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ABSTRACT
Consider a set of agents with sensitive datasets who are interested

in the same prediction task and would like to share their datasets

without revealing private information. For instance, the agents

may be medical centers with their own historical databases and

the task may be the diagnosis of a rare form of a disease. This

paper investigates whether sharing privacy-preserving versions of

these datasets may improve the agent predictions. It proposes a

Privacy-preserving Federated Data Sharing (PFDS) protocol that

each agent can run locally to produce a privacy-preserving version

of its original dataset. The PFDS protocol is evaluated on several

standard prediction tasks and experimental results demonstrate

the potential of sharing privacy-preserving datasets to produce

accurate predictors.
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1 INTRODUCTION
We live in a world where a significant amount of information is

collected by multiple entities on every one of us. This information

fuels a variety of services from personalized product recommen-

dations to personalized health-care. In general, the collected data

contain sensitive information, e.g., regarding our health or our daily

activities. As a result, entities collecting data may be reluctant to dis-

close their datasets, even though their release may have significant

societal benefits. Consider for instance a university hospital devel-

oping a predictor for a rare disease. Such a predictor would likely

benefit from augmenting the local dataset with those from other

medical centers, especially if the local dataset is biased towards a

sub-population. However, it has been shown that even when sev-

eral data attributes have been omitted from the shared datasets, the

predictor developed on the aggregated data is vulnerable to privacy

attacks [9, 26].

Two different approaches have been considered in the litera-

ture to address this issue. In the first approach, an entity releases a

privacy-preserving predictor as the output [4, 14, 18, 29] while, in

the second approach, an entity releases a privacy-preserving syn-

opsis of the dataset that can be used to train a predictor [6, 21, 27].

Publishing a privacy-preserving dataset is often preferred to pub-

lishing a privacy-preserving model, as it enables more general

exploratory and predictive analytic tasks. However, most of the
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Figure 1: The PFDS framework.

recent literature on privacy-preserving dataset focuses on releas-

ing noisy histograms for low (one or two) dimensional datasets

[5, 16, 28, 30], which are rarely employed to train learning models.

Moreover, it was observed that these approaches perform poorly

on high-dimensional data [25, 27]. In addition, these methods were

designed for single entities and do not consider the multi-agent set-

ting where several entities would like to share privacy-preserving

versions of their datasets.

This paper addresses this gap and proposes a Privacy-preserving

Federated Data Sharing (PFDS) protocol that allows agents to pri-

vately build a high-fidelity dataset using the framework of Differen-
tial Privacy [7]. The protocol is sketched in Figure 1, which shows

every agent releasing a privacy-preserving dataset. An agent can

then use these datasets, together with its own, to train a variety of

predictors. The PFDS protocol consists of two main steps that are

executed locally by every agent. In the first step, an agent builds a lo-

cally trained privacy-preserving predictor that is shared with other

agents. In a second step, the agent synthesizes an unlabeled privacy-

preserving version of its data and uses the collected predictors to

generate its labels, leveraging the knowledge transferred from all

shared models. The agent then shares its privacy-preserving, la-

beled, data that can be used by other agents for their analytic tasks.

PFDS has two main benefits: (1) It allows multiple entities to

train a predictor that leverage distributed data privately and (2) it

allows agents to release a privacy-preserving dataset which can

be used for a variety of tasks. The PFDS protocol was compared

against state-of-the-art differential private ensembles of predictors

for linear regression, logistic regression, and support vector ma-

chines. The experimental results indicate that PFDS reduces the

error of competitor methods of up to 11% on several classification

and regression tasks.

2 PROBLEM DEFINITION
This paper develops a privacy-preserving data sharing scheme for

regression and classification tasks. This section reviews the single

agent setting, presents the envisioned federated schema, and re-

views the adopted privacy notion. ∥x∥1 and ∥x∥ will denote the
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l1-norm and l2-norm respectively, [n] denotes the set {1, 2, . . . ,n},
boldface is used to denote vectors and calligraphic type for sets.

2.1 Empirical Risk Minimization
This paper considers a training dataset D = {(xi ,yi ) ∈ X × Y : i ∈

[n]} containing n labeled data points with data space X = Rd and

label set Y = [−1, 1] ⊆ R. A tuple (xi1, . . . ,xid ,yi ) in D describes

the attributes of an individual (e.g., age, gender), encoded by values

xi , and their relationship, encoded by label yi . The support for

the attribute a ∈ [d] is denoted by Ωa . Label yi is real-valued for

regression tasks and binary (e.g., −1 or 1) for classification tasks.

The objective is to construct a predictor ρw : X → Y, where w
is a vector of real-valued parameters. For example, for linear regres-

sion, ρ is a linear combination of the xi and w is a d-dimensional

vector whose k-th element represents the weight of xk . The quality
of the predictor on the training data is measured via a nonnegative

loss function ℓ : Y ×Y → R.
Regularized empirical risk minimization (ERM) aims at choosing

a predictor ρw that minimizes the regularized empirical loss:

J (ρw,D) =
1

n

n∑
i=1

(
ℓ
(
ρw(xi ),yi

) )
+ λc(w) (1)

where the minimization is performed over the parameter spacew of

ρ, the regularizer c(·) is used to prevent over-fitting, and λ controls

the degree of regularization. This paper focuses on three commonly

ERM tasks: linear regression, logistic regression, and support vector

machines (SVM). It also uses an l2-regularizor: c(w) = ∥w∥2.

Linear Regression. A linear regression on a dataset D returns a

predictor ρw∗ minimizing the loss function:

n∑
i=1

(
wT xi − yi

)
2

. (2)

Logistic Regression. A logistic regression classifier on a dataset

D returns a predictor ρw∗ that predicts yi = 1 with probability

ρw∗ (xi ) =
exp(w∗T xi )

1+exp(w∗T xi )
, where w∗ is an n-dimensional real-valued

vector minimizing the loss function:

n∑
i=1

(
log

(
1 + exp

(
− yi (wT xi

) ))
. (3)

For example, if xi describes the gender, age, and blood type of a

person, and yi indicates whether the person has diabetes, then a

logistic regression returns a function mapping her gender, age, and

blood type to the probability that she has diabetes.

Support Vector Machines. A Support Vector Machine (SVM) clas-

sifier on a dataset D returns a predictor ρw∗ where w∗ minimizes

the loss function:

n∑
i=1

max

(
0, 1 − yi (wT xi )

)
. (4)

An SVM classifier finds the maximum-margin hyperplane that di-
vides the group of points xi for which yi = 1 from those for which

yi = −1, by maximizing the distance between the hyperplane and

the nearest point xi from either group.

In this paper, predictor refers to an ERM algorithm.

2.2 The Multi-agent ERM
The multi-agent setting considers a set of m agents. Each agent

k ∈ [m] owns a dataset Dk = {(xi ,yi ) ∈ X × Y : i ∈ [nk ]} that
contains nk labeled data points. D = ∪k ∈[m]Dk is the union of

all the agent datasets and this paper assumes that the datasets Dk
(k ∈ [m]) are a partition of D. Hence each entry in D describes an

individual whose privacy must be protected.

The objective of each agent i is to train a predictor ρi . A standard

option for an agent is to train the predictor on its own dataset Di .

However, the agent data may be biased toward a particular sub-

population and may not generalize to the population at large. One

way to address this issue is to combine several models that have

been trained on different datasets [2, 3, 15]. A simple, yet effective,

scheme to aggregate multiple predictors is majority voting, which
outputs the class that is predicted more often by predictors in the

ensemble. Another widely adopted aggregation strategy is a com-
mittee machine [17], a meta predictor where multiple models are

combined by averaging the results of each predictor. If the predic-

tion errors made by the individual predictors are all uncorrelated

and have 0 mean, the average error of a model could be reduced by

a factor ofm simply by averagingm members [23]. Even though

typically errors are highly correlated, and the performance gain

could be small, [24] shows that, even when committee members are

correlated and biased, the squared prediction error of the committee

(obtained through an averaging process) is no worse than the mean

squared prediction error of the individual members.

Since agent data contains sensitive information, the shared mod-

els must be privacy-preserving. However, a privacy-preserving
model can be used solely to perform the model task. This paper con-
siders a more general setting in which a subset S of the n agent

releases a privacy-preserving version of their data Dk that can be

used together with the local data of agent i to train the predictor ρi .
This methodology has the advantage of allowing multiple analytic

tasks on the privacy-preserving data.

2.3 Differential Privacy
To protect the privacy of individuals in the datasets, this paper

adopts the framework ofDifferential Privacy [8], which has emerged

as the de-facto standard for privacy protection. A randomized al-

gorithm A :D→R with domain D and range R is ϵ-differential
private if, for any output response O ⊆ R and any two neighbor-
ing inputs D1,D2 ∈ D differing in at most one individual (written

D1 ∼ D2),

Pr [A(D1) ∈ O] ≤ exp(ϵ) Pr [A(D2) ∈ O], (5)

where the probability is calculated over the coin tosses of A. The

parameter ϵ is the privacy budget of the algorithm, with values close

to 0 denoting strong privacy. The budget is commonly set to values

no greater than 1. Differential privacy satisfies several important

properties, including composability and immunity to post-processing.
Composability ensures that a combination of differential private

algorithms preserve differential privacy [8].

Theorem 2.1 (Seqential Composition). The composition
(A1(D), . . . ,Ak (D)) of a collection {Ai }

k
i=1 of ϵi -differential pri-

vate algorithms satisfies (
∑k
i=1 ϵi )-differential privacy.
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Theorem 2.2 (Parallel Composition). LetD1 andD2 be disjoint
subsets of D andA be an ϵ-differential private algorithm. Computing
A(D ∩ D1) and A(D ∩ D2) satisfies ϵ-differential privacy.

Post-processing immunity ensures that privacy guarantees are

preserved by arbitrary post-processing steps [8].

Theorem 2.3 (Post-Processing Immunity). Let A be an ϵ-
differential private algorithm and д be an arbitrary mapping from
the set of possible output sequences O to an arbitrary set. Then, д ◦A
is ϵ-differential private.

The following differential private algorithms are building blocks.

2.3.1 The Laplace Mechanism. In private data analysis settings,

agents interact with the dataset by issuing queries. A (numeric)

query is a function from a data set D ∈ D to a result set R ⊆ Rd .
A query Q can be made differential private by injecting random

noise to its output. The amount of noise to inject depends on the

sensitivity of the query, denoted by ∆Q and defined as

∆Q = max

D1∼D2

∥Q(D1) −Q(D2)∥1 .

In other words, the sensitivity of a query is themaximum l1-distance
between the query outputs from any two neighboring dataset D1

and D2. For instance, ∆Q = 1 for a queryQ that counts the number

of users satisfying a given property in a dataset.

The Laplace distribution with 0 mean and scale b, denoted by

Lap(b), has a probability density function Lap(x |b) = 1

2b e
−
|x |
b . It

can be used to obtain an ϵ-differential private algorithm to an-

swer numeric queries [7]. In the following, Lap(λ)d denotes the

i.i.d. Laplace distribution over d dimensions with parameter λ.

Theorem 2.4 (Laplace MechanismMLap). Let Q be a numeric
query that maps datasets to Rd . The Laplace mechanism that outputs
Q(D) + z, where z ∈ Rd is drawn from the Laplace distribution

Lap
(
∆Q
ϵ

)d
, achieves ϵ-differential privacy.

2.3.2 The Exponential Mechanism. While the Laplace mecha-

nism allows to answer numeric queries privately, it cannot be ap-

plied to queries with non-numeric value outputs. The Exponential
Mechanism [20] overcomes this limitation by releasing a private

answer to a query by sampling from its discrete output space O.

The sampling probability for each output o ∈ O is based on a user-

specified utility function u : (D × O) → R that assigns a real value

score to each output o for a given input dataset. Higher scores de-

note more desirable outputs and the likelihood of a selection for an

output grows exponentially with its score value.

Theorem 2.5 (Exponential Mechanism Mexp). Let u : (D ×
O) → R have sensitivity ∆u = max

o∈O
max

D1∼D2

|u(D1,o) − u(D2,o)|.

The exponential mechanism that outputs o such that Pr[o is selected

] ∝ exp

(
ϵu(D,o)
2∆u

)
satisfies ϵ−differential privacy.

3 THE PFDS FRAMEWORK
This paper introduces a simple, yet effective, framework for training

an agent predictor taking advantage of privacy-preserving data

shared by multiple agents. The Privacy-preserving Federated Data

Sharing (PFDS) framework for ERM is illustrated in Figure 2 and

Figure 2: Detailed illustration of the PFDS framework.

Algorithm 1: PFDS(Di ,H , ϵ)

1 SharePredictor (Di ,H , ϵ);

2 ShareData ({ ˜ϕ j }j ∈S);
3 w∗ ← argminw J (ρw ,∪j ∈SD̃ j ∪ Di );

4 return ρiw∗

described in Algorithm 1, which is executed by each agent. The

subset of agents sharing their model and data privately (the sharers)
is denoted by S.

The algorithm takes as input the agent data Di , a set of hyper-

parameters H (to be defined later), and a privacy budget ϵ > 0.

PFDS is composed of two main phases: The Predictor Sharing phase
and the Data Sharing phase. For every sharer i ∈ S, the Predictor
Sharing phase generates and shares a privacy-preserving predictor

˜ϕi trained on data Di . The sharer runs this algorithm locally. Note

that
˜ϕi can also be used to construct a data synopsis for Di . The

output of the Predictor Sharing phase is thus the collection of all

shared privacy-preserving predictors { ˜ϕ j }j ∈S (line 1). The Data
Sharing phase generates and shares a privacy-preserving dataset

D̃i , by leveraging the shared predictors (line 2). Once again, it is

run locally by each agent. Collectively, these two phases allow

each agent to receive a collection of privacy-preserving dataset

{D̃ j }j ∈S that, together with the agent data Di , can be used for

various analytic tasks. In this paper, the task amounts to minimizing

an empirical loss function, defined in Equation (1), in order to

produce a predictor ρiw∗ (line 3) that can be used by the agent.

The rest of this section describes the Predictor Sharing and Data
Sharing phases in detail. Xi and X̃i denote the tensor of tuples

that excludes the labels from Di and its privacy-preserving ver-

sion, respectively. Similarly, yi and ỹi denote the vector of labels
associated with the values in Di and its privacy-preserving version,

respectively.

3.1 The Predictor Sharing Phase
The Predictor Sharing phase (run locally by each agent) is described

in Algorithm 2 and relies on building a type of differential private

decision tree. The algorithm takes, as inputs, the agent data Di , the

privacy budget ϵ , and a list of hyper-parameters hmax, t , and p.
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Algorithm 2: SharePredictor (Di ,H = ⟨hmax, t ,p⟩, ϵ)

1 if agent i ∈ S then
2 ˜ϕi ← makeTree (Di , ∅,A, 1,hmax, t ,

ϵ
2hmax

) ;

3 send ˜ϕi to all agents j ∈ S \ {i};

4 receive ˜ϕ j from all agents j ∈ S \ {i};

Each sharer constructs a differential private decision tree
˜ϕi

fitting its data Di (line 2). It then sends its predictor
˜ϕi to every

other agent in S (line 3). In Figure 2, this step is illustrated by

depicting the agents taking as input their data and sharing the

resulting privacy-preserving models into the cloud. Finally, the

agents wait to receive all shared predictors (line 4). This model

ensemble will be used in the next phase to find good labels for the

privacy-preserving unlabeled data built by the agent.

The PFDS protocol first builds a privacy-preserving predictor

˜ϕi from dataset Di . The predictor will be shared with other agents

and used to create an unlabeled privacy-preserving version of Xi .

More precisely,
˜ϕi is used to find a partition of X and create a data

synopsis for Di . Once a data partition has been created, one can

construct a histogram of the data by merely counting the number of

individuals for each class in each set of the partition. In this paper,

each agent grows a decision tree whose paths from the root to each

leaf is used to derive a partition of their data.

The following notations are used. Let A be the set of data at-

tributes of the dataset D. Given an attribute a ∈ A, a dataset D,
and a value v ∈ Ωa , Da=v refers to the projection of D that in-

cludes only the tuples in which attribute a takes on value v , i.e.,
Da=v := {(xi ,yi ) ∈ D | xia = v}. Similarly, Da<v and Da≥v refer

to the projections of D whose tuples satisfy the relations a < v and

a ≥ v , respectively. For a label l ∈ Y,Dy=l
:= {(xi ,yi ) ∈ D |yi = l}.

Given a tree structure T , Ti j denotes the node at level i (with 1 de-

noting the root level), and position j in the sibling set of level i for
a given sibling order ≺S . The notation Ti j .ch describes the set of

children nodes of node Ti j , Ti j .data denotes the subset of data held
at node Ti j and, for a leaf node Ti j , Ti j .label denotes the outcome

of the decision path from the root node to Ti j . Finally,mi denotes

the number of nodes inT at level i . These elements are constructed

implicitly during the tree construction.

The makeTree process is described in Algorithm 3, which is ex-

ecuted locally by each sharer i ∈ S. The algorithm takes as input

the agent dataset (called D, in lieu of numeric subscripts), the tree

T being grown, the set of attributes A that can be used during the

construction of a subtree, the current tree level h being explored,

the maximum depth of the tree hmax ≤ |A|, an integer t used during
value selections of attributes, and the privacy budget ϵ . For non-leaf
nodes (lines 1–11), the algorithm saves the current attribute set (line

2) and selects a new attribute a (line 3). The selectAttribute function
samples at random one attribute a from the set A and, if a happens

to be categorical, the agent updates the set A by removing a from

it (lines 17–20). If the selected attribute a is numerical, a split value

is selected (line 5), and Algorithm 3 is called recursively on each

side of the split (lines 6–7). The selectSplit function for numerical

attributes is described in lines (21–23). It first selects at random a set

V of t values from the domain of the attribute a that is active in the

Algorithm 3: makeTree (D,T ,A,h,hmax , t , ϵ)

1 if h < hmax then
2 A′ ← A;

3 (a,A) ← selectAttribute (A);
4 if a is numerical then
5 v ← selectSplit (D,a, ϵ);
6 T ← T ∪makeTree (Da<v ,T ,A,h + 1,hmax, t , ϵ);

7 T ← T ∪makeTree (Da≥v ,T ,A,h + 1,hmax, t , ϵ);

8 else
9 foreach v ∈ Ωa do
10 T ← T ∪makeTree (Da=v ,T ,A,h + 1,hmax, t , ϵ);

11 A← A′;

12 else
13 cl = |D

y=l | + Lap(1/ϵ) (l ∈ Y);

14 T ← T ∪ {(l , cl ) | l ∈ Y} ;

15 T .label← argmaxl ∈Y cl ;

16 return T

Function selectAttribute(A):
17 a ← sample from U (A);

18 if a is categorical then
19 A← A \ {a}

20 return (a, A)

Function selectSplit(a,D, ϵ ′):
21 V ← sample t values from active Ωa ;

22 Select v ∈ V with probability ∝ exp

(
ϵ

2∆u
u(D,a,v)

)
23 return v

current tree node (line 21). It then uses the exponential mechanism

to select a value v from V using the following utility function:

u(D,a,v) = max

l ∈Y

��Dy=l
a<v

�� +max

l ∈Y

��Dy=l
a≥v

��.
The above is referred to as Max operator and was first proposed in

[14]. The Max operator has sensitivity ∆u = 1 [14]. While different

utility functions could be used (e.g., Gini index or information gain),

the Max operator was shown to outperform other metrics in private

tree classifications [14, 21]. For a task where the class attributes are

continuous, the algorithm discretizes Y into b = 10 buckets and

maps each data element label to one of these buckets.

When the selected attribute a is categorical, Algorithm 3

branches the current tree for each element in the domain of a
(lines 9–10). In such a case, the attribute set A is restored on return-

ing from the recursive call. Finally, when a leaf node is reached (i.e.,

when the current level h reaches hmax), the process uses the Laplace

mechanism to add noise on the elements count in each class for the

data associated with the leaf node (line 13). These counts are then

stored to estimate the data size at the node (line 14) and to select

the label associated with the node (line 15). The label is chosen by

selecting the class associated with the highest noisy count.

Theorem 3.1. Algorithm 3 is hmaxϵ-differential private.

Proof. The algorithm queries the dataset to (i) select a split

value (in line 5) and to (ii) count the number of occurrences at the
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Algorithm 4: ShareData ({ ˜ϕ j }j ∈S)

1 if agent i ∈ S then
2 X̃i ← optPrivateGen ( ˜ϕi ,Di ,p,

ϵ
2
) ;

3 D̃i ← ∅;

4 foreach x̃i ∈ X̃i do
5 L← { ˜ϕ j (x̃i ) : j ∈ S};

6 ỹi ← majorityVote(L);

7 D̃i ← D̃i ∪ (x̃i , ỹi )

8 send D̃i to all agents j ∈ [n];

9 receive D̃ j from all agents j ∈ S;

leaf nodes (line 13). A split value is selected using the exponen-

tial mechanism, that considers t randomly selected values and has

parameter
ϵ

2∆u
. It thus satisfies ϵ-differential privacy by Theorem

2.5. The maximum length of a path from the root to a leaf node

is hmax − 1, thus the split selection process ensures (hmax − 1)-

differential privacy for every path of the tree by sequential com-

position (Theorem 2.1). For a given level h of the tree, the data

of the sibling Thi .data (i ∈ [mh ]) forms a partition for D. Thus,
by parallel composition (Theorem 2.2), the split selection process

ensures (hmax − 1)-differential privacy for each path of the tree

from the root node to a leaf node. Finally, for each leaf nodeThi , the
algorithm queries the size of the dataset Thi .data for each class in

Y. Notice that an element inThi .data can be labeled in exactly one

class inY. Additionally, the sensitivity of a count query is one, and

thus, by sequential and parallel composition, the overall privacy

guarantee of Algorithm 3 is hmaxϵ . □

3.2 The Data Sharing Phase
After the Predictor Sharing phase, each sharer i has access to the

set of privacy-preserving predictors { ˜ϕ j }j ∈S and is ready to per-

form the Data Sharing phase, described in Algorithm 4. The agent

starts by creating an unlabeled privacy-preserving version X̃i of its

dataset Di and she then uses the set of privacy-preserving predic-

tors to obtain the labels of X̃i . The resulting data set is then shared

with everyone. The rest of this subsection presents the details of

these operations.

3.2.1 Optimization-based Private Data Construction. To
obtain a privacy-preserving version of her own dataset, sharer i
uses the optimization-based framework introduced in [13]. Indeed,

the noise introduced at the leaves by Algorithm 3 may substantially

alter the size of each partition of the tree, so that some global

properties of interest, such as the total number of individuals in

the dataset or the number of individuals having a given property,

may differ from their original values. Hence, optPrivateGen function
starts by redistributing this noise before generating the dataset.

This process is described in Algorithm 5. It computes the final

estimates x̂ for the partition sizes induced byT , using the noisy sizes
x̃ of each set in the partition extracted fromT and additional queries

over D. The idea is to use the information encoded in the higher

branches of the tree to compute the statistics to retain in the final

data release. The algorithm takes as input the private tree T , which
includes the noisy partition sizes at the leaf level, the dataset D, a

Algorithm 5: optPrivateGen (T ,D,p, ϵ)

1 c = (|Ti j .data| for all i = 1, . . . ,p − 1,hT ; j = 1 . . . ,mi );

2 c̃ =MLap(c, ϵ
p−1 );

3 x∗ = argminÛx∥ Ûx − c̃∥
2

2,λ =

p∑
i=1

1

mi

mi∑
j=1
( Ûxi j − c̃i j )

2
(O1)

subject to :∀i ∈ [p − 1], j ∈ [mi ] : Ûxi j =
∑

l ∈Ti j .ch

Ûxi+1 l (O2)

∀i, j : Ûxi j ≥ 0. (O3)

4 x̂ = x∗p1, . . . ,x
∗
pmp

;

5 X̃← ∅;
6 foreach j ∈ [mp ] do
7 X̃← X̃ ∪ {x∗i j individuals with attributes and labels

sampled uniformly at random in path T11 to Tpj }

8 return X̃

value p denoting the number of levels to analyze, and the privacy

budget ϵ . It first queries the size of each dataset associated with the

tree nodes up to level p − 1, as well as all the leaves (whose levels
are denoted to as hT ). Such information is stored into a vector of

counts c (line 1). These count queries are made differential private

by applying the Laplace mechanism with parameter
ϵ

p−1 (line 2)

to each query associated with tree levels 1 . . .p − 1 (excluding the
counts at the leaf level that are already privacy-preserving). The

result is a new vector of counts c̃. For notational simplicity, index

p denotes level hT and, for a node Tp−1 j at level p − 1, Tp−1 j .ch
denotes the leaves ofT whose subtrees are rooted atTp−1 j . Similarly,

xp, j denotes xhT j andmp denotesmhT .

The resulting values c̃= (c̃11, . . . , c̃pmp ) are then post-processed

by the optimization algorithm depicted in line (3) to obtain the

values x∗ = (x∗
11
, . . . ,x∗pmp

). Next, the algorithm extracts the vec-

tor x̂ = (x∗p1, . . . ,x
∗
pmp
) (line 4) representing the final size of the

partitions induced by T . Finally. the algorithm synthesizers a new

(unlabeled) dataset ⟨X̃, _⟩ by generating x∗j individuals, for each

j ∈ [mp ], with values sampled in the intervals defined by the tree

T following the path from its root node to its leaf Tpj (lines 5–7).
The essence of Algorithm 5 is the optimization model depicted

in line (3). Its decision variables are the post-processed values Ûx =
( Ûx11, . . . , Ûxpmp ), and λ = (λ1, . . . , λp ) ∈ (0, 1]

p
is a vector of reals

representing weights for the terms of the objective function. The

objective minimizes the squared weighted l2-norm of Ûx − c̃, where
the weight λi of element xi j − c̃i j is

1

mi
.

The optimization is subject to a set of consistency constraints
among partitions sizes in each consecutive level of the tree T . For
each level i ∈ [p − 1] and index j ∈ [mi ], constraint O2 selects

an element xi j associated with node Ti j and all its children and

imposes the constraint Ûxi j =
∑
l ∈Ti j .ch Ûxi+1 l , which ensures that

the post-processed value Ûxi j is consistent with the sum of the post-

processed values of its partition in Ti j .ch. By tree construction, the

union of the set of nodes in Ti j .ch is equal to Ti j .
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Theorem 3.2. The optimization-based post-process achieves ϵ-
differential privacy.

Proof. For level i , the set of nodes Ti j of T (j ∈ mi ) partitions

the dataset. Since each query on the data is a count query, whose

sensitivity is 1, then each c̃i j (i < p) obtained from the Laplace

mechanism is
ϵ

p−1 -differential-private by Theorem 2.4. The values

c̃p1, . . . , c̃pmp are differential private since the tree leaf counts are

private (Theorem 3.1). Therefore, (c̃11, . . . , c̃pmp ) is ϵ-differential-
private by sequential composition (Theorem 2.1). Finally, the result

follows from post-processing immunity (Theorem 2.3). □

The optimization model is convex and can be solved efficiently.

3.2.2 Labeling the Private Data Construction. To label X̃i ,

each agent i locally executes the following steps. For each entry

x̃i , the agent assembles an ensemble L of predictions using each

predictor
˜ϕ j , for j ∈ S, to predict a label for the entry x̃i (line 4).

Next, it selects the label ỹi that appears with the highest frequency

in L (line 5) and stores the labeled data entry (x̃i , ỹi ) into the dataset
D̃i (line 6). Recall that, for a task where the class attributes are

continuous, PFDS discretizes Y into b = 10 buckets and maps

labels of each data element to one of these buckets. The result of

the majority vote returns a bucket descriptor as a label. To generate

a label ỹi in the original space Y, PFDS samples a value from the

uniform distribution whose support is the values encoded by the

selected bucket. Next, the agent sends its privacy-preserving data

D̃i to all other sharers. Note that this step does not violates privacy,

since Algorithm 3 only accesses the predictor ensemble { ˜ϕ j }j ∈S
and the dataset X̃i that are already differential private. Finally, all

agents i ∈ [m] collect the privacy-preserving version of the dataset

shared by all sharers (line 8) which can be used by the agent for a

data analysis task.

In their final step of Algorithm 1, each agent produces a predictor

for an ERM task. This step is described in line (3) of Algorithm 1. To

do so, each agent i ∈ [m] uses the privacy-preserving datasets D̃ j
from all sharer agents j ∈ S together with its own dataset Di . The

resulting data is used to solve the associated ERM problem. This

step does not incur any further privacy cost to an agent. Indeed,

each agent uses a collection of differential private datasets received

from the sharing agents as well as her dataset. Recall that the agent

predictors are not released but used internally by each agent, and

thus no additional privacy cost needs to be considered.

Theorem 3.3. PFDS is ϵ-differential private.

Proof. The result extends directly from Theorems 3.1 and 3.2

and hence the privacy budgets allocated for Algorithms 3 and 5 are

ϵ/2hmax and ϵ/2 respectively. The result follows by Theorems 3.1

and 3.2 and composition of differential privacy (Theorem 2.1). □

4 EXPERIMENTAL ANALYSIS
This section evaluates the effectiveness of PFDS in producing syn-

thetic datasets with high fidelity, its efficiency, and its prediction

quality on three ERM tasks: linear regression, logistic regression,

and support vector machines.

Datasets and Experimental Setting. Each experiment executes a

ten-fold stratified cross-validation to evaluate the misclassification

rate or the mean squared error of the predictors. equally sized

subsets, preserving the percentage of samples for each class for

classification tasks. The training data is partitioned among the

agents as follows. For a fixed numerical attribute a, each agent i is
assigned a value ai sampled uniformly at random from Ωa . Then,

each training sample (x,y) is assigned to agent i with probability

inversely proportional to the distance |xa − ai |. For each train-

test pair, the agents use their training data to privately compute

a predictor or privately publish a dataset and build predictor on

it. The predictor accuracy is evaluated on the test data, which is

disjoint from the train data. The experiments report the average

results over ten runs and ten-fold cross-validations. The analysis

varies the privacy budget ϵ from 0.1 to 1.0 and the number of

sharers participating in the problem.

The experiments are executed on 5 real datasets summarized in

Table 1. In addition to the dataset name, the table reports its number

of entries (n), the number of numerical (dnum) and categorical (dcat)
attributes, the task for which the dataset has been used (classifi-

cation (cl) or regression (re)), and the number p of agents used in

each experiment associated with the corresponding dataset.

Mechanisms. PFDS is compared against two state-of-the-art meth-

ods that output a differential private predictor: the objective per-
turbation [4], used for logistic regression and SVM tasks, and the

functional mechanism [29], used for linear regression. They are de-

scribed in detail in Section 5. These methods use the parameters

suggested in the corresponding papers, and their multi-agent ag-

gregation processes are executed using a majority vote scheme, for

classification tasks, and a committee aggregation scheme for regres-

sion tasks, as described in Section 2.2. In the experiments, they are

both denoted as DP-Pred whose meaning is clear from the nature

of the task. Additionally, PFDS is compared against DiffGen [21], a

method to publish differential private histograms for classification.

DiffGen takes as input a dataset and a taxonomy tree, that describes

the taxonomy of each data attribute. The algorithm constructs a

partition of the dataset by exploring the given taxonomy tree. Simi-

lar to the construction of a (privacy-preserving) decision tree, each

step selects an attribute for specialization using the exponential

mechanism with the max operator as a scoring function. Once a

tree is constructed, a noisy histogram is derived from its leaves

and a synthetic dataset is generated from such histogram. The pri-

vacy budget is evenly distributed among all the specialization steps

and the perturbation step executed to generate a noisy histogram,

resulting in a ϵ/2(d + 2hmax ) budget per query.

All the mechanisms are implemented in Python 3 and Gurobi 7.0.

PFDS and DiffGen use a standard implementation of the predictors,

executed using the privately synthesized datasets. When not other-

wise specified, PFDS and DiffGen generate trees of maximum depth

hmax = 8. Additionally. PFDS uses a number of samples t = 10 (see

Algorithm 3) and a number of levels p = 4 for the optimization

process associated with the data release (Algorithm 5).

Data Fidelity. The first results focus on PFDS ability to produce

synthetic datasets of high fidelity. In addition to DiffGen, we com-

pare PFDS against a version that disables the optimization step

(line (3) of Algorithm 5) and is referred to as PFDS
−
. The experi-

ments evaluate the algorithms on the Census dataset, for which an

attribute taxonomy for DiffGen is available and described in [21],
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dataset n dnum dcat task p

Census Income [19] 48842 8 6 cl 100

Default of credit card [22] 45211 13 10 cl 100

Diabetes [1] 1151 19 0 cl 10

Bike sharing [10] 17389 8 8 re 100

Online News Popularity [11] 39797 47 14 re 100

Table 1: Datasets

Figure 3: Comparison of the Data Synthesis Methods.

and use a privacy budget ϵ = 1.0. DiffGen cannot be evaluated on
the remaining datasets for which no taxonomy is available.

Figure 3(a) illustrates the average error of the dataset sizes, in

log-10 scale, at varying of the maximum tree depth hmax. The er-

ror is defined as the distance between the original and privacy-

preserving dataset sizes. The figure clearly shows that PFDS syn-

thesizes datasets whose sizes are closer to the original ones. In

particular, the effect of the optimization step provides an improve-

ment of up to one and three orders of magnitudes when compared

to PFDS
−
and DiffGen, respectively. Data partitioning methods tend

to overestimate the overall dataset size, especially in highly sparse

settings, as in the current case [12, 13, 16]. DiffGen exasperates this

behavior due to the higher amount of noise used to estimate the

partition sizes. Finally, PFDS with the optimization step is able to

retain higher data fidelity structure, thanks to the process of by

enforcing consistency constraints on counts.

Figure 3(b) provides further insight into the data fidelity. It rep-

resents the average distance between the histograms obtained by

randomly partitioning the data universe on the original data vs. the

synthetic ones. The metric used is theWasserstein distance and, for
each experiment, the above process is repeated 50 times. Intuitively,

the histograms induced from high-fidelity synthetic datasets will

be close to those induced from the original data, regardless of the

partitioning scheme. Once again, the results illustrate that PFDS is

able to better capture the original data distribution.

The experiments also assess the runtime of the algorithms. Figure

3(c) reports the average time taken by the agents to generate their

datasets. The results, shown in log-10 scale, illustrate that PFDS is

at least one order of magnitude faster than DiffGen, for hmax > 4,

and that the overhead of the optimization step is relatively small.

Predictor Accuracy The quality of predictions of PFDS on all

datasets is now evaluated and compared it against the appropriate

differential private predictors (denoted by DP-pred as mentioned

earlier), as well as against a non-private predictor (NP-Agt) exe-

cuted by each agent on its own (non-private) dataset, which serves

as a baseline. Finally, PFDS is also compared against a version that

does not use shared predictors from other agents in order to label

its data (i.e., it skips line 1 of Algorithm 1 and uses its predictor only

Error

dataset ERM task ϵ NP-Agt DP-Pred PFDS(s) PFDS

Census Income Log. Reg. 1.0 0.276 0.232 0.266 0.212

Census Income Log. Reg. 0.5 0.276 0.245 0.301 0.226

Census Income Log. Reg. 0.1 0.276 0.293 0.336 0.246

Census Income SVM 1.0 0.283 0.253 0.267 0.209

Census Income SVM 0.5 0.283 0.262 0.269 0.224

Census Income SVM 0.1 0.283 0.269 0.268 0.239

Credit Log. Reg. 1.0 0.365 0.339 0.321 0.277

Credit Log. Reg. 0.5 0.365 0.352 0.392 0.294

Credit Log. Reg. 0.1 0.365 0.418 0.499 0.301

Credit SVM 1.0 0.351 0.347 0.358 0.289

Credit SVM 0.5 0.351 0.366 0.404 0.308

Credit SVM 0.1 0.351 0.379 0.409 0.310

Diabetes Log. Reg. 1.0 0.396 0.334 0.380 0.279

Diabetes Log. Reg. 0.5 0.396 0.349 0.411 0.294

Diabetes Log. Reg. 0.1 0.396 0.389 0.434 0.345

Diabetes SVM 1.0 0.423 0.441 0.397 0.311

Diabetes SVM 0.5 0.423 0.449 0.431 0.322

Diabetes SVM 0.1 0.423 0.456 0.434 0.346

Bike sharing Lin. Reg. 1.0 0.377 0.270 0.206 0.127

Bike sharing Lin. Reg. 0.5 0.377 0.281 0.225 0.154

Bike sharing Lin. Reg. 0.1 0.377 0.296 0.220 0.157

News popularity Lin. Reg. 1.0 0.194 0.176 0.121 0.079

News popularity Lin. Reg. 0.5 0.194 0.178 0.172 0.095

News popularity Lin. Reg. 0.1 0.194 0.185 0.175 0.096

Table 2: Comparison of the Approaches: Error Evaluation.

as input to the ShareData algorithm), called PFDS(s). This compari-

son is provided to show the benefits of leveraging the knowledge

transferred from all shared privacy-preserving models.

Figure 4 illustrates the average misclassification error of the al-

gorithms when producing logistic regression (left), SVM (center)

classifiers, and the mean squared error when producing linear re-

gressors (right). The figure reports the errors when varying the

number of sharers in the aggregation scheme. It uses the Census

Income dataset for the classification tasks and the News popularity

dataset for the regression task. The shaded areas denote the 95%

confidence intervals. The dotted dark orange lines (NP-Pred) illus-

trate the prediction results obtained using a non-private predictor
on the whole training set, thus represent the best result attainable.

The results show the following trends. (1) All methods consid-

ered produce, in general, predictors that outperform the single

agent predictors (NP-Agt). The only exception is given by the sim-

ple scheme adopted by PFDS(s) for the logistic regression tasks and

when less than half of the agents share their data. This behavior is

explained by the lack of coordination of this multi-agent scheme,

in which agents may produce privacy-preserving data whose tar-

get labels may be representative of the agent’s data exclusively,

rather than the whole dataset. (2) Both DP-Pred and PFDS pro-

duce classifiers that reduce the errors as the number of sharers

increases, and plateau when about half of the agents share their

privacy-preserving data or privacy-preserving classifier. On the

other hand, PFDS(s) appear having more irregular trends, espe-

cially on classification tasks. This behavior again is explained by

the lack of multi-agent coordination of this approach. These results

thus support the hypothesis that using shared privacy-preserving

predictors to assign one data labels may be advantageous to reduce
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Figure 4: Logistic regression (left), SVM (center), and linear regression (right) predictors for Census and News popularity data.

the overall prediction error. (3) Furthermore, in all experiments,

PFDS outperforms its competitors bringing an error reduction of

up to 4.4% for classification tasks and 9.7% for regression tasks

when compared to DP-Pred. Both versions of PFDS exceed DP-

Pred predictions on the regression tasks. This is because the noise

introduced by the functional mechanism depends on the dataset

dimensionality (which is 61 for the Online News Popularity dataset),

while PFDS noise depends only on the maximum tree depth used

during partitioning and data generation steps.

Table 2 tabulates the errors produced by the algorithms for all the

datasets and for different privacy budgets ϵ = 1.0, 0.5, and 0.1, when

S = [m]. The results further strengthen the above observations. In

particular, PFDS dominates its competitors in all settings, bringing

average error reductions of up to 5.3% for logistic regression, 8.1%

for SVM, and 11.3% for linear regression tasks, when compared

to aggregated privacy-preserving predictors (DP-Pred). Addition-
ally, PFDS provides the advantage of sharing datasets, rather than
predictors. Datasets are not tailored to a unique prediction task and
therefore can be adopted for additional analytic tasks.

5 RELATEDWORK
Several methods have been proposed to minimize the empirical

loss function J (ρw,D) while satisfying differential privacy. The

functional mechanism, proposed by Zhang et al. [29], perturbs the

objective function by first approximating it using a polynomial, and

then perturbing every coefficient of the polynomial with Laplace

noise. When applied to linear regression, the scale of Laplace noise

is 2(1 + 2(d + 1) + (d + 1)2), where d is the number of dimensions

of the dataset. This method has also been extended to handle other

regression tasks, where the objective function is not a polynomial

with finite order. The extension [29] relies on using the first two

terms of the Taylor expansion to approximate the objective function.

In this paper, the experiments compared PFDS against a differential

private linear regression model obtained through the functional

mechanism. In addition to the functional mechanism, the objec-
tive perturbation [4] was proposed to achieve privacy by adding

noise directly to the objective function of the ERM task. To do so,

Chaudhuri and Monteleoni [4] showed that several ERM tasks can

be performed with a differential private algorithm that minimizes

a perturbed objective: J̃ (ρw,D) = J (ρw,D) +
βTw
|D | , where β is a

random vector sampled from the Gamma distributionwith shape pa-

rameter n and rate
2

|D |λϵ . The experiments compared PFDS against

differential private logistic regression and SVM models obtained

via the objective perturbation.

A third approach, most closely related to PFDS, is to publish

a privacy-preserving version of the original dataset, often from a

synopsis of the dataset in the form of a nosy histogram. The output

of a predictor applied to a differential private dataset will also

be differential private by post-processing immunity of differential

privacy (Theorem 2.3). Publishing a synopsis enables additional

exploratory and predictive data analysis tasks to be performed, and

therefore it is often preferred to publishing a privacy-preserving

model which is specific to a single task. Mohammed et al. [21] uses

a procedure, called DiffGen, to generalize and partition the data

attributes according to a given taxonomy and applies random noise

to the true count of each group of entries.

A limitation of DiffGen is that it relies heavily on the existence of

a taxonomy tree, which may not be available in general. PFDS was

compared against DiffGen for classification tasks and to estimate

the data fidelity of the generated dataset. Other approaches for data

partitioning exists. However, they mainly focus on low dimensional

data. For instance, the hierarchical mechanism of Hay et al. [16]

and its extensions [5, 13, 25] produces an histogram by enforcing

additive constraints based on a tree structure of the data universe.

In contrast to these related work, PFDS targets a multi-agent setting

for prediction rather than the release of a single dataset.

6 CONCLUSION
This paper proposed a Privacy-preserving Federated Data Shar-

ing (PFDS) protocol that each agent can run locally to produce a

privacy-preserving version of its original dataset. PFDS is composed

of two phases. In a first phase, an agent builds a locally trained

privacy-preserving predictor that is shared with other agents. In a

second phase, the agent builds a privacy-preserving version of its

data using the collected predictors to generate its labels, leveraging

the knowledge transferred from all shared models. The PFDS pro-

tocol was evaluated on several standard prediction tasks and the

experimental results show that the protocol allows agents to con-

struct predictors which are up to 11% more accurate than existing

privacy-preserving ensembles of predictors methods. These predic-

tors leverage the presence of multiple datasets while guaranteeing

the privacy of the participating individuals.
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