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ABSTRACT
In this work we look at opinion formation and the effects of two

phenomena both of which promote consensus between agents con-

nected by ties: influence, agents changing their opinions to match

their neighbors; and selection, agents re-wiring to connect to new

agents when the existing neighbor has a different opinion. In our

agent-based model, we assume that only weak ties can be rewired

and strong ties do not change. The network structure as well as

the opinion landscape thus co-evolve with two important parame-

ters: the probability of influence versus selection; and the fraction

of strong ties versus weak ties. Using empirical and theoretical

methodologies we discovered that on a two-dimensional spatial

network:

• With no/low selection the presence of weak ties enables fast

consensus. This conforms with the classical theory that weak

ties are helpful for quicklymixing and spreading information,

and strong ties alone act much more slowly.

• With high selection, too many weak ties inhibit any con-

sensus at all—the graph partitions. The weak ties reinforce

the differing opinions rather than mixing them. However,

sufficiently many strong ties promote convergence, though

at a slower pace.

We additionally test the aforementioned results using a real network.

Our study relates two theoretical ideas: the strength of weak ties—

that weak ties are useful for spreading information; and the idea of

echo chambers or filter bubbles, that people are typically bombarded

by the opinions of like-minded individuals. The difference is in how

(much) selection operates.
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1 INTRODUCTION
Social ties are not static, they evolve over time and the evolution is

driven by two processes. One is selection where an individual may

seek out and form new ties; often with others that have similar

attributes [31]. The other social process is influence in which two

individuals already connected by a social tie may influence one

another and converge on their personal attributes (interest, tastes,

etc) [28, 32]. Both of them result in neighboring nodes being more

similar than two random nodes.

The sociology literature has, for a long time, acknowledged and

studied the difference of social ties [10, 11, 18]. Strong ties refer

to the ties that people regularly spend effort to maintain, such

as family members, close friends, and colleagues. Weak ties, on

the other hand, are relatively effortless to keep and typically are

much more numerous than strong ties. The difference in the type

of ties is also reflected structurally. Strong ties tend to be clustered

with a high clustering coefficient, while weak ties are important

bridges that connect remote communities. In the seminal paper

“The Strength of the Weak Ties” Granovetter [11] showed how

information spreads through weak ties. While strong ties connect

people who are more similar to each other (due to homophily),

weak ties tend to bring fresh information to a social group, which

can be extremely valuable, for example, in the case of looking for

new jobs.

One of the interesting aspects of this paper is to examine the

evolution of strong ties and weak ties, with selection and influence

considered. By definition, strong ties and weak ties also differ in

their stability or fragility. The physical constraints that form a

strong tie are often stable in time and are hard to change. Many

of the strong ties are not formed by selection. We are born with

family ties and they stay with us for a lifetime except in extreme

cases. Neighbors and colleagues are also relatively hard to change

without some serious effort or cost. But weak ties, especially those

discovered on a social platform, are a lot easier to form or break,

making it convenient to block opinions that one does not like and

stay in a comfortable “echo chamber” [2, 34].

The political science literature has confirmed the observation

of geographical segregation and partisan alignment [9, 22] and of

‘ideology sorting’, that people tend to “segregate themselves into

their own political worlds, blocking out discordant voices and sur-

rounding themselves with reassuring news and companions" [4].

In the on-line setting, the sorting process can possibly happen at a

much faster rate and a larger scale [2, 5, 14, 20, 23]. Online forums
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allow people to seek out like-minded individuals, including those

holding unpopular views that have been shunned elsewhere [7].

Moreover, social media research clearly shows that unfriending on

Facebook [30] and unfollowing on Twitter [17, 35] disproportion-

ately affect weak ties as compared to strong ties. Between 16% and

26% of American SNS users have disconnected a tie for reasons to

do with politics [14, 27, 30]. While such selection processes indeed

limits the information input to certain users, it was also observed

that the disconnections helped to sustain user participation in the

social network [20].

Our Approach. In this work we develop a model of opinion for-

mation and changes with two competing opinions/behaviors. Exam-

ples include political views (liberal v.s. conservative) or behaviors

(smoking/non-smoking, drug use/no drug use). The opinions are

influenced by one’s friends which could be connected by strong

ties or weak ties. Generally speaking, one’s opinion is going to

move toward the majority opinion in his/her friend circle over time.

Meanwhile, selection may also happen such that a node re-wires

ties when he/she has different opinion from his/her friends. In our

model, we assume that only the weak ties can be rewired and strong

ties do not change. The network structure as well as the opinion

landscape thus co-evolve with two important parameters: p
select

,

the probability of a selection as the next action as opposed to in-

fluence; and qstrong, the fraction of strong ties in the network. The

objective of this paper is to answer the following question: does the

opinion distribution converge and if so how fast does it converge

with respect to the two parameters?

Related Work. There has been work on co-evolution of social

ties and opinions without separating strong/weak ties. Holme and

Newman [13]

show a phase transition from a segregated network to a homo-

geneous network, controlled by p
select

. Durrett et al. [8] built on

top of the Holme-Newman model and considered two models of

selection: rewire-to-random, and rewire-to-same. Cohen et al. [6]

study a problem of opinion formation with continuous values with

influence and selection. Kempe et al. [16] considered agents with

multiple dimensions/attribute types and only agents who are similar

in many dimensions can influence each other. They characterized

the equilibrium outcome and proved convergence.

An expansive literature attempted to validate selection and in-

fluence models using real-world data, although some of them are

limited as they assume independent observations and no external

factors [31]. Lewis et al. [19] considered Facebook data and discov-

ered that there could be a large variation of whether selection or

influence is more prominent, depending on the studied attributes.

Further, selection and influence can be heavily entangled. For ex-

ample, in a static network (when selection does not exist), both

cooperative and selfish behaviors are contagious. But in a dynamic

network, selfish behavior is still contagious, but cooperative behav-

ior is not [15]. Thus selection and influence in network co-evolution

definitely deserve further study in different social settings.

2 MODEL
2.1 Model of Agent Network
To encode the interaction among people, we use a directed graph

G = (V ,ES ,EW )withV as the set of nodes and two types of edges—

strong ties, ES , and weak ties, EW . For v ∈ V let dS (v) be the out-
degree of strong ties of node v and the i-th strong out-neighbor of

node v is denoted by δS (v)i . We define dW (v) and δW (v)i analo-
gously. We allow multi-edges and self loops in both ES and EW .

2.2 Dynamics of Influence and Selection
Each agent v ∈ V has an opinion χ (v) ∈ {0, 1}. We call χ =
{χ (v) : v ∈ V } the opinion vector. For σ ∈ {0, 1}, let x(σ ) ≜ {v ∈

V : χ (v) = σ } ⊆ V denote the set of nodes with opinion σ . Let

R
χ
S (v) =

| {i :χ (δS (v)i )=1} |
dS (v)

be the fraction of strong ties which have

an endpoint with opinion 1, and similarly define R
χ
W (v).

The process Sel-Inf(G(0), f
inf
,p

select
,qstrong) is a discrete time

Markov chain over state space {(χ ,G)} where G(0)
is the initial

network of agents, f
inf

: [0, 1] 7→ [0, 1] is an influence function,

parameter p
select

∈ [0, 1) denotes the amount of selection (versus

influence), and qstrong ∈ [0, 1] denotes the influence of the strong

ties (versus weak ties). To this endwe defineRχ (v) = qstrongR
χ
S (v)+

(1−qstrong)R
χ
W (v) to be the weighted fraction ofv’s neighbors that

are 1.

The dynamics Sel-Inf(G(0), f
inf
,p

select
,qstrong) start with the graph

G(0)
and initial opinions that are uniformly and independently ran-

domly selected.

Given state Y (t ) = (χ (t ),G(t )) at time t , the dynamics updates

to Y (t+1)
as follows: initially set Y (t+1) = Y (t )

, choose an agent v

uniformly at random and update Y (t+1)
with one of the following

two operations:

Selection. With probability p
select

, agent v randomly chooses

a weak tie and rewires if they disagree: select a random number k

between 1, . . . ,dW (v), and let u = δ
(t )
W (v)k . Then

δ
(t+1)
W (v)k =

{
u , if χ (t )(v) = χ (t )(u)
a random node in V , otherwise.

(1)

Influence.[29] Otherwise (with probability 1 − p
select

), agent u
updates its opinion,

χ
(t+1)
v =

{
1 with probability f

inf

(
Rχ

(t )
(v)

)
0 , otherwise.

(2)

recall that Rχ
(t )
(v) is the qstrong weighted fraction of v’s neighbors

with opinion 1 at time t .
We say the process reaches consensus if all agents have the same

opinion, and we use the number of influence steps as the consensus

time.

Remark 2.1. Ourmodel is similar to theHolme-Newmanmodel [13].

In the selection phase of our model, the chosen node picks a random

edge, and when the endpoint has a different opinion rewires the

edge to a random node (rewired when disagreeing). In their model,

a random edge is rewired to a random node with the same opinion

(rewired to the same). For the influence phase, their model uses the

voter model to update opinions.

Session 2F: Agent Societies and Societal Issues 2 AAMAS 2019, May 13-17, 2019, Montréal, Canada

620



Remark 2.2. We will describe our simulation results using ρ
select

instead of p
select

where p
select

=
dρ

select

1+(d−1)ρ
select

and d is the average

degree of the graph. Here ρ
select

just rescales p
select

to correctly

normalize for the degree. This way, if v is a node of degree d , the
rate that the opinion of δW (v)i is updated via selection versus

influence is ρ
select

versus 1 − ρ
select

and does not depend on d .

Figure 1: The function f
inf

for different influence dynamics.
The k-majority model, with an increasing k , changes from
the voter model to the majority model.

2.3 Choices of Influence dynamics
We consider k-majority dynamics (choose k neighbors according

to their edge weights independently with replacement and change

the opinion to the majority opinion of these k neighbors),

f
inf

(x) =
k∑

ℓ= ⌈k/2⌉

(
k

ℓ

)
xℓ(1 − x)k−ℓ . (3)

This generalizes several previously studied models:

• Voter Model (k = 1): agent u chooses a neighbor v with

probability proportional to the weight and updates to v’s
opinion, f

inf
(x) = x [12].

• Majority (k → ∞): agent u updates to the opinion with

maximum weight, when there is a tie, the opinion is chosen

at random [24].

• 3-majority dynamics (k = 3): agent u polls the opinion from

three random neighbors and takes the majority as the new

opinion [3].

For k > 1 this family of influence dynamics can be seen as

the smooth version of majority dynamic with “the rich get richer

property”— if Ru > 1/2, more than half of u’s neighbors are 1 then
the probability that agent u updates to 1 is greater than Ru , the
fraction of u’s 1 neighbors; moreover on a complete graph if the

number of agents with opinion 1 is greater than the number of

agents with opinion 0 there is a “drift” for opinion 1 such that the

number of agents with opinion 1 tends to increase. We are primarily

interested in the case where k > 1, but include the k = 1 case for

contrast.

2.4 Our Problem
In this paper we try to understand the role of weak ties in promoting

consensus with two main parameters: ρ
select

, the probability of

selection as the next action as opposed to influence; and qstrong, the
fractional influence of the strong ties in the network. We consider

the entire parameter space: ρ
select

∈ [0, 1) and qstrong ∈ [0, 1]. For

shorthand, we refer to this as Sel-Inf(f
inf
,p

select
,qstrong), when the

graph is clear.

In this paper we consider a number of graph topologies, net-

works generated by the Newman-Watts model and a real-world

ego-network from Facebook [21].

3 SPATIAL NETWORKS
3.1 Simulation setting
In this section, the initial graph we study is based on the Newman-

Wattsmodel [25]. The nodes form a two dimensional latticewrapped

into a torus. Each node has 12 strong ties connecting it to nodes

with Hamming distance less than 2, and 10 weak ties to random

nodes drawn uniformly and independently with replacement.

We run simulations on networks of size ranging from 16 × 16

to 64 × 64 (256 to 4096 nodes). A representative figure on the num-

ber of influence steps until consensus is shown in Figure 2. The

color at each point (ρ
select
,qstrong) represents the number of influ-

ence steps before consensus (or timeout) normalized by the the

size of the graph and averaged among the trials of the dynamics

Sel-Inf(f
inf
,p

select
,qstrong). We stop the dynamics if the total num-

ber of influence steps is more than twice the square of the size

of the graph. In the larger graph, this corresponds to 33,554,432

influence steps and, for some parameter settings, over 10 billion

total steps. For the 256 node graph, we run 10 trials for each of

100 × 101 parameter settings. For the 4096 node graph, we run 5

trials for each of 50 × 51 parameter settings.

3.2 Simulation Results Overview
To better understand Figure 2, we first consider what happens with

different selection rates. When ρ
select

< 0.5, which is the upper part

of the plots, the majority-like processes (3-majority, 13-majority,

and majority) reach consensus faster if the weight of weak ties

is larger (qstrong being smaller). This is natural because the graph

topology is more stable when ρ
select

is small. Once the number

of nodes with different opinions become imbalanced the weak ties
act like sampling a complete graph and help the opinions to mix,
strengthening the imbalance. If qstrong is close to 1, the network

has mostly only the strong ties that connect local neighbors. Even

though there may exist a global imbalance of opinions, it still takes

a long time to spread this imbalance through strong ties.

However, when selection rate is high (ρ
select

> 0.5, the lower part

of the plots), the majority-like processes (3-majority, 13-majority,

and majority) reach consensus slower or even get stuck if there are

a large fraction of weak ties (when qstrong is small). In contrast to

the low selection setting, here the weak tie weights are frequently

updated and form stronger connections among the agents with the

same opinion. Informally, the weak ties form community structures
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(a) Voter Model (k=1) (b) 3-Majority (c) 13-Majority (d) Majority(16 × 16)

(a) Voter Model (k=1) (b) 3-Majority (c) 13-Majority (d) Majority(64 × 64)

Figure 2: Consensus time on spatial network. The color at each point (ρ
select
,qstrong) in this bit map represents the average

number of influence steps before consensus (or timeout). The size of graph in the top row is 256 and the bottom row is 4096.

which hinder the agents from communicating between different opin-
ions and prevent the opinions from mixing. As a result, the higher
the selection rate is, the harder for the agents to reach consensus.

We hypothesize that there are three distinct theoretical cases:

Fast Consensus Consensus takes a logarithmic number of

steps (per node).

Slow Consensus Consensus is reached in polynomial time.

No Consensus Consensus is either never reached or takes

exponential time.

Roughly speaking: we expect fast consensus is represented by

the deep blue region; no consensus by the deep red region; and

slow consensus by the other colors. Notice that when there are no

strong ties (qstrong = 0) the transition from fast consensus to no

consensus is rapid. We hypothesize that the there is a threshold

here. Moreover, that there is a “triple point" incident on each of

these three regions.

In the remainder of our analysis we focus on the three “edges":

either qstrong = 0 or ρ
select

∈ {0, 1}, and we change the other

parameters. Note that when qstrong = 1 selection cannot operate

and the value of ρ
select

∈ {0, 1} is immaterial. So this case is omitted.

3.3 Weak Ties Only (qstrong = 0)
In this section we study the effects of the relative frequency be-

tween selection and influence (ρ
select

) on the consensus time of

Sel-Inf(f
inf
,p

select
,qstrong)when the strong ties are absent,qstrong =

0. This corresponds to the left edge of the plots in Figure 2.

We can see that if ρ
select

= 0, then the dynamics quickly con-

verge in all but the voter model, where it slowly converges. On the

other hand if ρ
select

→ 1, then it nearly always times out before

converging. We hypothesize that in this case there is no consensus.

One way we can see this is in Figure 3, which plots the number of

times nodes switch opinions, normalized by the size of the graph,

before the processes reach consensus. A switch is an influence step

when the chosen agent changes its opinion. The total number of

switches is quite small in this region. This indicates that no real

progress is being made.

k > 1. First we consider k > 1—recall f
inf

is k-majority. We

see that on the left side of the plots in Figure 2 the time quickly

transitions from fast to very slow. Again the data in Figure 3 backs

up the story that the process transitions frommaking quick progress

(with few switches) to making no progress (with a lot of switches).

In the following section we use theoretical analysis to show that

in the mean field approximation the k-majority dynamics (for odd

k) converges to segregation if the relative frequency of selection

is high enough. We present theoretical results on the mean field

approximation of this setting in Section 4.

k = 1. Turning toward the case k = 1, we notice a large differ-

ence. Here the dynamics appear to converge slowly at ρ
select

= 0.

The time to consensus is intermediate (Figure 2), and requires many

switches (Figure 3). However, as ρ
select

increases, the process tran-

sitions to fast consensus (fast time and few switches). Finally, as
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(a) Voter Model (b) 3-Majority (c) 13-Majority (d) Majority

(a) Voter Model (k=1) (b) 3-Majority (c) 13-Majority (d) Majority

Figure 3: Switches on Spacial Network. The color at each point (ρ
select
,qstrong) in this a bit map represents the total number

of switches (before consensus or timing out) normalized by the size of the network for Sel-Inf(f
inf
,p

select
,qstrong). The size of

graph in the top row is 256 and the bottom row is 4096.

ρ
select

continues to increase we transition to increasingly timing

out (slow time and few switches). The slow consensus at ρ
select

= 0

is expected, because the voter model has no drift. However, the

fast consensus time for intermediate values of ρ
select

is surprising.

We hypothesize that it is due to the details of the selection process

which induces a rich-get-richer drift. When updating, if a node is in

the minority, then its selections acts slower (because the updates are

additive, but the total mass of its weak ties is smaller). This means

that minority nodes are more likely to be connected to majority

nodes than vice versa.

3.4 No Selection, Only Influence (ρselect = 0)
In this section, we consider the setting when there is no selection.

Therefore the process boils down to influence in a static network

with strong and weak ties. The results are at the top edge of the

plots in Figure 2.

For k-majority models for k > 1, we hypothesize that any non-

zero fraction of weak ties leads to fast consensus, which is supported

in the simulation results. The reason is that as soon as an opinion

is a global leader, the weak ties introduce a global drift. Since there

is no selection, each node connects uniformly to all nodes via weak

ties. The strong ties can make local imbalances, but these cancel

each other out as the size of the “boundary” for each opinion is

necessarily the same. In Figure 3, the number of switches increases

when there are more strong ties (with qstrong increasing). When

qstrong is small, on average each node switches fewer than 4 times

before consensus is reached — weak ties help to spread the im-

balance of opinion quickly and in most of the influence steps the

chosen agent updates to the global majority correctly.

However, with just strong ties (qstrong = 1, the top right corner),

the process predominantly changes only at the boundary of regions

of different opinions. Since the boundary of each opinion is the same,

the process takes an unbiased walk (without drift) and converges

slowly.

For k = 1, we have the voter model, which has no drift regardless

of qstrong. However, as there are more weak ties, the graph mixes

better and convergence speeds increase slightly. Indeed, as the

fraction of strong ties increases, the number of switches in Figure 3

increases. However, compared to majority-like dynamics the voter

model has a much larger number of switches regardless of the value

of qstrong.

3.5 Lots of Selection (ρselect → 1)
In this section, we want to understand when ρ

select
is nearly 1,

which is near the bottom edge of the plots in Figure 2. When

ρ
select

= 1, i.e., no influence, the opinions do not change. Thus

the network does not reach consensus.

Whenqstrong and ρselect is nearly 1 (near the right bottom corner),

there are no weak ties. Although almost all actions are selections,

there are simply no weak ties to work on, and so the selection steps
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do not affect. (Note that Figure 2 only counts influence steps.) Thus,

as discussed in the earlier section it converges but slowly.

When ρ
select

→ 1 and qstrong is increasing, the strong ties in-

creasingly help with consensus, but the weak ties are almost surely

connecting nodes of the same opinion. Conversely, as the number

of weak ties increases, they increasingly promote segregation.

For the majority model, it is abruptly not stuck when qstrong =
1. Here it is, in theory, possible that the dynamics get stuck (for

example if an 8× 16 region of nodes in the torus have opinion 0 and

the other 8 × 16 region have opinion 1. All agents will have three

neighbors of their type. However, in our empirical results, these

trials never do become stuck. Since there are only strong ties, we

hypothesize, that in the case the dynamics do converge it cannot

be done quickly (in logarithmic time per node) but must take a

polynomial time per node to converge.

4 THEORETICAL RESULTS
In this section, we analyze the process Sel-Inf when the d-regular
random graph which only has weak ties, and we show the mean

field approximation process converges to segregation when the

selection rate is higher than a certain threshold which depends on

the influence function f
inf

and the degree d .

Formally, we consider Sel-Inf(G(0), f
inf
,p

select
,qstrong)where the

initial weak graph E
(0)

W is a directed d-regular random graph (i.e.,

each node has d out neighbors selected at random), qstrong = 0,

and f
inf

is the k-majority influence dynamics with k ≥ 3. We note

that the nodes with the same initial state will have the same ex-
pected behavior. Specifically we can partition the nodes by their

initial opinions into U0 ≜ x (0)(0) and U1 ≜ x (0)(1) and can assume

|U0 | = |U1 | = n/2.
For σ ∈ {0, 1} we call v ∈ x (0)(σ ) a type σ node, and similarly

define type τ ∈ {0, 1} nodes. We set Xσ (t) to be the average proba-

bility of type σ nodes having opinion 1 at time t , and Cσ ,τ (t), the
expected cut of the weak ties between a type σ node and a type τ
node at time t . Formally,

Xσ (t) ≜
1

|Uσ |

∑
v ∈Uσ E

[
x
(t )
v

]
Cσ ,τ (t) ≜

1

|Uσ |

∑
v ∈Uσ

1

dW (v)E
[���{i : δ (t )W (v)i ∈ Uτ }

���] (4)

Theorem 4.1. Given constants k > 1 odd and d , let G(0) be a
directed d-regular random graph with n nodes, and qstrong = 0, there
existsp

select

∗ ∈ (0, 1) such that for allp
select

> p
select

∗ for sufficiently
largen, themean field approximation of Sel-Inf(G(0), f

inf
,p

select
,qstrong)

defined in Equation (4), the system converges to segregation:

lim

t→∞
X0(t) = 0, lim

t→∞
X1(t) = 1 (5)

lim

t→∞
C0,1(t) = lim

t→∞
C1,0(t) = 0. (6)

Intuitively, this theorem shows in the mean field approximation,

the cut between two sets x (0)(0) and x (0)(1) converges to zero, the

agents in x (0)(0) converge to opinion 0, and the agents in x (0)(1)
converge to opinion 1.

Nowwe give some intuitions of the proof. We first show that as n
increases the recurrence relation can be (rigorously) quantitatively

approximated by a system of ordinary differential equation (ODE)

(c.f. Figure 4). We analyze the corresponding system of ODE us-

ing tools from dynamical systems theory. One major challenge of

p
select

= 0.5 p
select

= 0.9

Figure 4: The vector field for dynamical system of (4) with
initial condition (X0(t),C0,1(0)) = (0, 0.5) for 3-majority under
different p

select
. The green lines represent the zeros of the

system of differential equations, and the red path is the nu-
merical solution of the dynamical system. On the left-hand
side (smallp

select
), the dynamical systemmixes and the prob-

ability of having opinion 1 and the connection between two
types of nodes converges to (0.5, 0.5). On the right-hand side
(large p

select
), the system segregates— the connection/cut be-

tween two types of nodes converges from 0.5 to 0 which is
characterized in the Theorem 4.1.

Theorem 4.1 is to argue the limits of system (4) converges to (0, 0)

without knowing their analytic solutions. We achieve this by using

tools in the qualitative analysis of dynamical systems which is of

independent interest.

4.1 Preliminaries
For our theoretical result, we need to introduce several results in

dynamical systems. Given f = (f1, . . . , fd ) : D ⊆ Rd 7→ Rd where

D is an open set with z(0) = Z (0)
, we define the following two

processes:

d

dt
z = f (z), and Z (k+1) − Z (k ) =

1

n
f
(
Z (k )

)
. (7)

Theorem 4.2 (Convergence of Eular forward method [1]).

Let f : D → Rd ∈ C1 such that the derivative f ′ exists and is
continuous with ∥ f (x)∥ ≤ M , and ∥ f (x , t) − f (z, t)∥ ≤ L∥x − z∥.
Then in Equation (7), for all t > 0 the Z (t ) differs from the true
solution z by at most

∥Z (nt ) − z(t)∥ ≤
M

n
(eLt − 1).

To capture the long term behaviour of (7), we introduce a notion

of stability: an equilibrium z∗ ∈ D is asymptotically stable if there
exists δ > 0 such that ∥z(0) − z∗∥ ≤ δ ⇒ limt→∞ | |z(t) − z∗ | | = 0.

The stability of the system can be determined by the linearization

of the system which is stated below.

Theorem 4.3 (Lyapunov’s indirect method [33]). Let D ⊂ Rd ,
z∗ ∈ Rd , f : D 7→ Rd , and A ∈ Rd×d where D is a neighborhood
of the z∗, f is a continuously differentiable function C1, z∗ is an
equilibrium point such that f (z∗) = 0, and A =

∂f
∂z |z=z∗ is the

derivative of f at z∗. Then z∗ is asymptotically stable ifA is Hurwitz,
so that all eigenvalue of A, λ, the real part of λ is negative, ℜ(λ) < 0.
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Moreover, there exists a closed set N ⊆ D and z∗ ∈ N and a
potential function V : N → R such that V (z∗) = 0, and V (z) >

0, ddt (V (z)) < 0 for z ∈ N \ z∗.

However the above theorem only captures the behaviour of

z when it is close enough to the stable fixed point z∗. To show

our process converges to a neighborhood of the stable fixed point,

Theorems 4.4 is useful as long as the system (7) is in the plane.

To state the theoremwe need to introduce more terminologies: A

set is bounded if it is contained in some sphere {z ∈ Rd : ∥z −α ∥ <

C} for some α ∈ Rd and C > 0. A point p ∈ Rd is called an ω-limit
point of the trajectory γz0 = {z(t) : t ≥ 0, z(0) = z0} of the system
(7) if there is a sequence tn → ∞ such that limn→∞ z(tn ) = p.

Theorem 4.4 (Poincare-Bendixon Theorem [33]). Let d
dt z =

f (z) be a system of differential equations defined on D an open subset
in R2 where f is differentiable. Suppose a forward orbit with initial
condition z0, γz0 = {z(t) : t ≥ 0, z(0) = z0} is bounded. Then ω(z0)
either contains a fixed point or is a periodic orbit.

The following theorem gives us a sufficient condition for the

nonexistence of a periodic orbit. Note that the theorem only holds

for two dimensions systems.

Theorem 4.5 (Bendixson’s Criteria [33]). Let f be differen-
tiable in D where D is a simply connected region in R2. If the diver-
gence of the vector field f is not identically zero and does not change
sign in D then d

dt z = f (z) has no closed periodic orbit in D.

4.2 Symmetry in Equation (4)

Note that by the definition C0,0(t) + C0,1(t) = C1,0(t) + C1,1(t) =
1. For all σ ∈ {0, 1}, denote the difference of a sequence (at ) as
∆(at ) ≜ at+1 − at

∆(Xσ (t)) =
1 − p

select

2|Uσ |
(f
inf

(Rσ (t)) − Xσ )

∆(Cσ ,σ ′(t)) =
p
select

4d |Uσ |

[
Cσ ,σ (2Xσ (1 − Xσ ))

−Cσ ,σ ′(Xσ + Xσ ′ − 2XσXσ ′)
]

where Rσ (t) ≜ Cσ ,σ (t)Xσ (t) + Cσ ,σ ′(t)Xσ ′(t) and σ ′
is the com-

plement of σ such that σ ,σ ′ ∈ {0, 1} and σ ′ , σ .
For the initial conditions, by definition,X0(0) = 0,X1(0) = 1, and

the initial weak graph E
(0)

W is a directed d-regular random graph,

so C00(0) = C01(0) = C10(0) = C11(0) = 0.5. Thus, for all t ≥ 0,

X0(t) = 1 − X1(t), C0,0(t) = C1,1(t), and C0,1(t) = C1,0(t).

With these symmetries, we further define Z (t ) =
(
Z
(t )
1
,Z

(t )
2

)
where Z

(t )
1
≜ X0(t) and Z

(t )
2
≜ C0,1(t). We can reduce the number

of parameters from 6 to 2 and have
Z
(t+1)
1

− Z
(t )
1
= 1

n (1 − p
select

)f1
(
Z (t )

)
Z
(t+1)
2

− Z
(t )
2
= 1

n
p
select

2d f2
(
Z (t )

) (8)

where {
f1(Z ) = (f

inf
(Z1 + Z2(1 − 2Z1)) − Z1)

f2(Z ) = (−Z2 + 2Z1(1 − Z1))
. (9)

Observe that as n increases, the above process can be approximated

by the following ODE by Theorem 4.2:{
d
dt z1 = (1 − p

select
)f1(z)

d
dt z2 =

p
select

2d f2(z)
(10)

4.3 Proof of Theorem 4.1
The main idea of the proof has three parts:

(1) There exists a p
select

∗
such that for all p

select
> p

select

∗
, Z (t )

converges to (0, 0) if there is t0 such that Z (t0)
is close to

(0, 0).

(2) Given p
select

> p
select

∗
there exists t0 large enough such that

z hits an asymptotically stable region for (0, 0) at time t0.

(3) Given t0, there exists a n large enough such that Z (nt0)
and

z(t0) are close.

We formalize these three statements in Lemmas 4.6, 4.7 and 4.9. The

proof of Theorem 4.1 is deferred to the full version.

Lemma 4.6. For all p
select

, there exist δp
select
> 0 and large enough

n such that if there is t0 ≥ 0,
Z (t0) − 0

 ≤ δp
select

, then

lim

t→∞

Z (t ) − 0

 = 0.

The detailed proof is deferred to the full version. To prove Lemma 4.6,

there are two parts: by Theorem 4.3, we can show 0 is asymptot-

ically stable for (10) and there is a potential function V . Then we

can show the Z(t ) in (8) converges to 0 when Z(0) is close to 0 by

showing V
(
Z(t )

)
is decreasing as t increases when n sufficiently

large.

Lemma 4.7. There exists p
select

∗ < 1 large enough such that for
all p

select
> p

select

∗ and δ > 0, there is t0, ∥z(t0) − 0∥ ≤ δ/3.

The proof of Lemma 4.7 is more complicated. The statement

basically says starting from the initial condition (0, 0.5), z converges
to 0 when p

select
is large enough.

Lemma 4.8 (stability). There exists p
select

∗ < 1, a region RA ⊂

R2 containing (0, 0), and t0 > 0. If p
select

≥ p
select

∗ and z(0) =
(0, 0.5), z(t0) ∈ RA, and z(t) ∈ RA for all t ≥ t0.

The detailed proof is deferred to the full version. Informally,

to prove the second part of Lemma 4.8, we first define our stable

region RA = {(x1,x2) : 0 ≤ x1 ≤ x∗
1
, 0 ≤ x2 ≤ x∗

2
}.1 where

(
x∗
1
,x∗

2

)
is the fixed point of Equation (9) with smallest positive x∗

1
. We must

show at each boundary the drift is inward such that if the z(t) is at
the boundary the z(t + ϵ) will go back to the stable region. For the

first part, we show z hits the stable region RA fast by taking p
select

∗

large enough. With Lemma 4.8 the rest of the proof of Lemma 4.7

goes as follows:

Proof of Lemma 4.7. Our system is two dimensional, so the

solution z is a Jordan curve, and it is bounded in RA if z ∈ RA for

t > τ0 by Lemma 4.8. Therefore by Theorem 4.4 z converges to

either a fixed point or a limit cycle.

1
Technically, we need our regions to avoid the fixed point, so RA = [0, y∗

1
] × [0, y∗

2
]

where y∗
1
< x ∗

1
and y∗

2
< x ∗

2
. By the continuity of the system and because the fixed

point (x ∗
1
, x ∗

2
) is a saddle point, the stability argument still holds.
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We first show no limit cycle. By Theorem 4.5, it is sufficient

to show the divergence of f is not identically zero and does not

change sign in RA

∇f = (1 − p
select

)

(
−1 + f ′

inf
(Z1 + Z2(1 − 2Z1))

)
−
p
select

2d
.

Because a k-majority function defined in (3) is Lipschitz such that

there exists Lk > 0 for all x ∈ [0, 1], | f ′
inf

(x)| ≤ Lk , we can

take p
select

∗
large enough such that for all x and p

select
≥ p

select

∗
,

∇f (x) ≤ (1 − p
select

) (−1 + Lk ) −
p
select

2d ≤ (1 − p
select

)(Lk − 1 +

1/2d) − 1/2d < 0. Since 0 is the only fixed point in RA and there is

no limit cycle, limt→0 z(t) = 0 □

Lemma 4.9. Given constants t0 ≥ 0, δ > 0, and p
select

there exists
n large enough such that ∥Z (n t0) − z(t0)∥ ≤ δ/3.

Since a k-majority function (3) is smooth, Lemma 4.9 is a corol-

lary of Theorem 4.2.

5 REAL SOCIAL NETWORK
5.1 Simulation Setting
We use a dataset consisting of social circles (egocentric networks)

collected from Facebook [21]. The graph has 4039 nodes and 88,234

edges. In this section, we only consider the 10-core
2
of Facebook

graph as our base network, which contains 2987 nodes and 83,181

edges. We take V as the set of vertices of the 10-core of Facebook

graph. Then we use Jaccard similarity
3
to measure tie strength and

take the top 80% edges with the highest Jaccard similarity as strong

ties edges, and rest as the initial weak ties.

5.2 Results
We run the influence-selection dynamics with the 3-majority influ-

ence model on the initial graph defined in Section 5.1, and show

the number of influence steps until consensus in Figure 5. We stop

a trial if the total number of influence step is more than the two

times the square of the size of the graph which is 17,844,338. The

setting of bit map is similar to Figure 2, but there are 20 parameters

ρ
select

ranging from 0 to 0.95 with even space, and 21 parameters

of qstrong ranges from 0 to 1 with even space.

Small qstrong. We first consider the case where qstrong is small

(the left part of the plots). When ρ
select

= 0 the dynamics almost

always time out and the number of switches is high which indicates

influence may be not enough for the system to consensus when

the graph has a rich structure. Interestingly, when 0 < ρ
select

< 0.5

(upper-left quadrant except for the top boundary), the processes

reach consensus quickly, as the weak ties help the opinions to mix.

This result shows moderate selection encourages agents to form

(random) connections and helps the system mix. However, when

selection is dominantly taken, ρ
select

> 0.5 (lower-left quadrant),

the processes often time out, as the selection process creates local

community structures by the weak ties that hinder communication

between agents of different opinions, preventing the opinions from

mixing.

2
Nodes with fewer than 10 neighbors are iteratively removed.

3
The Jaccard similarity between u, v defined as J (u, v) = |Nu∩Nv |

|Nu∪Nv |
, where Nv is

the set of vertices adjacent to node v . The Jaccard coefficient is commonly used to

measure the strength of an edges [26].

Consensus time number of switches

Figure 5: Consensus time in Facebook and number of
switches before consensus. The color at each point
(ρ

select
,qstrong) in this 21 × 20 bitmap represents the av-

erage number of influence steps before consensus (or
timeout) of 5 trials of the dynamics Sel-Inf(f

inf
,p

select
,qstrong)

with 3-majority measured in influence steps.

Large qstrong. In the right part of the plots with large qstrong, the
processes often reach timeout. This may due to the community

structures in strong ties of the real graph.

Interestingly, in the region of a medium-high selection rate (cen-

ter height of the plots), the processes times out if the graph mostly

consists of either weak ties or strong ties when qstrong is near 0 or
1, because of structures in strong ties and weak ties. However, if

qstrong is near 1/2, the graph has a mixture of strong and weak ties.

The community structures within the strong and weak ties seem

to override each other, and so the processes reach consensus fast.

This suggests multiple independent community structures help the

processes reach consensus, even if individually, the community

structures would stifle agreement.

The results of the simulation on the real-world graph and the

synthetic one are similar when qstrong is small and p
select

is large.

This is not surprising because the initial condition does not matter

in the above condition. When qstrong is large or pselect is small the

initial graph matters a lot. Our real-world social network has 10-20

rather distinct communities, but our spatial networks, Newman

Watt’s model, are more uniform. Because of this, the processes on

real-world network become stuck substantially more often.

6 CONCLUSION
As discovered by [11], the strength of weak ties is to get new in-

formation and fresh ideas into the comfort zone created by strong

ties. However, in a time-evolving spatial network, especially one

where selection happens at a substantially higher rate than influ-

ence, the role of strong ties and weak ties, in terms of spreading

fresh ideas, are swapped. The weak ties are too fragile, and the

power of spreading information diminishes. The selection causes

the forming of weak ties that only repeat and reinforce the same

opinion that the person already holds, which ironically, does not

bring any new thoughts. It is nevertheless the strong ties that hold

the network together, prevent it from being fully divided, and moti-

vate the participants to compromise.
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