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ABSTRACT
Covering option discovery has been developed to improve the ex-

ploration of reinforcement learning in single-agent scenarios with

sparse reward signals, through connecting the most distant states

in the embedding space provided by the Fiedler vector of the state

transition graph. However, these option discovery methods cannot

be directly extended to multi-agent scenarios, since the joint state

space grows exponentially with the number of agents in the system.

Thus, existing researches on adopting options in multi-agent sce-

narios still rely on single-agent option discovery and fail to directly

discover the joint options that can improve the connectivity of the

joint state space of agents. In this paper, we show that it is indeed

possible to directly compute multi-agent options with collaborative

exploratory behaviors among the agents, while still enjoying the

ease of decomposition. Our key idea is to approximate the joint

state space as a Kronecker graph – the Kronecker product of in-

dividual agents’ state transition graphs, based on which we can

directly estimate the Fiedler vector of the joint state space using the

Laplacian spectrum of individual agents’ transition graphs. This

decomposition enables us to efficiently construct multi-agent joint

options by encouraging agents to connect the sub-goal joint states

which are corresponding to the minimum ormaximum values of the

estimated joint Fiedler vector. The evaluation based on multi-agent

collaborative tasks shows that the proposed algorithm can success-

fully identify multi-agent options, and significantly outperforms

prior works using single-agent options or no options, in terms of

both faster exploration and higher cumulative rewards.
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1 INTRODUCTION
In this paper, we consider the problem of constructing and utilizing

covering options in multi-agent reinforcement learning (MARL).

Due to the exponentially-large state space in multi-agent scenarios,

a commonly-adopted way to solve this problem [1, 2, 4, 8, 9] is to

construct the single-agent options as if in a single-agent environ-

ment first, and then learn to collectively leverage these individual

options to tackle multi-agent tasks. This method fails to consider

the coordination among agents in the option discovery process, and

thus can suffer from very poor behavior in multi-agent collabora-

tive tasks. To this end, in our work, we propose a framework that

makes novel use of Kronecker product of factor graphs to directly

construct the multi-agent options in the joint state space, and adopt

them to accelerate the joint exploration of agents in MARL. Also,

instead of directly adopting the Covering Option Discovery to the

joint state space since its size grows exponentially with the number

of agents, we build multi-agent options based on the individual

state transition graphs, making our method much more scalable.

2 BACKGROUND
Kronecker product of graphs [12]: Let 𝐺1 = (𝑉𝐺1

, 𝐸𝐺1
) and

𝐺2 = (𝑉𝐺2
, 𝐸𝐺2

) be two state transition graphs, corresponding to

the individual state space S1 and S2 respectively. The Kronecker

product of them denoted by 𝐺1 ⊗ 𝐺2 is a graph defined on the set

of vertices 𝑉𝐺1
×𝑉𝐺2

, such that: Two vertices of 𝐺1 ⊗ 𝐺2, namely

(𝑔, ℎ) and (𝑔′, ℎ′), are adjacent if and only if 𝑔 and 𝑔′ are adjacent
in𝐺1 and ℎ and ℎ′ are adjacent in𝐺2. Thus, the Kronecker Product

Graph can capture the joint transitions of the agents in their joint

state space very well, and we propose to use the Kronecker Product

Graph as an effective approximation of the joint state transition

graph, so that we can discover the joint options based on the factor

graphs.

Covering Option Discovery: As defined in [10], an option 𝜔 con-

sists of three components: an intra-option policy 𝜋𝜔 : S x A →
[0, 1], a termination condition 𝛽𝜔 : S → {0, 1}, and an initiation set
𝐼𝜔 ⊆ S. An option < 𝐼𝜔 , 𝜋𝜔 , 𝛽𝜔 > is available in state 𝑠 if and only

if 𝑠 ∈ 𝐼𝜔 . If the option 𝜔 is taken, actions are selected according to

𝜋𝜔 until 𝜔 terminates stochastically according to 𝛽𝜔 (i.e., 𝛽𝜔 = 1).

The authors of [7] proposed Covering Option Discovery – dis-

covering options by minimizing the upper bound of the expected
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(a) four-room with 3 agents (b) four-room with 4 agents (c) four-room with 5 agents

Figure 1: Evaluation on 𝑛-agent four-room tasks.

cover time of the state space. First, they compute the Fiedler vector

𝐹 of the Laplacian matrix 𝐿 of the state transition graph. Then,

they collect the states 𝑠𝑖 and 𝑠 𝑗 with the largest (𝐹𝑖 − 𝐹 𝑗 )2 (𝐹𝑖 is the
𝑖-th element in 𝐹 ), based on which they construct two symmetric

options: 𝜔𝑖 𝑗 = < 𝐼𝜔𝑖 𝑗
= {𝑠𝑖 }, 𝜋𝜔𝑖 𝑗

, 𝛽𝜔𝑖 𝑗
= {𝑠 𝑗 } >, 𝜔 𝑗𝑖 = < 𝐼𝜔 𝑗𝑖

=

{𝑠 𝑗 }, 𝜋𝜔 𝑗𝑖
, 𝛽𝜔 𝑗𝑖

= {𝑠𝑖 } > to connect these two subgoal states bidi-

rectionally, where 𝜋𝜔 is defined as the optimal path between the

initiation and termination state. This whole process is repeated

until they get the required number of options. The intuition of this

method is that: (𝐹𝑖 − 𝐹 𝑗 )2 gives the first order approximation of the

increase in 𝜆2 (𝐿) (i.e., algebraic connectivity) by connecting (𝑠𝑖 , 𝑠 𝑗 )
[6], and it’s empirically proved in [7] that the larger the algebraic

connectivity is, the smaller the upper bound of the expected cover

time would be and the easier the exploration tends to be.

3 PROPOSED ALGORITHM
Multi-agent Covering Option Discovery: In order to discover

the multi-agent options, we need to find the Fiedler vector of the

joint state transition graph. Given that the size of the joint state

space grows exponentially with the number of agents, we propose

to use the Kronecker Product Graph ⊗𝑛
𝑖=1

𝐺𝑖 as an approximation of

the joint state transition graph𝐺 so as to decompose the eigenfunc-

tion calculation to single-agent state spaces. Inspired by [3] which

proposed an estimation of the Laplacian spectrum of the Kronecker

product of two factor graphs, we have the following THEOREM 3.1

(The proof is provided in the full version of our paper [5]).

Theorem 3.1. For graph 𝐺 = ⊗𝑛
𝑖=1

𝐺𝑖 , we can approximate the
eigenvalues 𝜇 and eigenvectors 𝑣 of its Laplacian 𝐿 by:

𝜇𝑘1,...,𝑘𝑛 =

{[
1 −

𝑛∏
𝑖=1

(1 − 𝜆
𝐺𝑖

𝑘𝑖
)
]

𝑛∏
𝑖=1

𝑑
𝐺𝑖

𝑘𝑖

}
(1)

𝑣𝑘1,...,𝑘𝑛 = ⊗𝑛
𝑖=1𝑣

𝐺𝑖

𝑘𝑖
(2)

where 𝜆𝐺𝑖

𝑘𝑖
and 𝑣𝐺𝑖

𝑘𝑖
are the𝑘𝑖 -th smallest eigenvalue and corresponding

eigenvector of L𝐺𝑖
(normalized Laplacian matrix of 𝐺𝑖 ), and 𝑑

𝐺𝑖

𝑘𝑖
is

the 𝑘𝑖 -th smallest diagonal entry of 𝐷𝐺𝑖
(degree matrix of 𝐺𝑖 ).

Through enumerating (𝑘1, · · · , 𝑘𝑛), we can collect the eigenval-

ues of ⊗𝑛
𝑖=1

𝐺𝑖 by Equation (1) and the corresponding eigenvectors

by Equation (2). Then, the eigenvector 𝑣
ˆ𝑘1, · · · , ˆ𝑘𝑛 corresponding to

the second smallest eigenvalue 𝜇
ˆ𝑘1, · · · , ˆ𝑘𝑛 is the estimated Fiedler

vector of the joint state transition graph, namely 𝐹
𝐺
. Based on it,

we can define the joint states corresponding to the maximum or

minimum in 𝐹
𝐺
as the initiation or termination joint states, which

can be connected with joint options. Further, consider an MDP with

𝑛 agents and𝑚 states for each agent. To compute the Fiedler vector

directly from the joint state transition graph would require time

complexity O(𝑚3𝑛), since there are in total𝑚𝑛
joint states and the

time complexity of eigenvalue decomposition is cubic with the size

of the joint state space. While, our solution can significantly reduce

the problem complexity from O(𝑚3𝑛) to O(𝑛𝑚3) for multi-agent

problems. Also, we would like to point out that for problems with

continuous state space (i.e.,𝑚 is large), our approach could be di-

rectly integrated with sample-based techniques for eigenfunction

estimation, like [11, 13]. Hence, the bottleneck on computational

complexity can be overcome.

Adopting Multi-agent Options in MARL: In order to take ad-

vantage of options in the learning process, we adopt a hierarchical

algorithm framework: when making decisions, the RL agent first

decides on which option 𝜔 to use according to the high-level policy,

and then decides on the action to take based on the correspond-

ing intra-option policy 𝜋𝜔 . Note that the agent does not decide on

a new option with the high-level policy until the current option

terminates. The multi-agent options can be adopted either in a

decentralized or centralized manner. That is, the agents can either

choose their own options independently, or be forced to execute the

same multi-agent option simultaneously. The decentralized manner

is more flexible but has a larger search space. While, the central-

ized manner fails to consider all the possible solutions but makes

it easier for the agents to visit the sub-goal joint states, since the

agents simultaneously select the same joint option which will not

terminate until the agents arrive at a sub-goal state.

4 EVALUATION
Please refer to the full version of our paper [5] for the completed

evaluation results. We compare our method with: (1) Agents with

single-agent options – utilizing single-agent options in MARL, like

[1, 2, 4, 8, 9]. (2) Agents without options – directly adopting MARL

algorithms. In Figure 1(a)-1(c), we show the results on 𝑛-agent four-

room tasks (𝑛 agents need to reach the goal area simultaneously to

complete the task), using Independent Q-learning as the high-level

policy. We can observe that the performance improvement brought

by our approach are more and more significant as the number of

agents increases. When 𝑛 = 5, both the baselines fail to complete

the task, while agents with five-agent options can converge within

∼ 200 episodes.
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