{r}^{x} \backslash N$ such that $\left(N \cap E_{r}^{x}\right)+e$ is an independent set of \mathbf{Z}_{r}^{x}. Lemmas 3.4 and 3.5 imply that $\left(N \cap E_{r}[x]\right)+e$ is an independent set of $\mathbf{Z}_{r} \mid D_{r}[x]$. Thus, if $N(r)+e \notin \mathcal{F}_{r}$, then there exists an edge f in $\mathrm{D}_{\mathrm{P}_{r}}(e, N(r))$ such that $e>_{r} f$. Thus, since N is strongly stable, $N+e \notin \mathcal{G}$.

Assume that $r \in R_{z}$. Since $e \in A_{z-1}, M_{z-1}+e \in \mathcal{G}$. Thus, since Lemma 5.2 implies that M_{z-1} is a base of $\mathbf{Q} \mid F[z-1]$, Lemma 3.5 implies that $\{e\}$ is an independent set of $Q / F[z-1]$. Furthermore, since (I1) implies that $N \cap F[z-1]$ is an independent set of $Q \mid F[z-$ 1], (I2) implies that there exists a base B of $Q \mid F[z-1]$ such that $N \cap F[z-1] \subseteq B$. Lemma 3.5 implies that $B+e \in \mathcal{G}$. Thus, (I1) implies that

$$
(N \cap F[z-1])+e \in \mathcal{G} .
$$

Thus, there exists an edge (s, p) in $\mathrm{D}_{\mathrm{Q}}(e, N)$ such that $(s, p) \notin F[z-1]$. Assume that $s \in R_{\ell}$. If $\ell \leq z-1$, then since $N(s) \subseteq T_{s}$ follows from Lemma 5.4, $(s, p) \in F_{\ell}$. This contradicts $(s, p) \notin F[z-1]$. Thus, $s \notin R[z-1]$. Since $r \in R_{z}, r \gtrsim_{H} s$. However, this contradicts the fact that N is strongly stable. This completes the proof.

Lemma 5.6. Assume that $k \in[n]$ and there exists a strongly stable matching in G. Then for every strongly stable matching N in G and every integer ℓ in $[k], N \cap F_{\ell}$ is a base of Q_{ℓ}.

Proof. Assume that we are given a strongly stable matching N in G and an integer ℓ in [$k]$. Furthermore, we assume that $N \cap$ $F[\ell-1]$ is a base of $Q \mid F[\ell-1]$. (That is, if $\ell=1$, then we make no assumption.) Notice that (I1) implies that $N \cap F[\ell]$ is an independent set of $\mathrm{Q} \mid F[\ell]$. Thus, Lemmas 3.4 and 3.5 imply that $N \cap F_{\ell}$ is an independent set of \mathbf{Q}_{ℓ}. Assume that $N \cap F_{\ell}$ is not a base of \mathbf{Q}_{ℓ}.

Then Lemma 3.5 implies that $N \cap F[\ell]$ is not a base of $Q \mid F[\ell]$. Thus, (I2) implies that there exists an edge $e=(r, h)$ in $F[\ell] \backslash N$ such that $(N \cap F[\ell])+e \in \mathcal{G}$. Thus, if $N+e \notin \mathcal{G}$, then $\mathrm{D}_{\mathrm{Q}}(e, N) \nsubseteq F[\ell]$. Let $f=(s, p)$ be an edge in $\mathrm{D}_{\mathrm{Q}}(e, N) \backslash F[\ell]$. Then Lemma 5.4 implies that $s \notin R[\ell]$. Since $r \in R[\ell]$, this implies that $r>_{H} s$. Thus, since N is strongly stable, this implies that $N(r)+e \notin \mathcal{F}_{r}$.

Assume that $e \in E_{r}^{x}$. Define $B:=N \cap E_{r}[x-1]$. It follows from Lemma 5.4 that $B \subseteq D_{r}[x-1]$. Furthermore, since $N(r) \in \mathcal{F}_{r}$, (I1) implies that $B \in \mathcal{F}_{r}$. Thus, (I2) implies that there exists a base of \hat{B} of $\mathbf{Z}_{r} \mid D_{r}[x-1]$ such that $B \subseteq \hat{B}$. Since $e \in E_{r}^{x} \cap F[\ell]=D_{r}^{x}$, it follows from Lemma 3.5 that $\hat{B}+e \in \mathcal{F}_{r}$. Thus, (I1) implies that $B+e \in \mathcal{F}_{r}$. This implies that $\mathrm{D}_{\mathbf{P}_{r}}(e, N(r)) \nsubseteq B$. Thus, there exists an edge f in $\mathrm{D}_{\mathbf{P}_{r}}(e, N(r))$ such that $f \notin E_{r}[x-1]$. This implies that since $e \in E_{r}^{x}, e \gtrsim_{r} f$. However, this contradicts the fact that N is strongly stable. This completes the proof.

Lemma 5.7. If Algorithm 2 outputs null, then there does not exist a strongly stable matching in G.

Proof. Notice that in this case, $k \in[n]$. We first consider the case where Algorithm 2 outputs null at Line 17. That is, $\mathbf{r}\left(\mathbf{Q}_{k}\right)>$ σ_{k}. Assume that there exists a strongly stable matching N in G. Lemma 5.6 implies that $N \cap F_{k}$ is a base of \mathbf{Q}_{k}. Thus, $\left|N \cap F_{k}\right|=$ $\mathbf{r}\left(\mathbf{Q}_{k}\right)$. On the other hand, for every resident r in R_{k} and every integer i in $\left[m_{r}\right]$, Lemma 5.5 implies that $N \cap E_{r}^{i}$ is an independent set of \mathbf{Z}_{r}^{i}. This implies that for every resident r in $R_{k}, N(r)$ is an independent set of S_{r}. Thus, (I1) implies that for every resident r in $R_{k}, N(r) \cap F_{k}$ is an independent set of S_{r}. Thus, $\left|N \cap F_{k}\right| \leq \sigma_{k}$. This contradicts $\mathbf{r}\left(\mathbf{Q}_{k}\right)>\sigma_{k}$.

We next assume that Algorithm 2 outputs null at Line 21. That is, $\left|I_{k}\right|<\sigma_{k}$. Assume that there exists a strongly stable matching N in G. Lemma 5.5 implies that for every resident r in $R_{k}, N(r)$ is a base of S_{r}. Furthermore, Lemma 5.4 implies that for every resident r in $R_{k}, N(r)=N(r) \cap F_{k}$. Thus, $\left|N \cap F_{k}\right|=\sigma_{k}$. On the other hand, since Lemma 5.6 implies that $N \cap F_{k}$ is a common independent set of $\bigoplus_{r \in R_{k}} \mathrm{~S}_{r}$ and $\mathrm{Q}_{k},\left|N \cap F_{k}\right| \leq\left|I_{k}\right|$. This contradicts $\left|I_{k}\right|<\sigma_{k}$. This completes the proof.

Theorem 5.8. Algorithm 2 can solve the strongly stable matching problem.

Proof. This theorem follows from Lemmas 5.3 and 5.7.

6 CONCLUSION

In this paper, we consider the problem of finding a many-to-many super-stable matching and a many-to-many strongly stable matching with master preference lists and matroid constraints, and we prove that these problems can be solved in polynomial time. It is interesting to clarify whether the results in this paper can be extended to the general preference list case.

REFERENCES

[1] N. Chen. 2012. On Computing Pareto Stable Assignments. In Proceedings of the 29th International Symposium on Theoretical Aspects of Computer Science (Leibniz International Proceedings in Informatics), Vol. 14. 384-395.
[2] N. Chen and A. Ghosh. 2010. Strongly Stable Assignment. In Proceedings of the 18th Annual European Symposium on Algorithms, Part II (Lecture Notes in Computer Science), Vol. 6347. 147-158.
[3] W.H. Cunningham. 1986. Improved Bounds for Matroid Partition and Intersection Algorithms. SIAM 7. Comput. 15, 4 (1986), 948-957.
[4] T. Fleiner. 2003. A Fixed-Point Approach to Stable Matchings and Some Applications. Mathematics of Operations Research 28, 1 (2003), 103-126.
[5] T. Fleiner and N. Kamiyama. 2016. A Matroid Approach to Stable Matchings with Lower Quotas. Mathematics of Operations Research 41, 2 (2016), 734-744.
[6] S. Fujishige and A. Tamura. 2007. A Two-Sided Discrete-Concave Market with Possibly Bounded Side Payments: An Approach by Discrete Convex Analysis. Mathematics of Operations Research 32, 1 (2007), 136-155.
[7] D. Gale and L. S. Shapley. 1962. College Admissions and the Stability of Marriage. The American Mathematical Monthly 69, 1 (1962), 9-15.
[8] R. W. Irving. 1994. Stable Marriage and Indifference. Discrete Applied Mathematics 48, 3 (1994), 261-272.
[9] R. W. Irving, D. F. Manlove, and S. Scott. 2000. The Hospitals/Residents Problem with Ties. In Proceedings of the 7th Scandinavian Workshop on Algorithm Theory (Lecture Notes in Computer Science), Vol. 1851. 259-271.
[10] R. W. Irving, D. F. Manlove, and S. Scott. 2003. Strong Stability in the Hospitals/Residents Problem. In Proceedings of the 20th Annual Symposium on Theoretical Aspects of Computer Science (Lecture Notes in Computer Science), Vol. 2607. 439-450.
[11] R. W. Irving, D. F. Manlove, and S. Scott. 2008. The Stable Marriage Problem with Master Preference Lists. Discrete Applied Mathematics 156, 15 (2008), 2959-2977.
[12] K. Iwama and S. Miyazaki. 2008. Stable Marriage with Ties and Incomplete Lists. In Encyclopedia of Algorithms. Springer.
[13] S. Iwata and Y. Yokoi. 2016. Finding a Stable Allocation in Polymatroid Intersection. In Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms. 1034-1047.
[14] N. Kamiyama. 2015. Stable Matchings with Ties, Master Preference Lists, and Matroid Constraints. In Proceedings of the 8th International Symposium on Algorithmic Game Theory (Lecture Notes in Computer Science), Vol. 9347. 3-14.
[15] N. Kamiyama. 2016. The Popular Matching and Condensation Problems under Matroid Constraints. Journal of Combinatorial Optimization 32, 4 (2016), 13051326.
[16] N. Kamiyama. 2017. Popular Matchings with Ties and Matroid Constraints. SIAM Journal on Discrete Mathematics 31, 3 (2017), 1801-1819.
[17] T. Kavitha, K. Mehlhorn, D. Michail, and K. Paluch. 2007. Strongly Stable Matchings in Time $O(n m)$ and Extension to the Hospitals-Residents Problem. ACM Transactions on Algorithms 3, 2 (2007), Article 15.
[18] F. Kojima, A. Tamura, and M. Yokoo. 2018. Designing Matching Mechanisms under Constraints: An Approach from Discrete Convex Analysis. Journal of Economic Theory 176 (2018), 803-833.
[19] V. S. Malhotra. 2004. On the Stability of Multiple Partner Stable Marriages with Ties. In Proceedings of the 12th Annual European Symposium on Algorithms (Lecture Notes in Computer Science), Vol. 3221. 508-519.
[20] D. F. Manlove. 1999. Stable Marriage with Ties and Unacceptable Partners. Technical Report TR-1999-29. The University of Glasgow, Department of Computing Science.
[21] D. F. Manlove. 2013. Algorithmics of Matching under Preferences. World Scientific.
[22] K. Murota and Y. Yokoi. 2015. On the Lattice Structure of Stable Allocations in a Two-Sided Discrete-Concave Market. Mathematics of Operations Research 40, 2 (2015), 460-473.
[23] S. Olaosebikan and D. Manlove. 2018. Super-Stability in the Student-Project Allocation Problem with Ties. In Proceedings of the 12th Annual International Conference on Combinatorial Optimization and Applications (Lecture Notes in Computer Science), Vol. 11346. 357-371.
[24] G. O'Malley. 2007. Algorithmic Aspects of Stable Matching Problems. Ph.D. Dissertation. The University of Glasgow.
[25] J. G. Oxley. 2011. Matroid Theory (2nd ed.). Oxford University Press.
[26] S. Scott. 2005. A Study of Stable Marriage Problems with Ties. Ph.D. Dissertation. The University of Glasgow.
[27] Y. Yokoi. 2017. A Generalized Polymatroid Approach to Stable Matchings with Lower Quotas. Mathematics of Operations Research 42, 1 (2017), 238-255.

[^0]: *This research was supported by JST PRESTO Grant Number JPMJPR1753, Japan.
 Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13-17, 2019, Montreal, Canada. © 2019 International Foundation for Autonomous Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

