
Exploiting Causal Structure for Transportability in Online,
Multi-Agent Environments

Axel Browne
Loyola Marymount University

Los Angeles, CA, USA
damianabrowne@gmail.com

Andrew Forney
Loyola Marymount University

Los Angeles, CA, USA
andrew.forney@lmu.edu

ABSTRACT
Autonomous agents may encounter the transportability problem
when they suffer performance deficits from training in an envi-
ronment that differs in key respects from that in which they are
deployed. Although a causal treatment of transportability has been
studied in the data sciences, the present work expands its utility
into online, multi-agent, reinforcement learning systems in which
agents are capable of both experimenting within their own envi-
ronments and observing the choices of agents in separate, poten-
tially different ones. In order to accelerate learning, agents in these
Multi-agent Transport (MAT) problems face the unique challenge
of determining which agents are acting in similar environments,
and if so, how to incorporate these observations into their policy.
We propose and compare several agent policies that exploit local
similarities between environments using causal selection diagrams,
demonstrating that optimal policies are learned more quickly than
in baseline agents that do not. Simulation results support the ef-
ficacy of these new agents in a novel variant of the Multi-Armed
Bandit problem with MAT environments.
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1 INTRODUCTION
The transportability problem [3] is broadly defined as the task of
taking data obtained in one environment, and using it to support
inference in another, potentially different, setting. This task has
been historically approached by the empirical sciences, largely in
the endeavor of generalizing effects from laboratory settings as they
apply to less controlled reality; in this domain, transportability has
been studied under a number of names, including generalizability [7,
14] and external validity [6, 8]. Yet, recent developments in the study
of causality have provided a graphical formalization that can be used
to proceduralize the transport of causal effects across environments
with shared causal structure [4, 23], yielding tools that may feature
prominently in the design of more dynamic artificial agents that
can adapt to differences between environments.
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Various endeavors in modern machine learning mirror the ob-
jectives of transportability, including transfer learning, [5, 9, 27, 29]
and model generalizability, [13, 15, 18, 25], with examples ranging
from game playing agents taking successes on certain levels and
using those experiences to succeed in others, to autonomous driv-
ing agents that are trained in simulations and expected to perform
on actual roads.

As intelligent agents become increasingly integrated into daily
life across many diverse environments, such as self-driving cars in
different climates and traffic conditions, it may behoove the com-
munity of agents to not only learn from the observed experiences
of one another, but to also acknowledge which parts of their envi-
ronments are similar or different, thus harnessing the transportable
portions of observations for the purpose of accelerating learning of
optimal policies in their own domain. This work thus endeavors
to examine the transportability problem in online, multi-agent sys-
tems by concerting the often disparate schools of graphical causal
inference (which has primarily operated in the offline data-scientific
domain), model-based data fusion for online reinforcement learners
(in which causal tools have recently gained traction [11, 12, 21]),
and multi-agent systems [1, 28] (in which causal models may yield
promising future study).

The novel contributions of this work are thus as follows:

• Formalizes the novel problem of an online,Multi-agent Trans-
port (MAT) environment as a variant of a Multi-Armed Ban-
dit (MAB) problem: the MATMAB.
• Demonstrates the utility of graphical causal selection dia-
grams for agents with finite-sample concerns in MATMAB
settings.
• Introduces and compares causally-empowered agent policies
on both individual and community metrics of success.
• Provides a roadmap for future study of more complex MAT
environments with relaxed assumptions from the those pre-
sented in this introductory work.

In support of the above, this paper is thus structured into the
following outline of topics:

• Sec. 2 reviews the necessary background from causal infer-
ence that supports the tools employed by our agents in MAT
settings.
• Sec. 3 states the definitions and assumptions of the current
work’s MAT formalizations alongside a motivating example.
• Sec. 4 describes the MAT agent and environment construc-
tions that are used in the MATMAB simulations that follow.
• Secs. 5, 6 discuss the results of these simulations in support
of the novel agents that exploit local causal structure, and
give prescriptions for future directions.
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2 PRELIMINARIES
In order to specify the causal assumptions about the relationships
between variables in some environment, depict its intuitive graphi-
cal interpretation, and to formalize the structural localities of trans-
portable effects, we employ the vocabulary of Structural Causal
Models, or SCMs:

Definition 2.1. (Structural Causal Model) [20, pp. 204-207]
A Structural Causal Model is a 4-tuple,𝑀 = ⟨𝑈 ,𝑉 , 𝐹, 𝑃 (𝑢)⟩ where:

(1) 𝑈 is a set of background variables (also called exogenous), that
are determined by factors outside the model.

(2) 𝑉 is a set {𝑉1,𝑉2, ...,𝑉𝑛} of endogenous variables that are de-
termined by other variables in 𝑈 ∪𝑉 .

(3) 𝐹 is a set of functions {𝑓1, 𝑓2, ..., 𝑓𝑛} such that each 𝑓𝑖 is a
mapping from (the respective domains of)𝑢𝑖 ∪𝑃𝐴𝑖 to𝑉𝑖 where
𝑈𝑖 ⊆ 𝑈 and 𝑃𝐴𝑖 ⊆ 𝑉 \𝑉𝑖 and the entire set 𝐹 forms a mapping
from 𝑈 to 𝑉 . In other words, each 𝑓𝑖 in 𝑣𝑖 = 𝑓𝑖 (𝑝𝑎𝑖 , 𝑢𝑖 ), 𝑖 =
1, ..., 𝑛 assigns a value to 𝑉𝑖 that depends on (the values of) a
selected set of variables.

(4) 𝑃 (𝑢) is a probability density defined on the domain of 𝑈 .

Each SCM details a corresponding causal diagram, which is a
directed, acyclic graph depicting the model that is constructed with
the following properties:

Definition 2.2. (Causal Diagram) Given any SCM 𝑀 , its as-
sociated causal diagram 𝐺 is a directed, acyclic graph (DAG) that
encodes:

(1) The set of endogenous variables 𝑉 , represented as solid nodes.
(2) The set of exogenous variables 𝑈 , represented as hollow nodes

(sometimes omitted for brevity).
(3) A directed edge connects two variables𝑉𝑐 → 𝑉𝑒 for𝑉𝑐 ,𝑉𝑒 ∈ 𝑉

if 𝑉𝑐 appears as a parameter in 𝑓𝑉𝑒 (𝑉𝑐 , ...) (i.e. if 𝑉𝑐 has a
causal influence on 𝑉𝑒 ).

(4) A bidirected, dashed edge connects two variables 𝑉𝑎 ← − →
𝑉𝑏 if their corresponding exogenous parents 𝑈𝑎,𝑈𝑏 are de-
pendent, or if 𝑓𝑉𝑎 , 𝑓𝑉𝑏 share an exogenous variable 𝑈𝑖 as a
parameter to their functions.

Causal diagrams also serve as formalizations of the independence
relationships between variables via the d-separation criterion.

Definition 2.3. (d-separation) Given a causal diagram 𝐺 , the
independence relationship 𝑋 ⊥⊥ 𝑌 |𝑍 holds (meaning that “𝑋,𝑌 are
directionally separated given 𝑍 ”) for variables 𝑋,𝑌, 𝑍 if every path 𝑝
that connects 𝑋,𝑌 is blocked. A path is blocked whenever there exists
a triplet of nodes along 𝑝 such that:

(1) Chains (mediators): patterned 𝑋 → 𝑍 → 𝑌 , meaning that
𝑋 affects 𝑌 through the mediator 𝑍 , are blocked when 𝑍 is
conditioned upon.

(2) Forks (common causes): patterned 𝑋 ← 𝑍 → 𝑌 , meaning
that 𝑍 is a common cause of 𝑋 and 𝑌 , are blocked when 𝑍 is
conditioned upon.

(3) Colliders (common effects): patterned 𝑋 → 𝑍 ← 𝑌 , meaning
that 𝑍 is a common effect of𝑋 and𝑌 , are blocked when neither
𝑍 nor any of its descendants are conditioned upon.

The d-separation criterion’s recipe for decoding a causal graph’s
independence claimsmaps to the causal notion of “explaining away”

relationships between variables. This formalization plays an im-
portant role in an agent’s feature selection, being wary to control
for any possible back-door paths that introduce non-causal associ-
ations between variables, and to ensure that any causal pathway
between some action and outcome is unperturbed [19, 22].

SCMs also disambiguate causal acts taken by agents able to
perform their own experiments (interventions) from associational
observations made by other agents whose policies may be unknown.

Definition 2.4. (Intervention) An intervention represents an
external force that fixes a variable to a constant value (akin to the
random assignment of an experiment), and is denoted 𝑑𝑜 (𝑋 = 𝑥),
meaning that 𝑋 is fixed to the value 𝑥 . This amounts to replacing the
structural equation for the intervened variable with its fixed constant
such that 𝑓𝑋 = 𝑥 (eliciting the “mutilated submodel”𝑀𝑥 ). This oper-
ation is also represented graphically by severing all inbound edges to
𝑋 in 𝐺 , resulting in an “interventional subgraph” 𝐺𝑥 .

Causal diagrams serve another purpose for determining what
data (either observations or interventions) collected in one envi-
ronment can be transported to another without introducing bias.
Selection diagrams are used when the causal graph between envi-
ronments is the same, but in which there may exist differences in
certain structural localities.

Definition 2.5. (Selection Diagram) [2] Let ⟨𝑀,𝑀∗⟩ be two
SCMs relative to environments ⟨𝜋, 𝜋∗⟩ sharing a causal diagram 𝐺 .
By introducing selection nodes, boxed variables representing causes of
variables that differ between source and target environment, ⟨𝑀,𝑀∗⟩
is said to induce a selection diagram D if D is constructed as follows:

(1) Every edge in 𝐺 is also an edge in D.
(2) D contains an extra edge 𝑆𝑖 → 𝑉𝑖 (i.e., between a selection

node and some other variable) whenever there might exist a
discrepancy 𝑓𝑖 ≠ 𝑓 ∗

𝑖
or 𝑃 (𝑈𝑖 ) ≠ 𝑃∗ (𝑈𝑖 ) between𝑀 and𝑀∗.

Traditionally, selection diagrams have been employed in offline
data analysis to determine if already-collected datasets can transfer
between environments with the assumption that selection nodes
have already been encoded in the diagram to license or forbid said
transport. In the present endeavor, agents will instead be tasked
with learning the locations of these selection nodes over time, li-
censing or forbidding transport of observations from other agents.

The above preliminaries from causal inference will be useful in
structuring the environments in which agents will make choices
and learn from one another in the multi-agent setting. To further
formalize how agents learn over time, we extend the definition of a
traditional sequential reinforcement learning task:

Definition 2.6. (Multi-ArmedBandit (MAB) Problem)AMulti-
Armed Bandit problem is an online, sequential, decision-making task
in which an agent is tasked with maximizing cumulative reward
received over time. A MAB problem instance is characterized by:
• Trials: some 𝑇 ∈ N+ (possibly infinite) sequential trials at
which the agent makes a choice and receives some reward.
• Actions: some choices (also known as “arms”) 𝑥 ∈ 𝑋 (with
|𝑋 | ≥ 2), at each trial 𝑡 ∈ 𝑇 .
• Rewards: some distribution of rewards 𝑌 associated with each
choice 𝑥 ∈ 𝑋 , and received at each trial 𝑡 ∈ 𝑇 . In the simplest,
Bernoulli bandit settings, the reward is binary, 𝑌 ∈ {0, 1}, in
which case the optimal action 𝑥∗ = argmax𝑥 𝑃 (𝑌 = 1|𝑑𝑜 (𝑋 )).
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A key facet of a MAB problem is that the reward distributions
𝑃 (𝑌 = 1|𝑑𝑜 (𝑋 )) are initially unknown to an agent, requiring it
to maximize reward by managing a game of “explore vs. exploit,”
sampling arms to determine their merit until confident that it has
found the best to continuously exploit thereafter. In contextual
variants of MAB problems, the objective is to choose actions that
maximize 𝑧−specific rewards for some pre-treatment contextual
state 𝑍 , i.e., to choose 𝑥∗ = argmax𝑥 𝑃 (𝑌 = 1|𝑑𝑜 (𝑋 = 𝑥), 𝑍 = 𝑧).

3 MULTI-AGENT TRANSPORTABILITY
We now extend the preliminaries in the previous section to multi-
agent environments, beginning with a motivating example in the
classic MAB setting of online advertising.

Motivating Example: consider the task of simultaneously deploy-
ing several advertising agents to platforms with different audiences
(e.g., different streaming platforms, websites, etc.) that may non-
trivially differ in their traits and responses to the selection of ads
available to the agents. Because the agents are newly interacting
within these communities or with a new selection of ads, they will
need to learn which ads have the maximal clickthrough rates predi-
cated on each viewer’s characteristics. Notably, the task is the same
for each agent (as may be characterized by an SCM like in Figure 1
in which 𝑋 is an agent’s ad choice, 𝑌 is a user’s clickthrough, and
𝑍,𝑊 are pre- and post-treatment covariates like age and fear-of-
missing-out, respectively), though by modeling each community as
a separate agent interacting in its own environment, we can govern
how (if at all) observations from one community may aid another.

Definition 3.1. (Multi-Agent Transport Environment (MAT-
E) A Multi-Agent Transport Environment (MAT-E) is a 2-tuple E =

⟨𝑀,𝐴⟩ where:
• 𝑀 is an SCM characterizing the causal mechanics of an agent’s
choices and received rewards in this environment.
• 𝐴 is a set of agents belonging to and acting within the envi-
ronment by the dictates of their individual policies, 𝜙𝑖 : 𝐴 =

{𝐴𝜙0
0 , ..., 𝐴

𝜙𝑎
𝑎 }.

Definition 3.2. (Multi-Agent Transport World (MAT-W)) A
Multi-Agent Transport World (MAT-W)W consists of some set of
Multi-Agent Environments composing the entire domain of environ-
ments and associated agents in a given setting:W = {E0, ..., E𝑒 }.

Agents in MAT-Es iteratively learn from both their, and other,
environments as characterized in a new type of MAB problem:

Definition 3.3. (Multi-Agent Transport MAB (MATMAB)
Problem) A Multi-Agent Transport MAB problem is a MAB vari-
ant in which:

• Agents independently make sequential choices in the context
of some given MAT-W,W.
• An episode 𝑒 at a given trial 𝑡 and for agent 𝐴𝑖 consists of the
state of any environmental covariates 𝑍𝑡 , chosen action 𝑋𝑡 ,
and received reward 𝑌𝑡 and is denoted: 𝑒

𝐴𝑖

𝑡 = {𝑍𝑡 , 𝑋𝑡 , 𝑌𝑡 }
• At each choice at trial 𝑡 , agents possess observations of all
agents’ previous episodes 𝑒𝐴𝑖

0:𝑡−1 ∀𝐴𝑖 ∈ 𝐴.

MATMAB problems offer both challenges and opportunities for
agents attempting to learn the optimal policy as quickly as possible

in order to maximize cumulative reward: relying on one’s own data
(in which source and target environment are guaranteed to be the
same) is the safest approach akin to what traditional agents would
attempt, but misses the opportunity to incorporate observations
from other agents to accelerate discovery. These observations come
with their own risks, as they may come from heterogeneous en-
vironments that are not naïvely transportable. This challenge is
complicated by potential conflicts in the causal tiers of data: each
agent is free to choose actions experimentally (generating causal
samples of 𝑑𝑜 (𝑋 = 𝑥) by intervention), but obtains only observa-
tions of other agents’ episodes (wherein the governing policies of
other agents may not be known).

4 METHOD
There are many possible perturbations on MATMAB properties
that can lead to performance differences of agents within; the cur-
rent work makes the following simplifying assumptions for the
introduction of this domain, inviting future studies to relax them:
• Markovian SCMs, in which MAT-E SCMs possess no unob-
served confounders. Furthermore, we herein specify each
MAT-E using a Causal Bayesian Network, a type of SCM in
which the causal structure is known, but the governing struc-
tural equations are not. Environment parameters are thus
specified via 𝑃 (𝑉 |𝑝𝑎(𝑉 )) for all endogenous variables𝑉 and
their parents 𝑝𝑎(𝑉 ) in the causal graph. These distributions
are fixed in the underlying MAT-E ∀𝑡 ∈ 𝑇 .
• Known and Fixed Causal Structure, in which each agent
knows the underlying causal structure of theirMAT-E, though
not the parameters nor which are shared between MAT-Es.1
• Perfect Observations, in which each agent may observe the
episodes of other agents with perfect fidelity (though policies
of other agents may not be known).
• Binary Rewards 𝑌 ∈ {0, 1} associated with each trial.

With these assumptions, we construct simulations to test the
performance of agents in differently-parameterized MAT-Ws.

4.1 Simulation Constructs
Definition 4.1. (MATMAB Simulation) A MATMAB Simula-

tion is parameterized by the following:

• 𝑁 ∈ N+ Monte Carlo repetitions over which agent perfor-
mance is averaged. Each of 𝑛 ∈ 𝑁 repetitions is pairwise
independent.
• A mapping 𝑛 ↦→ W𝑛 of MC repetitions to a particular MAT-W,
W𝑛 . A single MAT-W is specified for all 𝑇 trials.
• 𝑇 ∈ N+ sequential decision trials for each𝑛 ∈ 𝑁 MC repetition.
At each trial, all pre-treatment covariates 𝑍𝑡 are presented as
input to the agents, who then make a decision 𝑋𝑡 , and are then
presented with post-treatment covariates𝑊𝑡 and optimization
target outcome 𝑌𝑡 .

1The assumption of a known causal structure may appear to be a strong one, but
can be assuaged by virtue of each agents’ assumed ability to perform experiments in
their own domains; if the task of causal discovery is added on top of the tasks outlined
in this work, the ability to distinguish decision variables under each agents’ control
(i.e., amenable to intervention 𝑑𝑜 (𝑋 = 𝑥)) from covariates of action and outcome
empowers causal discovery algorithms far beyond that of causal discovery from offline
observational datasets [16, 30].
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Success of agents in MATMAB simulations is characterized at
both the individual and community levels due to the fact that the
utility of information from observing episodes from other agents
may improve inter-agent performance.

Definition 4.2. (MATMABCumulative Pseudo-Regret (CPR))
Cumulative pseudo-regret𝐶𝑃𝑅(𝐴, 𝑡) measures the difference between
the optimal likelihood of successful outcome 𝑌 ∗𝑡 (𝑍𝑡 ) = 1 (for any
contextal covariates 𝑍𝑡 ) and reward received by agents 𝑎 ∈ 𝐴 across
all trials 1 : 𝑡 < 𝑇 , and is thus defined as:

𝐶𝑃𝑅(𝐴, 𝑡) =
∑
𝑎∈𝐴

𝑖=𝑡∑
𝑖=1

max
𝑥

𝑃 (𝑌 = 1|𝑑𝑜 (𝑋 = 𝑥), 𝑍𝑖 = 𝑧𝑖 ) − 𝑌𝑎
𝑖

4.2 Agent Policies
Effective policies at minimizing regret in MATMAB settings face
unique challenges in addition to the traditional explore vs. exploit
dilemma implicit in typical MAB problems, including: how to deter-
mine which agents are in similar or different environments, where
these structural similarities and dissimilarities exist, and how to
perform finite-sample data fusion between one’s own experiments
and observations of others. Agent policies in this context are thus
a composite of subpolicies defined as follows:

Definition 4.3. (MAT Agent (MAT-A)) In the current study, a
MAT Agent’s policy 𝜙 is a composite of two subpolicies:

• Observational Transport Policy (OTP): determines how agent
𝐴𝑖 incorporates observations of other agents’ episodes, 𝑒

𝐴𝑘

0:𝑡−1, 𝑖 ≠
𝑗 , into its own history, if at all.
• Action Selection Rule (ASR): determines how the agent maps
its history of episodes to an action.

4.2.1 Action Selection Rules (ASRs): Given the discrete, contextual
reward distributions assumed in the present study, and the objective
function of minimizing regret in Def. 4.2, we compare performance
of agents across four traditional ASRs [24] given the tradeoffs that
each leverages in the MAB “explore vs. exploit” dilemma:
• 𝜖-Greedy (EG): at each trial, the agent chooses randomly with
probability 𝜖 or greedily based on accumulated samples with
probability 1 − 𝜖 .
• 𝜖-Decreasing (ED): same as EG but with a cooling schedule
for the value of 𝜖 .
• 𝜖-First (EF): the agent chooses randomly for the first 𝑇 ∗ 𝜖
trials, then greedily thereafter.
• Thompson Sampling (TS): self-correcting ASR that maximizes
contextual reward by sampling the believed reward distribu-
tion [26].

4.2.2 Observation Transport Policies (OTPs): We compare four agent
OTPs to demonstrate both the risks of naïvely incorporating ob-
served samples into one’s own environment as well as the oppor-
tunities to exploit structural similarities between even different
environments to speed learning.
• Solo: (no OTP) ignores sample data from other agents, mak-
ing choices based on its own experience alone.
• Naïve: incorporates all episodes from other agents into its
own history, ignoring environmental differences.

• Sensitive: incorporates whole episodes from other agents,
but only if an admissibility criteria is met for similarity of
environments (detailed later).
• Adjusting: incorporates local/partial episodes from other
agents for each node lacking a selection-node in its learned
selection diagram (detailed later).

The first two OTPs (Solo and Naïve) lack causal underpinnings
whereas the latter causally-empowered policies (Sensitive and Ad-
justing) compose this work’s unique agents that consider causal
transportability of observations into their environments.

𝑋 𝑊

𝑍

𝑌 𝑋 𝑊

𝑍𝑆𝐴2

𝑌

𝑆𝐴3

Figure 1: (Left) SCM causal graph 𝐺 employed in exper-
imental simulations with confounder 𝑍 and mediator 𝑊 .
(Right) Example agent selection diagram with square trans-
port nodes added to 𝐺 .

To demonstrate these causally-empowered OTPs, we refer to
the causal graph in Figure 1 (Left) that all MAT-Es in the present
experiment employ. This model defines agent-action 𝑋 , outcome
𝑌 , covariates 𝑍,𝑊 , and is the simplest structure that, in pursuit
of measuring the causal effect of 𝑋 on 𝑌 , possesses one covariate
that should be controlled-for (the confounder, 𝑍 , whose control
homogenizes action effects 𝑋 on 𝑌 ), and one that should not be
(the mediator,𝑊 , whose control blocks the effect of 𝑋 on 𝑌 ).2

Note that although all MAT-Es in this experiment possess this
structure, the distributions across each variable may differ between
them. Consider an exampleMAT-W depicted in Fig. 2 in which there
are 3 MAT-Es with 4 agents 𝐴0, 𝐴1 ∈ E0, 𝐴2 ∈ E1, and 𝐴3 ∈ E2.
From the perspective of agent 𝐴0, observed episodes from agent
𝐴1 should be directly transportable, but those from 𝐴2 and 𝐴3 may
require more careful examination.

However, by the assumptions of the MATMAB problem, no
agent begins with knowledge of environmental similarities or differ-
ences compared to other agents under observation, and so causally-
empowered OTPs must also learn where selection nodes exist be-
tween other agents’ environments. This is accomplished by defining
three components: (1) the MAT selection diagram, (2) a selection
node discovery rule, (3) and an observation incorporation rule.

4.2.3 MAT Selection Diagrams: each causally-empowered agent
𝐴𝑖 maintains a MAT selection diagram, D⟩ , that behaves the same
as those traditionally defined in Def. 2.5, except that instead of se-
lection nodes pertaining to causal differences between each MAT-E
(which are not known a priori), they are added to variables for
each other agent𝐴𝑘 with observed differences in local distributions
𝑃 (𝑉 |pa(𝑉 )). For instance, if Fig. 1 (Right) represents the MAT se-
lection diagram D′ maintained by 𝐴0, the selection node 𝑆𝐴2 → 𝑍

2The simplicity of this model does not compromise the generalizability of this study’s
results, as the estimation of causal effects from known structures (including which
covariates make unbiased controls when an effect is identifiable) is complete by the
rules of do-calculus [10, 19].
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Figure 2: Example MAT-W W with 3 composite MAT-Es,
{E0, E1, E2} each with their own contained agents 𝐴𝑖 .

indicates that 𝐴0, 𝐴2 differ on the distribution 𝑃 (𝑍 ). Our causally-
empowered agents begin MATMAB problems by assuming that
they differ from all other agents’ environments by placing selec-
tion nodes upon every variable for every agent; the selection node
discovery rule that follows dictates when, through experience, a
selection node would be removed.

4.2.4 Selection Node Discovery Rule: because agents in MATMAB
settings are sensitive to the finite-sample biases of limited experi-
ence at each trial, they require means of determining where selec-
tion nodes belong in D as more episodes are acquired. The present
work defines a simple criteria using Hellinger Distance (𝐻2), such
that for every node’s distribution of the format 𝑃𝐴𝑖 (𝑉 |pa(𝑉 )) from
the samples of agent𝐴𝑖 , a selection node is placed upon𝑉 by agent
𝐴𝑖 for agent𝐴𝑘 if𝐻2 (𝑃𝐴𝑖 (𝑉 |pa(𝑉 )), 𝑃𝐴𝑘 (𝑉 |pa(𝑉 ))) exceeds some
threshold 𝜏 .

In the present work, we adopt an empirically well-performing
threshold for each variable 𝑉 of 𝜏 (𝑉 ) = 0.02 ∗ 2 |𝑝𝑎 (𝑉 ) | , though
future studies are invited to employ more sophisticated methods.
With new observations collected by each agent at every trial, the
selection diagram can be updated with selection nodes in𝑂 ( |𝐴| |𝑉 |)
time for |𝐴| agents and |𝑉 | variables in the underlying causal graph.

Choice of selection node discriminance may have a powerful
influence on causally-empowered agent performance; conserva-
tive discovery rules requiring node distributions to be very close
means that the defacto selection-nodes will be removed slowly,
and thus observations incorporated later in the learning process
when they may not be as useful. However, a liberal discovery rule
that allows for greater distributional flexibility means that defacto
selection-nodes may be removed too quickly, and heterogeneous
distributions may be combined to the detriment of the learner. That
said, in systems with many observable agents, we hypothesize
that combinations of observations from sufficiently similar local
structure will accelerate convergence.

4.2.5 Observation Incorporation Rule: with the most up-to-date
selection diagramD available to a causally-empowered agent, they
may choose if and how to incorporate observations from other
agents into their own histories, which are then employed by their
ASRs to make a choice. Algorithm 1 describes the general procedure
by which causally-empowered MATMAB agents make decisions;

the difference between our two causally-empowered implementa-
tions of the Sensitive and Adjusting agents can be found at the OTP
step, which dictates how each employs their respective selection
diagram and learned selection nodes. Once these nodes have been
learned, the OTP behaviors depend on the following criteria:

Definition 4.4. (MAT-Ignorability) In a MAT-E with decision
variable 𝑋 , outcome 𝑌 , covariates 𝑍 , and controlled covariates𝐶 ⊆ 𝑍 ,
a selection node 𝑆𝐴𝑖 pertaining to the environment of agent 𝐴𝑖 is
said to be “MAT-Ignorable” if it is d-separated from 𝑌 given 𝐶 , viz., if
𝑆 ⊥⊥ 𝑌 | 𝐶 .

MAT-Ignorable selection nodes thus represent environmental
differences that do not affect the maximization target in MATMAB
settings. In the selection diagram of Figure 1 (Right), 𝑆𝐴2 would
be MAT-Ignorable because 𝑍 (a confounder) is controlled, making
it d-separated from the outcome 𝑌 , whereas 𝑆𝐴3 is not. How the
causally-empowered OTPs treat MAT-Ignorable selection nodes
affects their ability to incorporate external observations by the
following distinction between global and local transportability.

Definition 4.5. (MAT-Global vs. Local Transport) In a MAT-
E with decision variable 𝑋 , outcome 𝑌 , covariates 𝑍 , and controlled
covariates 𝐶 ⊆ 𝑍 :
• From the perspective of agent 𝐴 𝑗 , samples over 𝑃𝐴𝑘 (𝑋,𝑌, 𝑍 )
from another agent 𝐴𝑘 are said to be globally-transportable
only if all selection nodes 𝑆𝐴𝑘 in D𝐴 𝑗 are MAT-ignorable.
• From the perspective of agent 𝐴 𝑗 , samples from another agent
𝐴𝑘 over local distributions 𝑃𝐴𝑘 (𝑉 |𝑝𝑎(𝑉 )) are said to be locally-
transportable if there is no direct selection node 𝑆𝐴𝑘

→ 𝑉 .

In other words, globally-transportable environments are either
precisely the same or differ only for variables whose selection
mechanics are rendered independent from the outcome. Samples
from these environments are thus safe to incorporate across the
full joint distribution, but can be difficult to find if even a single
selection node is not rendered MAT-Ignorable. More practically,
locally-transportable samples allow an agent to substitute its own
experiences and those from environments that it believes to be
similar in place of those it believes to be different. As such, we now
more precisely define our causally-empowered OTPs in terms of
the above and our toy model in Figure 1 (Left):
• Sensitive OTP agents incorporate observations across all
variables, sampled from 𝑃𝐴𝑘 (𝑋,𝑍,𝑊 ,𝑌 ) for another agent
𝐴𝑘 only if𝐴𝑘 is amenable to global transport, i.e. all selection
nodes from 𝐴𝑘 are MAT-Ignorable.
• Adjusting OTP agents incorporate local observations at con-
ditional distributions 𝑃 (𝑉 |𝑝𝑎(𝑉 )) from another agent 𝐴𝑘 if
𝑃𝐴𝑘 (𝑉 |𝑝𝑎(𝑉 )) is amenable to local transport. For any nodes
that are not locally-transportable this OTP will instead sub-
stitute samples from its home distribution and any other
locally-transportable environment for 𝑉 in order to obtain a
more accurate estimate. Samples from environments without
any locally-transportable nodes are ignored entirely.

Again referring to the selection diagram in Figure 1 (Right) and
MAT-W in Figure 2, a Sensitive OTP 𝐴0 would incorporate global
observations from agents 𝐴1, 𝐴2 but none from 𝐴3. An Adjusting
OTP 𝐴0 would likewise incorporate all observations from 𝐴1, 𝐴2
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Algorithm 1 Pseudocode for the Sensitive and Adjusting agents’
choices at each trial 𝑡 ∈ 𝑇 , parameterized by its current MAT-E, E.
Each of the two causal OTPs will approach line 3 differently.

1: procedure causal_choose(E)
2: 𝑑𝑡 ← 𝑢𝑝𝑑𝑎𝑡𝑒_D(ℎ𝑡 ) ⊲ Update selection diagram
3: ℎ𝑡 ← 𝑢𝑝𝑑𝑎𝑡𝑒_𝐻 (ℎ𝑡 , 𝑑𝑡 ) ⊲ OTP updates history
4: 𝑧𝑡 ← E .𝑓𝑍 (𝑢𝑡 ) ⊲ Covariates observed
5: 𝑥𝑡 ← 𝜙 (ℎ𝑡 , 𝑧𝑡 ) ⊲ ASR selects arm
6: 𝑦𝑡 ← E .𝑓𝑌 (𝑧𝑡 , 𝑥𝑡 ) ⊲ Observe reward
7: ℎ𝑡+1 ← E .𝑜𝑏𝑠𝑒𝑟𝑣𝑒_𝑒𝐴𝑡 () ⊲ Update history

into each 𝑃𝐴0 (𝑉 |𝑝𝑎(𝑉 )) but would only incorporate 𝑃𝐴3 (𝑊 |𝑋 )
from agent 𝐴3 (and not 𝑃𝐴3 (𝑌 |𝑊,𝑍 ) due to the presence of a se-
lection node). This incorporation of observations into structural
localities empowers Adjusting agents to scavenge transportable
information from pieces of the SCM, even if the observations from
other agents are not entirely transportable. Local transportability
can then exploit enhancements to accurate estimates of CPT factors
of the maximization target, e.g., for the model in Figure 1 (Left):

𝑃 (𝑌 = 1|𝑑𝑜 (𝑋 ), 𝑍 ) (1)

=
∑
𝑤

𝑃 (𝑌 = 1|𝑑𝑜 (𝑋 ), 𝑍,𝑊 = 𝑤)𝑃 (𝑊 = 𝑤 |𝑑𝑜 (𝑋 ), 𝑍 ) (2)

=
∑
𝑤

𝑃 (𝑌 = 1|𝑍,𝑊 = 𝑤)𝑃 (𝑊 = 𝑤 |𝑋 ) (3)

Eqn. 1 follows from the optimization target set forth in Defini-
tion 4.2 for CPR, Eqn. 2 from the law of total probability, and 3
from the rules of d-separation ({𝑋 ⊥⊥ 𝑌 |𝑊,𝑍 }, {𝑍 ⊥⊥𝑊 |𝑋 }) and
do-calculus (𝑃 (𝑊 |𝑋 ) = 𝑃 (𝑊 |𝑑𝑜 (𝑋 ))). Consider now that an ad-
justing agent 𝐴0 in Figure 2 can obtain a more accurate estimate of
its optimization target from observations over 𝐴1, 𝐴2, 𝐴3 through
local-transportability, excepting the only not-locally-transportable
observations from 𝑃𝐴3 (𝑌 |𝑍,𝑊 ):

𝑃𝐴0 (𝑌 = 1|𝑑𝑜 (𝑋 ), 𝑍 ) (4)

=
∑
𝑤

𝑃𝐴0,1,2 (𝑌 = 1|𝑍,𝑊 = 𝑤)𝑃𝐴0,1,2,3 (𝑊 = 𝑤 |𝑋 ) (5)

4.3 Experimental Conditions
4.3.1 Environment Construction: In order to fairly compare the per-
formance of different combinations of OTPs and ASRs in MATMAB
settings without cherry-picking favorable selection settings or re-
ward parameterizations, all simulations were conducted in random-
ized MAT-Ws. The procedure for creating randomized MAT-Ws is
detailed in Algorithm 2. Each experiment that follows consists of
𝑇 = 3000 trials repeated and averaged over 𝑁 = 1600 Monte Carlo
(MC) repetitions, each taking place in a randomized MAT-W,W𝑛 .

4.3.2 Experiment 1 - Individual Comparison: The first experiment
measures the success of the various OTPs (Solo, Naïve, Sensitive,
and Adjusting) from the perspective of communities of homoge-
nous ASRs operating in a MATMAB setting. We hypothesized that
the Sensitive and Adjusting agents within each ASR-standardized
community would encounter significantly less CPR compared to

Algorithm 2 Pseudocode for creating a randomized MAT-W given
some likelihood for node mutation 𝜖𝑚 and some set of agents 𝐴;
returns the set E𝐴 of environments assigned to each agent 𝑎 ∈ 𝐴.
1: procedure random_mat_w_init(𝜖𝑚, 𝐴)
2: 𝑀 ← 𝑆𝐶𝑀 (𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒) ⊲ Init default SCM
3: for 𝑉 ∈ 𝑀 do
4: 𝑀.𝑃 (𝑉 |𝑝𝑎(𝑉 )) ← 𝑟𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒_𝑐𝑝𝑡 ()
5: E𝐴 ← {𝑀.𝑐𝑙𝑜𝑛𝑒 () ∀ 𝑎 ∈ 𝐴} ⊲ E𝑎 starts with default
6: for E𝑎 ∈ E𝐴 do
7: for 𝑉 ∈ E𝑎 do
8: 𝑠𝑉 ∼ 𝐵𝑒𝑟𝑛(𝜖𝑚) ⊲ Flip weighted coin for S node
9: if 𝑠𝑉 == 0 then ⊲ 𝑉𝑎 to differ from default
10: E𝑎 .𝑃 (𝑉 |𝑝𝑎(𝑉 )) ← 𝑟𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒_𝑐𝑝𝑡 ()
11: return E𝐴

the Solo and Naïve, with the Naïve agents potentially failing to
achieve sub-linear regret due to destructive incorporation of obser-
vations that did not transfer to their environment. Each condition
in this experiment consisted of a MAT-W of 4 agents sharing the
same ASR but with different OTPs.

4.3.3 Experiment 2 - Community ASR Comparison: The second
experiment measures the utility of heterogeneous communities
of ASRs sharing the Adjusting OTP. The impetus for this experi-
ment was a question of the degree to which causally-empowered
agents rely on more explorative ones and may gain more from
exploration than merely samples of arm-quality from its home en-
vironment; early exploration may earlier repeal S-nodes that then
enable earlier incorporation of observations from peers in the learn-
ing process. Thus, we hypothesized that adjusting communities
with ASRs prioritizing earlier exploration may outperform more
“selfish,” though typically individually superior, ASRs like TS. To
test this hypothesis, we compared 4 different communities in MAT-
Ws consisting of 4 agents each with variant blends of front-heavy
exploration: 𝐶0 = {𝑇𝑆,𝑇𝑆,𝑇𝑆,𝑇𝑆},𝐶1 = {𝐸𝐹, 𝐸𝐹, 𝐸𝐹, 𝐸𝐹 },𝐶2 =

{𝑇𝑆,𝑇𝑆, 𝐸𝐹, 𝐸𝐹 },𝐶3 = {𝐸𝐺, 𝐸𝐷, 𝐸𝐹,𝑇𝑆}. 𝐶0,𝐶1 represent the ho-
mogeneous communities whose average CPR we compare to the
heterogeneous 𝐶2,𝐶3.

Although not discussed herein3, the 𝜖-Greedy, 𝜖-First, and 𝜖-
Decreasing ASRs were fine-tuned with the highest-performing
variants included for comparison in each experiment. In particular,
the 𝜖-Greedy agent set exploration rate 𝜖𝐺 = 1/30, 𝜖-First explored
for the first 𝜖𝐹 ∗𝑇 trials of each context 𝑍 = 𝑧 with 𝜖𝐹 = 1 23 , and
𝜖-Decreasing used an exponential cooling schedule 𝜖𝐷,𝑡 = 0.98𝑡 for
each context 𝑍 = 𝑧.

4.3.4 Experimental Metrics of Success: To compare the efficacy of
agents employing different OTPs and ASRs, we examined perfor-
mance on two traditional metrics of MAB agent success:

(1) Probability of Optimal Action (POA): the likelihood that the
agent selected the contextually optimal action at trial 𝑡 aver-
aged across all 𝑁 Monte Carlo repetitions.

(2) MATMABCumulative Pseudo-Regret (CPR):Def. 4.2 applied to
the different agent populations described in the previous sec-
tion (individually in Experiment 1 and across a community

3See https://github.com/axelbrowne/ECS4TOMAE for simulation code.
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Figure 3: POA of OTPs for the TS ASR with 0.2 < 𝜖𝑚 < 0.8 in
Experiment 1.

Figure 4: CPR of OTPs for the TS ASR with 0.2 < 𝜖𝑚 < 0.8 in
Experiment 1.

of agents in Experiment 2), the CPR encountered by agents
at trial 𝑡 averaged across all 𝑁 Monte Carlo repetitions.

5 RESULTS
Experiment 1 - Individual OTP Comparison: Table 1 summarizes
the performance of all compared combinations of OTPs and ASRs
in Experiment 1, with Figures 3 and 4 highlighting differences in
TS performance across OTPs (0.2 < 𝜖𝑚 < 0.8). For all ASRs, the
causally-empowered OTPs yielded significantly less CPR than the
Solo OTP, with Adjusting agents shining far above the others.While
all Adjusting ASRs obtained sublinear CPR within 𝑇 trials, other
OTPs did not.

Figure 5: POA of Adjusting OTPs for the given ASR commu-
nities with 0.2 < 𝜖𝑚 < 0.8 in Experiment 2.

Figure 6: CPR of Adjusting OTPs for the given ASR commu-
nities with 0.2 < 𝜖𝑚 < 0.8 in Experiment 2.

Experiment 2 - Community ASR Comparison: Tables 2 and 3 summa-
rizes the performance of the Adjusting-OTP-standardized commu-
nities alongside visualizations of their differing-ASR performance in
Figures 5 and 6. Lower 𝜖𝑚 predicated improved performance for ad-
justing agents overall, though the Adjusting-TS ASR communities
were least resilient to higher 𝜖𝑚 . The heterogeneous communi-
ties, 𝐶2,𝐶3, failed to achieve less CPR than their homogeneous
counterparts, 𝐶0,𝐶1.

6 DISCUSSION
The experimental results demonstrate that MATMAB problems in-
troduce new dimensions to traditional MAB formalizations: the op-
portunity to harness transportable observations from other agents
can be incorporated to the benefit of agents as individuals, and that
MATMAB communities benefit from larger amounts of forward
exploration.
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Table 1: Individual 𝐶𝑃𝑅(𝐴𝑖 ,𝑇 ) for all ASRs in Experiment 1
with given standard-errors. Each row represents the 4-agent
community in each of the 4 ASR’s experiments. Bolded val-
ues are the lowest𝐶𝑃𝑅 in each row’s community, underlined
values are the lowest 𝐶𝑃𝑅 in each column’s OTP, and aster-
isks (*) indicate significant improvement from the Solo OTP.
All simulations in this condition were run with 0.2 < 𝜖𝑚 <

0.8. Column means𝑀 provided at bottom row.

Naïve Solo Sensitive Adjusting

𝐸𝐺 82.68 ± 3.42 33.92 ± 1.30 33.90 ± 1.33 10.02 ± 0.65∗
𝐸𝐹 107.8 ± 3.03 23.16 ± 1.34 18.04 ± 1.27∗ 6.450 ± 0.65∗
𝐸𝐷 118.0 ± 2.86 21.82 ± 1.10 18.10 ± 1.03∗ 7.761 ± 0.66∗
𝑇𝑆 82.73 ± 3.31 16.81 ± 0.67 14.94 ± 0.66∗ 5.510 ± 0.63∗
𝑀 97.80 ± 3.16 23.93 ± 1.10 21.25 ± 1.07 7.435 ± 0.65

Table 2: Average 𝐶𝑃𝑅(𝐴,𝑇 ) for communities with Adjusting
OTPs and standardized ASRs in Experiment 1 and the given
standard-errors. Bolded values are the lowest 𝐶𝑃𝑅 in each
row’s ASR and underlined values are the lowest𝐶𝑃𝑅 in each
column’s parameterization for the node mutation rate, 𝜖𝑚 .
Column means𝑀 provided at bottom row.

Agent ASR 𝜖𝑚 = 0.2 𝜖𝑚 = 0.8 0.2 < 𝜖𝑚 < 0.8

𝐸𝐺 7.828 ± 0.65 9.139 ± 0.66 9.667 ± 0.66
𝐸𝐹 8.058 ± 0.62 6.659 ± 0.63 5.217 ± 0.62
𝐸𝐷 6.029 ± 0.64 7.728 ± 0.65 8.476 ± 0.64
𝑇𝑆 8.053 ± 0.62 13.34 ± 0.63 8.728 ± 0.61
𝑀 7.492 ± 0.63 9.217 ± 0.65 8.022 ± 0.63

Table 3: Average 𝐶𝑃𝑅(𝐴,𝑇 ) for communities of 4 Adjust-
ing ASRs 𝐴 = {𝐴0, 𝐴1, 𝐴2, 𝐴3} in Experiment 2 with given
standard-errors. Underlined values are the lowest commu-
nity 𝐶𝑃𝑅.

Community Index Community ASRs 0.2 < 𝜖𝑚 < 0.8

𝐶0 {𝑇𝑆,𝑇𝑆,𝑇𝑆,𝑇𝑆} 8.728 ± 0.61
𝐶1 {𝐸𝐹, 𝐸𝐹, 𝐸𝐹, 𝐸𝐹 } 5.217 ± 0.62
𝐶2 {𝑇𝑆,𝑇𝑆, 𝐸𝐹, 𝐸𝐹 } 5.787 ± 0.62
𝐶3 {𝐸𝐺, 𝐸𝐷, 𝐸𝐹,𝑇𝑆} 7.808 ± 0.32

Experiment 1 - Individual OTP Comparison: The Naïve agent’s poor
performance clearly demonstrates the risks of incorporating obser-
vations from heterogeneous environments without a causal premise
to guide its selection. The Sensitive agent’s (albeit modest) improve-
ment over the Solo baseline’s demonstrates a conservative approach
to transportability that is difficult and slow, especially when en-
vironmental differences are high, like in the 𝜖𝑚 > 0.2 conditions.
That said, the Adjusting agent’s exploits of locally-transportable
structures in the selection diagram successfully allow it to scav-
enge pieces of the puzzle even when the causal effect of action
on outcome is not directly transportable. This ability translates

to more accurate estimation of its home environment’s causal ef-
fects across ASRs, bringing clarity of optimal action earlier in the
learning process.

Both causally-empowered agents appear resilient to diversities
of MAT-Ws, as the results are based on many repetitions across
randomized environments, and have performance improvements
proportionate to environmental similarity in the given MAT-W.

Experiment 2 - Community ASR Comparison: Shifting the focus to
the performance of heterogeneous vs. homogeneous communities
of agents countered our hypothesized beneficial interaction be-
tween early exploring vs exploiting ASRs, as the incorporation of
diverse ASRs in a single community were instead weighed down by
the worse performers amongst the clique. However, our hypothesis
that front-heavy exploration would yield earlier selection node
discovery and translate to better performance was confirmed by
𝐶1 obtaining the lowest CPR of any OTP-ASR community in the
study. Most interesting is the performance of TS agents that appear
to best benefit from communities with other ASRs. Thus, further
study could be devoted to ASRs that work as a community rather
than as individual actors to maximize community reward rather
than individual reward that is averaged over the community.

Limitations. Although appropriate for modeling the causal assump-
tions governing the variables in a MAT-E, SCMs have issues of
scalability for high-dimensional covariates, especially given the
computational cost of learning selection node placement, and exac-
erbated for large communities of agents. Other limitations are those
of scope for this introductory work of online MAT domains, includ-
ing the sophistication of the selection node discovery procedure for
causally-empowered agents (which may be simply enhanced to a
time-delimited choice for 𝜏 ); there may be even greater opportunity
for sophistication in community settings wherein a new type of
ASR may make exploratory choices as a function of the value of
information to the community.

Future Directions. Perhaps the most meaningful fruit from this
work is the number of adjacent avenues for investigation that it
spawns, including (but not limited to) MATMAB variants involving:
semi-Markovian MAT-Es with observations that may be affected by
unobserved confounders, MAT-Es with initially unknown causal
structure that must be discovered, missing data in observations
(especially when not missing at random [17], as might be a premise
for a game-theoretic variant wherein agents act adversarially by
hiding select episodes), and scaling to more complex models beyond
SCMs wherein similar structural localities can be exploited.

7 CONCLUSION
This work endeavored to employ the tools of causal graphical mod-
els within the novel, online MATMAB setting and demonstrated
that causally-empowered MAT-Agents excel at learning from their
peers compared to those who are not. Through simulation support,
we demonstrated that success in MATMAB settings are functions
of deciding agents’ ASRs, OTPs, community compositions, and sim-
ilarity of environments. The MATMAB formalization may serve
as an important launchpad into future study for how agents learn
from their own increasingly rich environments as well as those of
other actors.
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