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ABSTRACT
Machine learning of Theory of Mind (ToM) is essential to build
social agents that co-live with humans and other agents. This ca-
pacity, once acquired, will help machines infer the mental states
of others from observed contextual action trajectories, enabling
future prediction of goals, intention, actions and successor repres-
entations. The underlying mechanism for such a prediction remains
unclear, however. Inspired by the observation that humans often
infer the character traits of others, then use it to explain behaviour,
we propose a new neural ToM architecture that learns to generate
a latent trait vector of an actor from the past trajectories. This trait
vector then multiplicatively modulates the prediction mechanism
via a ‘fast weights’ scheme in the prediction neural network, which
reads the current context and predicts the behaviour. We empir-
ically show that the fast weights provide a good inductive bias to
model the character traits of agents and hence improves mindread-
ing ability. On the indirect assessment of false-belief understanding,
the new ToM model enables more efficient helping behaviours.
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1 INTRODUCTION
The capacity of a social agent to predict and interpret the behaviours
of others is essential for it to thrive. A basis for this mindreading,
also known as theory of mind (ToM), is the ability to attribute
transient mental states – knowledge, emotions, beliefs, desires and
intention – to others and use the attribution to reason about their
actions [12, 16, 17, 31, 35]. We also often attribute stable character-
traits to others in order to interpret their behaviours [1, 22, 25].
While these two distinct attribution skills have been known to be
related, it remains unclear how they are integrated into a coherent
system. A recent theory has been pushed forward, suggesting that
temporally stable character traits can be used to generate a prior
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probability distribution for hypotheses about mental states [41]. A
computational theory to realise the hypothesis remains open.

Inspired by theories of human theory of mind, we seek to embed
a learning theory of mind system inside a social agent to predict
the behaviours of others. The system makes minimal assumptions
about the underlying mental structure of the other agents, but
instead learns to construct the latent character traits by observing
their past behaviours and infers the mental states from the current
behaviour. We wish to design the system so that the traits drive
the predictive mechanism from states to actions/behaviours. This
is unlike traditional mindreading in AI which studies symbolic
plan and goal recognition [14, 21, 26, 39]. This approach makes
strong assumptions about, and requires detail descriptions of, the
domain. The Bayesian approach to ToM (BToM) [3, 4, 40] relies on
the bounded rationality assumption, i.e., actors will maximise their
own utility based on partial observations, to build a model of others.
Here the past information about the goal of actor serves as a prior
distribution to update the model. This treatment could not cover
the case when complex past behaviours in different environments
maintain information about the stable mental state (traits) of actors.
BToM focuses on analysing the current behaviours of the other, but
does not explain how to incorporate the individuality expressed
through past behaviours into executing prediction.

The deep learning approach to ToM has recently been brought
forward to leverage the computational efficiency and architectural
flexibility of neural networks [27, 29, 33]. A model proposed in [33]
called Theory of Mind neural network (ToMnet) jointly models
prior actor characters and current mental states from observations.
In particular, ToMnet constructs a character embedding from past
behaviours using a character network, and a mental embedding
of the current trajectory of an actor using a mental network. The
two embedding vectors are then combined as input to a prediction
network to infer the actor’s goal and future behaviours. This ar-
chitecture is trained with a large amount of data sampled from a
mixed population of actors. However, it remains unclear whether
ToMnet could learn to provide good predictions after being trained
in more realistic settings, such as when it could only observe one
type of actor in a time period. The work in [29] focuses on the
interpretability of the ToM models.

Different from these works, we employ the fast weight concept
[2, 36] to represent the character traits of actors in a behaviour
prediction network. Unlike standard slow weights which are fixed
after training, fast weights are computed on-the-fly at inference
time, conditioned on the observations. More specifically, these fast
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Figure 1: Trait-based Theory of Mind (Trait-ToM) architecture. Our architecture generates the trait of an actor based on its
historical behaviours. The trait then modulates the prediction path from the mental and environmental states to the future
behaviours.

weights are generated by a hypernetwork [18, 20] using past beha-
viours. We use these character trait weights to modulate the mind
prediction in a multiplicative manner. A ToM observer will have
the freedom to change the weights of the prediction networks inde-
pendently for each character trait. We show in the experiments that
this capacity helps the ToM observer correctly predict the actor’s
goal, intention, and trajectories and perform better in complex tasks.
To the best of our knowledge, our paper is the first work imple-
menting and analysing the idea of fast weights and hypernetworks
for mindreading tasks. Our main contribution is introducing a new
type of Trait-based ToM (Trait-ToM) agent (the observer), which
can represent the character traits of other actors and use it to make
behaviour predictions of others. We verify the predictive power
of Trait-ToM on a suite of tasks in a key-door environment with a
mixed population of actors and different realistic training settings
and demonstrate promising results.

2 PROBLEM FORMULATION
We consider a family of partially observable Markov decision pro-
cesses (POMDPs)W = ∪𝑗W𝑗 , where each environment is a tuple
W𝑗 =

〈
𝑆 𝑗 , 𝐴 𝑗 ,𝑇𝑗

〉
of the state space 𝑆 𝑗 , the action space 𝐴 𝑗 and the

transition functions 𝑇𝑗 . Acting on the environments is a family of
actors A = ∪𝑖A𝑖 , each of which has its own observation space O𝑖 ,
observation function Ω𝑖 : O𝑖 ×S𝑗 ×𝐴 𝑗 ↦−→ [0, 1], reward function
𝑅𝑖 , and a policy 𝜋𝑖 , i.e. A𝑖 = ⟨O𝑖 ,Ω𝑖 , 𝑅𝑖 ,W𝑖 , 𝜋𝑖 ⟩. In the simplest
form, the type of each actor is defined by its perception ability,
preferences, and strategy. Finally, we consider an observer who
can observe the behaviours of the actors. Here, the behaviour of
the actor 𝑖 in the environment𝑊𝑗 is represented by the trajectory

𝜏𝑖 𝑗 =

(
𝑠 (𝑡 ) , 𝑎 (𝑡 )

)𝑇−1
𝑡=0

with 𝑠 (𝑡 ) ∈ 𝑆 𝑗 , 𝑎 (𝑡 ) ∈ 𝐴 𝑗 , and 𝑇 is the length
of the trajectory.

The observer or theory of mind (ToM) agent first observes a
set of 𝑁𝑝𝑎𝑠𝑡 past trajectories

{
𝜏𝑖 𝑗

}𝑁𝑝𝑎𝑠𝑡

1 of an actor 𝑖 in different
environments W𝑗 with 𝑗 = 1, . . . , 𝑁𝑝𝑎𝑠𝑡 . We hypothesise that
these past behaviours exhibit the character of this actor, allow-
ing the formation of a good prior for predicting its behaviours. We
then ask the ToM agent to predict the behaviours of this actor
in the current environment by observing the current trajectory,
including the state and action pairs up to the query time step,

𝜏𝑖,𝑐𝑢𝑟𝑟𝑒𝑛𝑡 =

(
𝑠
(𝑡 )
𝑖,𝑐𝑢𝑟𝑟𝑒𝑛𝑡

, 𝑎
(𝑡 )
𝑖,𝑐𝑢𝑟𝑟𝑒𝑛𝑡

)𝑇𝑞−1
𝑡=0

and the current state of the

world 𝑠 (𝑇𝑞 )
𝑖,𝑐𝑢𝑟𝑟𝑒𝑛𝑡

. Here,𝑇𝑞 is the time step that the ToM agent is quer-
ied to make prediction. The behaviour of actors that we would like
our model to answer includes preferences, one step ahead actions,
intentions and future visit state (via successor representations). To
reduce the notation load, we will drop the 𝑖 notion if there is no
confusion. In this paper, we use the observer and the ToM agent
interchangeably; the actor refers to the observed agent.

3 METHOD
3.1 Trait-based Theory of Mind Architecture
In this section, we introduce the architecture of Trait-based Theory
of Mind (Trait-ToM) model for the observer. There are three mod-
ules: (1) Prediction Model, (2) Trait Model, and (3) Mental Model.
In this architecture, the Trait Model captures the long-term trait of
actors in the past trajectories while the Mental Model represents
the recent behaviours in the current trajectory. The outputs of the
two modules will be used by the prediction module through our
proposed fast weight mechanism. In the following, we detail the
operation of each module. The architecture is shown in Figure 1.

Prediction Model. Let 𝑠 be the current environmental state and
e𝑚𝑒𝑛𝑡𝑎𝑙 be the current estimated mental state vector of an actor.
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Based on this information and the past behaviours, we wish to
predict the four outputs of the actor: preference, intention, action,
and successor representation. The prediction network will generate
an output vector e𝑝𝑟𝑒𝑑 as follows:

ℎ = 𝜎

(
W1 𝑓𝑝𝑟𝑒𝑑 (𝑠, e𝑚𝑒𝑛𝑡𝑎𝑙 ) + b1

)
, and (1)

e𝑝𝑟𝑒𝑑 = W2ℎ + b2 . (2)

for some feature extractor 𝑓𝑝𝑟𝑒𝑑 (·) which is a neural network, ac-
tivation function 𝜎 (·), and weightsW1, b1,W2, and b2. The mental
state e𝑚𝑒𝑛𝑡𝑎𝑙 is generated from the mental model in Eq. (6). The
output vector e𝑝𝑟𝑒𝑑 then serves as input for four prediction heads,
which are are goal, intention, action, and successor representation.

In Eqs. (1,2), the key to our formulation is that the fast weights
{W𝑙 , b𝑙 : 𝑙 ∈ {1, 2}} represent the individual characteristics or the
character traits, which are functions of the past behaviours. Unlike
ToMnet, which uses a vector to represent the trait as the input
to the prediction net, our fast-weight traits are higher in capacity
and directly modulate the function of the prediction net through
multiplicative mechanisms. These weights are computed by our
trait model, which we present next in Eqs. (4,5). In other words,
the traits modulate the prediction path from the current mental and
environmental states to the outcomes.

Trait Model. The trait network takes past trajectories of an actor
in 𝑁𝑝𝑎𝑠𝑡 environment

{
𝜏 𝑗
}𝑁𝑝𝑎𝑠𝑡

𝑗=1 as inputs and generates the trait
vector of the actor. For each past trajectory 𝑗 , it maintains a dy-
namic state vector at each time step 𝑡 by a long short-term memory
network [19] as follows:

ℎ
(𝑡 )
𝑗

= LSTM𝑡𝑟𝑎𝑖𝑡

(
x(𝑡 )
𝑗

, ℎ
(𝑡−1)
𝑗

)
,

where x(𝑡 )
𝑗

is the features extracted from the state-action pair using
a neural network, i.e., x(𝑡 )

𝑗
= 𝑓𝑡𝑟𝑎𝑖𝑡 (𝑠 (𝑡 )𝑗 , 𝑎 (𝑡 ) ). The trait embedding

vector is computed by averaging over all the past trajectories:

e𝑐ℎ𝑎𝑟 = 1
𝑁𝑝𝑎𝑠𝑡

𝑁𝑝𝑎𝑠𝑡∑
𝑗=1

ReLU
(
Linear

(
ℎ
(𝑇𝑗 )
𝑗

))
. (3)

To directly modulate the prediction path and create the mul-
tiplicative interaction between past behaviours and the mental
embedding, we use a hypernetwork which takes e𝑐ℎ𝑎𝑟 as input to
generate the weights W𝑙 and biases b𝑙 , 𝑙 ∈ {1, 2}, of the prediction
network in Eqs. (1,2):

W𝑙 = 𝜎 (Linear ( [e𝑐ℎ𝑎𝑟 , c𝑙 ])) , and (4)
b𝑙 = 𝜎 (Linear ( [e𝑐ℎ𝑎𝑟 , c𝑙 ])) , 𝑙 ∈ {1, 2} (5)

where the one-hot vector c𝑙 = onehot(𝑙) is used as an additional
input to indicate which layer 𝑙 to generate weights. The set of
weights {W𝑙 , b𝑙 : 𝑙 ∈ {1, 2}} serves as the representation of dynamic
traits of the actor, which changes whenever the behaviour history is
updated.We hypothesise that the dynamic traits is critical to capture
diverse behaviours of multi-agents. Each agent should triggers a
signature fast weight to determine the prediction for its future
behaviour.

Mental Model. The mental model reads the current trajectory
and estimates the mental state using the following dynamics:

ℎ
(𝑡 )
𝑚𝑒𝑛𝑡𝑎𝑙

= LSTM𝑚𝑒𝑛𝑡𝑎𝑙

( [
x(𝑡 )
𝑚𝑒𝑛𝑡𝑎𝑙

, e𝑐ℎ𝑎𝑟
]
, ℎ
(𝑡−1)
𝑚𝑒𝑛𝑡𝑎𝑙

)
,

where e𝑐ℎ𝑎𝑟 is the trait embedding computed in Eq. (3), and x(𝑡 )
𝑚𝑒𝑛𝑡𝑎𝑙

denotes features extracted from the current state-action pair, i.e.,
x(𝑡 )
𝑚𝑒𝑛𝑡𝑎𝑙

= 𝑓𝑚𝑒𝑛𝑡𝑎𝑙 (𝑠
(𝑡 )
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , 𝑎

(𝑡 ) ). The initial hidden state is com-
puted from the trait embedding ℎ (0)

𝑚𝑒𝑛𝑡𝑎𝑙
= Linear (e𝑐ℎ𝑎𝑟 ). The men-

tal embedding vector is computed as:

e𝑚𝑒𝑛𝑡𝑎𝑙 = ReLU
(
Linear

(
ℎ
(𝑡 )
𝑚𝑒𝑛𝑡𝑎𝑙

))
. (6)

It serves as an input for the prediction network in Eq. (1).

3.2 Loss functions
We feed 𝑒𝑝𝑟𝑒𝑑 computed from Eq. (2) to different heads corres-
ponding to different targets that we want to predict. To train the
Trait-based ToM, we use the following losses:

L = L𝑝𝑟𝑒 𝑓 + L𝑖𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛 + L𝑎𝑐𝑡𝑖𝑜𝑛 + L𝑆𝑅 .
The four component losses are as follows:

Preference Prediction. Each actor has its own preference, e.g., a
colour. The negative log-likelihood of the preference of the actor is
therefore:

L𝑝𝑟𝑒 𝑓 =
∑
𝑝𝑟𝑒 𝑓

− log 𝑝
(
𝑝𝑟𝑒 𝑓

��e𝑝𝑟𝑒𝑑 ) ,
where the 𝑝𝑝𝑟𝑒 𝑓 is modelled by a neural network that takes e𝑝𝑟𝑒𝑑
as its input.

Intention Prediction. In our setting, at each time step, the actor
maintains a sub-plan (intention) such as going to a place or finding
objects. We record the intention of actors at every time step, and
compute the negative log-likelihood of the intention of the actor:

L𝑖𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛 =
∑
− log𝑝

(
𝑖𝑛𝑡𝑒𝑛𝑡

��e𝑝𝑟𝑒𝑑 ) .
Action Prediction. We use the negative log-likelihood of the true

action of the actor:

L𝑎𝑐𝑡𝑖𝑜𝑛 = − log𝜋
(
𝑎𝑡

��e𝑝𝑟𝑒𝑑 ) .
Successor Representation Prediction. We use an empirical suc-

cessor representation [11] (SR) to compute the SR loss

L𝑆𝑅 =
∑
𝛾𝑆𝑅

∑
𝑠

−𝑆𝑅𝛾𝑆𝑅 (𝑠) log ˜𝑆𝑅𝛾𝑆𝑅 (𝑠) , with

𝑆𝑅𝛾 (𝑠) =
1
𝑍

𝑇−𝑡∑
𝑡 ′=0

𝛾𝑡
′

𝑆𝑅𝐼 (𝑠𝑡+Δ𝑡 = 𝑠)

where 𝑇 is the episode length, 𝑡 is the time at which the successor
representation is computed, 𝑍 is a normalisation constant, 𝛾𝑆𝑅 ∈
(0, 1) is the discount factor and 𝐼 (𝑠𝑡+Δ𝑡 = 𝑠) is an indicator function,
which returns 1 if 𝑠𝑡+Δ𝑡 = 𝑠 and 0 otherwise.
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Figure 2: Performance of ToMnet and Trait-ToM after be-
ing trained onmixed (M) and sequential settings (S1 and S2).
The y-axis shows the accuracies of action (top row) and in-
tention prediction (bottom row) on the random-actor pop-
ulation (left column) and the hypo-actor population (right
column), conditioned on the intention of the actors (find,
goto, pickup).

4 CASE STUDY: KEY-DOOR ENVIRONMENT
4.1 Experiment Settings

Environment. In this section, we conduct experiments on the
Key-Door Environment using the gym-minigrid framework [9]. In
this environment, there are two types of object {key, door} in four
different colours {red, green, blue, yellow}. An actor has its own
preference for the colour. An episode is terminated when the actor
picks up the key and goes to the door in its preferred colour.

Goal-directed Actors. We construct the actors that have a consist-
ent goal during one episode, e.g. picking up the key and going to
the door in the preferred colour. We assume each actor has beliefs
about the positions of all objects in the scene, as well as the ability of
memorising all visited cells. The actor is able to detect its false belief
and update its belief according to recent observations. At each time
step, it has an intention to either find(), goto(), or pickup(). The
actors have the belief-desires-intentions (BDI) architecture [7, 15]
and dynamically switching between three plans find(), goto(),
or pickup() can be considered as changing intentions.

Actors are different in the strategy they use to execute the inten-
tion find(object): (1) the random-actor that can only take random
walks to find its preferred object; and (2) the wiser actor that main-
tains a hypothesis about the position of its preferred key and door.

Figure 3: The y-axis shows the action prediction accuracy
(top row) and intention prediction accuracy (bottom row) of
ToMnet and Trait-ToMon the random-actor population (left
column) and the hypo-actor population (right column), con-
ditioned on two groups ofmove actions: (1) change direction
(turn-left and turn-right) and (2) move forward. Our Trait-
ToM predicts better when the actor change its direction.

The latter type of actor tests its hypothesis by going to these posi-
tions and seeking for the object. If the actor cannot find the object
there, it will make a new guess about the object position. For this
reason, we call this actor a hypo-actor (shorthand for hypothesis test-
ing actor). In this paper, we only explore the salient traits (e.g. smart
- not smart or hypo - random) [34] and leave other traits, e.g. finding
constraints on the value of information and risk aversion, for future
work. Each actor partially observes a square area which indicates
the field of view (FoV). In sum, there are 32 actors which are char-
acterised by combinations of 4 preferences, 2 traits, and 4 FoVs, e.g.
{red, green, blue, yellow}×{random, hypo}×{3×3, 5×5, 7×7, 9×9}.

4.2 Actions and Intention Predictions
In the first experiment, we analyse the behaviour of ToMnet [33]
and our proposed Trait-ToM in predicting action and intention
while learning from the mixed and sequential population. In the
mixed setting (M), actors in one batch are i.i.d sampled from 32
actors. In sequential settings (S), every 𝑇𝑠𝑡𝑟𝑒𝑎𝑚 , the observer sees
a new type of actors and never meets the previous actors again.
The actors come sequentially in increasing field of view order of
hypo- then random- actors (S1) or vice versa (S2). As a result, there
are totally three experimental settings in this task. Amongst all,
S1 and S2 are more realistic scenarios, e.g. the observer can only
see one type of actor at a time. Here, the observer can only learn
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Stream Model
Random-Actor Hypo-Actor Hypo-Actor

(Full Observation) (Full Observation) (Partial Observation)
Action Intention Action Intention Action Intention

S1
ToMnet 37.80 53.21 54.26 53.43 49.65 51.94

(0.64) (2.83) (0.94) (3.18) (0.96 ) (2.71)

Trait-ToM 39.46 55.64 54.37 56.45 50.93 55.21
(0.47) (3.02) (1.09) (2.48) (1.10) (2.43)

S2
ToMnet 32.48 36.60 50.29 46.59 44.30 43.96

(1.71) (3.84) (2.32) (2.67) (2.45) (3.09)

Trait-ToM 38.22 47.26 52.85 54.60 48.80 53.32
(1.25) (2.77) (0.81) (2.35) (1.20) (2.30)

M
ToMnet 39.30 88.14 59.55 75.92 54.13 74.71

(0.34) (1.05) (1.46) (2.35) (1.23) (1.83)

Trait-ToM 40.84 90.95 60.53 82.10 55.52 79.85
(0.42) (0.57) (2.15) (1.52) (1.71) (1.11)

Table 1: The accuracy of ToMnet and Trait-ToM on predicting action and intention of (the 1𝑠𝑡 and 2𝑛𝑑 column) random-actors,
hypo-actors in fully observable environments, (the 3𝑟𝑑 column) hypo-actors in environments that have unobserved obstacles
to the observer (partial observation). Each cell contains the mean (std.) over predictions of 6 runs.

Figure 4: Knowledge transfer in ToMnet and Trait-ToM dur-
ing the process of learning from different sequences of act-
ors, assessed by the positive forward transfer ability (𝐹𝑊𝑇 )
on predicting intention. Our Trait-ToM can learn patterns
that are useful to predict intention of different types of act-
ors from the beginning of each sequence (higher 𝐹𝑊𝑇 ).

to predict behaviours of each type of actor for 𝑇𝑠𝑡𝑟𝑒𝑎𝑚 = 30, 000
iterations. The observer can see a batch of 𝐵 = 16 actors with
the same FoV and trait at each iteration. We assume that during
the training process, the actor will explicitly provide its intention
(find, goto, or pickup) to the observer as training signals for the
observer to predict its preferences, actions and intentions. The actor
reveals its individual characteristics such as trait and FoV via its
past behaviours (𝑁𝑝𝑎𝑠𝑡 = 3).

Results. Fig. 2 shows the performance of ToMnet and Trait-ToM
on described tasks. To make a fair comparison between the two
methods, we designed two networks with roughly a similar num-
bers of parameters (Trait-ToM has slightly less parameters than
ToMnet and they are different in the prediction networks). For each
architecture, we trained and reported the results over predictions
of 6 runs. In general, our trait-based ToM are able to predict the

behaviour of the actors better than ToMnet in all settings (M, S1
and S2). Both can predict precisely the preference of actors since
it is shown clearly in the past trajectories. Training observers on
the mixed population helps the models predict actor’s intention
find() much better.

Fig. 3 shows the action prediction and intention prediction of
ToMnet and Trait-ToM conditioned on move actions. There are
two groups of move actions: (1) change direction, which includes
turn-left and turn-right; (2) move forward. While both models
can predict equally well when the actors move forward, our Trait-
ToM can predict better when the actors will change their direction.
Note that the moving forward action can be easily predicted by
looking at the current trajectory, however, the change direction
action depends on the individual characteristics such as trait and
field of view of the actors. This illustrates that ToMnet heavily relies
on the information of the current trajectory, whereas our model
uses the information revealed during past trajectories.

Table 1 summarises the action and intention prediction accuracy
of ToMnet and Trait-ToM. We also evaluate both observers in pre-
dicting the behaviour of hypo-actors, when both of them can only
partially observe the environment. These environments contain
obstacles that are only observed by the actors. As shown in Table 1,
the trait-based observer outperforms the ToMnet in predicting the
intention of actors. Especially, our Trait-ToM, with the fast weight
mechanism, outperforms ToMnet by a larger margin when the actor
streams are more realistic (S1 and S2).

To further understand the effect of the fast weight mechanism
on the learning process, we measure the knowledge transfer during
this learning process from two sequential settings (S1 and S2). Each
stream will provide for the training process a sequence (A𝑖 )𝑖=1...𝑀
of𝑀 goal-directed actors which are different in their fields of view
and trait. Let 𝑎𝑐𝑐𝑖, 𝑗 the observer’s accuracy in predicting the beha-
viour of actors A 𝑗 after being trained on (A1, . . . ,A𝑖 ). We then
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Figure 5: Dynamic intentions of hypo-actor in key-door environment with swap event (bottom) and no swap event (top). The
actor has a 3x3 field of view and prefers red colour. After seeing the red door, the actor finds and collects the red key. The actor
then comes back to red door position that she last saw and believes the red door is still there. When there is no swap event, the
actor successful reaches the door (top). When there is a swap event, the actor realises that the red door is not at the previous
place, but a yellow door instead. She changes her belief then tries to find and reach the red door (bottom).

evaluate the forward transfer ability defined as:

𝐹𝑊𝑇 =

∑𝑀
𝑗=2

∑𝑗−1
𝑖=1 𝑎𝑐𝑐𝑖, 𝑗

1
2𝑀 (𝑀 − 1)

.

Intuitively, 𝐹𝑊𝑇 [24] indicates how learning to predict the be-
haviour of new actors affects the performance on future unseen
actors. Fig. 4 shows that our Trait-ToM can learn useful knowledge
to transfer and predict the intention of actors sooner than ToMnet,
as shown by a higher 𝐹𝑊𝑇 .

4.3 Direct Assessment of False Belief
Understanding

The False Belief in human can be assessed by various methods [6].
A common method to evaluate the computational theory of mind
[28, 33] is by constructing experiments of Sally-Anne Test - a classic
false-belief task [5, 42]. In this task, the subject observes a scene
in which there are two dolls named by Sally and Anne. Sally first
puts her toy into the basket then goes out. While Sally is outside,
Anne takes the toy from Sally’s basket and put in Anne’s box. The
observer will be asked where will Sally finds the toy when she
comes back. Here we set up the key-door scenario with a swap
event. Fig. 5 illustrates the trajectories of an actor with a 3 × 3 field
of view who prefers red colour in the key-door environment with
swap or no swap event. First, the actor looks for the red door. After
seeing it, the actor finds and collects the red key. The actor then
comes back to the red door position and supposes it is still there.
When there is no swap event, the actor successfully reaches the red
door. However, when there is a swap event, the actor sees a yellow
door instead and realises that the red door has been swapped. She
changes her belief then goes to find the red door.

Figure 6: The Jensen–Shannon divergence between suc-
cessor representations when the actor picks up the key in
swap vs. no swap situation (left most) of the hypo-actor,
(middle) predicted by ToMnet, and (right most) predicted by
Trait-ToM. The x-axis is the distance from the preferred key
to the target door. Statistical analysis is shown in Table 2.

In this experiment, both ToMnet and Trait-ToM are trained on
the mixed population of hypo-actors and random-actors. The en-
vironment in which actors operate may contain a swap event. In
addition to the preference, intention, and action prediction, the
models are queried successor representations to make a prediction
about the long-term behaviours of the actors. The ability to pre-
dict the difference in long-term behaviours between the swap and
non-swap events indicates the understanding of the false belief.

Fig. 6 shows the Jensen–Shannon divergence between successor
representations of the hypo-actor in swap versus no swap envir-
onments of theory of mind models and the ground truth, denoted
as 𝐷 𝐽 𝑆 (¬sw, sw). In cases when the actor can see the swap event,
𝐷 𝐽 𝑆 (¬sw, sw) is high because the actor behaves differently from
when there is no swap event. As a result, when the swap distance
increases, the behaviour of actors with 9 × 9 fields of view (the
purple line graph in Fig. 6 (left)) does not change much compared
to actors with other fields of view.
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Figure 7: Visualisation of weights of the prediction model which is generated by the hypernetworks, projected into 2D using
t-SNE. The colours indicate the preferences (left), the traits (middle), and the fields of view (right) of the actors. While the
preferences learning is supervised, the trait and field of view are learnt in unsupervised manner. With the 9 × 9 field of view,
both hypo- or random- actors have similar behaviours, therefore, these clusters are close (purple clusters at the right figure).

𝑟ToMnet 𝑟Trait-ToM 𝑡

3 × 3 0.929044 0.935927 2.12
±0.00 ±0.00 ±3.42𝑒-2

5 × 5 0.911540 0.931527 6.22
±7.47𝑒-298 ±0.00 ±8.34𝑒-10

7 × 7 0.893478 0.910079 5.39
±1.62𝑒-268 ±2.96𝑒-295 ±9.16𝑒-08

9 × 9 0.849786 0.864296 3.14
±3.29𝑒-215 ±8.18𝑒-231 ±1.73𝑒-03

Conclusion > 𝑟0.05 (700) = 0.074004 > 𝑡0.05 (700) = 1.64
Table 2: Statistical analysis of ToMnet and Trait-ToM in
predicting the false belief of actors with different FoVs
(row). The 𝑟ToMnet and 𝑟Trait-ToM are Pearson correlation
coefficients of ToMnet and Trait-ToM respectively. The last
column shows the 𝑡-test values computed by Steiger method
to compare two models based on the Pearson correlation
coefficients. Bothmodels canpredict𝐷 𝐽 𝑆 (¬sw, sw). However,
Trait-ToM predicts closer to the ground truth than ToMnet.

We calculate the Pearson correlation coefficients between the
ground-truth and the prediction of two models, shown in Table 2.
Both methods can predict that there are differences in successor
representations of the hypo-actor between the swap and no swap
environments, 𝑟ToMnet = 0.929044 ± 0.00 > 𝑟0.05 (700) = 0.074004
and 𝑟Trait-ToM = 0.935927±0.00 > 𝑟0.05 (700) = 0.074004 for predict-
ing actors with 3 × 3 field of view. To test whether the predictions
of Trait-ToM are significantly better than those of ToMnet, we use
Steiger method. This yields 𝑡 = 2.12 ± 3.42𝑒-2 > 𝑡0.05 (700) = 1.64,
hence the null hypothesis is rejected. We obtained similar conclu-
sions about the prediction of Trait-ToM and ToMnet on actors with
other FoVs (Table 2).

Visualisation. We project the weight space of Trait-ToM into 2D
using t-SNE to have a better visual understanding our networks, c.f.
Fig. 7. There are clear clusters of the preferences (left) confirming
that this information is explicitly coded in the training data. The
Trait-ToM produces different clusters given different traits (middle)
and FoVs of the actors (right) despite the fact that we do not train
Trait-ToM using this information. Especially, there is a smooth

transition between clusters of actors with different FoVs. We notice
that random-actors and hypo-actors with the furthest field of view
(9 × 9) in this setting behave similarly; thus, the generated weights
of our hypernetworks for these types of actors form nearby clusters.

4.4 Indirect Assessment of False Belief
Understanding

Developmental psychologists indirectly assess the ability of under-
standing false belief by three experimental settings: (1) Violation
of expectation (VoE) [30]; (2) Anticipatory looking [10]; and (3)
Active helping [8, 23]. These settings have inspired research in AI
to construct benchmarks to test the ToM models, e.g [13, 38] uses
VoE. We choose to indirectly assess our observer by the ability to
help other agents, i.e., the the active helping setting which the belief
attribution will appear within the context of intention attribution.
To pass this test, e.g. deliver proper helping behaviour, children
need to know that (1) others have goals, and at the same time (2)
others have false beliefs and thus may fail to achieve goals. Inspired
by this experiment, we implement a scenario in which an actor
has a false belief and an assistant needs to help with her (hidden)
goal. The closest setting to ours is [32]. However, there the helper
in that work only watches demonstrations to infer goals, and their
theory of mind model does not make any online prediction about
the behaviour of others. In our scenarios, we are able to investigate
action-based usages of theory of mind skills.

In this scenario, there are two agents: (1) the assistant (with
or without theory of mind) tries to assist, and (2) the actor who
pursuits its own goal. The assistant received full observations in
the factored representation from each environment and (option-
ally) predictions from the theory of mind model. It can choose to
give assistance directly in action forms (the same as the actions
which the actor can take in the environment) or not to give any
assistance and let the actor act on its own. Note that in training RL
agents, we assume any assistance is costly, which means the agent
needs to learn to take efficient actions. The intention prediction is
important in determining whether to assist or not. A more realistic
scenario in which there are more than one agent acting on the
same environment and the helper needs to select who to help is
left for future work. We especially highlight here the scenario in
which the actor can hold the false belief about the position of the
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door. We first let the actor know the initial position of the preferred
door then create a swap event right after the actor collects the key.
The assistant needs to understand the perspective of the actor to
provide assistance. In addition, we consider an obedient actor which
would follow any assistance if given and act on its own strategy
otherwise to achieve its goal.

Algorithm 1: The Procedure Help Policy
Input : The theory of mind model ToM(·)

𝜋∗ (𝑎𝑡 |𝑠𝑡 , 𝑔) the optimal policy
Output : The assistance given to the actor

1 Predict the action of the actor 𝑎𝑡 , 𝑔← 𝑇𝑜𝑀 (𝑠𝑡 );
2 Compute the optimal action 𝑎𝑡 ← 𝜋∗ (𝑎𝑡 |𝑠𝑡 , 𝑔);
3 if 𝑎𝑡 = 𝑎𝑡 then
4 return no assistance;
5 else
6 return 𝑎𝑡 ;
7 end

We construct two types of ToM-augmented help policy: (1) Pro-
cedure Policy; and (2) Reinforcement Learner. The algorithm of
the procedure policy is shown in Algorithm 1. To implement the
procedure policy, we need to pre-train the goal-conditioned policies
that can make near-optimal decisions based on full observations
of the environment 𝜋∗ (𝑎𝑡 |𝑠𝑡 , 𝑔). The procedure policy will give the
near-optimal actions which is computed by 𝑎∗𝑡 = 𝜋∗ (𝑎𝑡 |𝑠𝑡 , 𝑔) as
an assistance to the actor if the optimal action is different from
the predicted action of the ToM model. Our intuition is that if the
action of the actor is optimal, then it does not need to be assisted.
The constructions of reinforcement learner is shown in Fig. 8. Since
the assistant can have access to full observations of the scene, we
do not need to use a memory mechanism such as one in LSTM
or even external memory to implement the policy. The reinforce-
ment learning (RL) agent assists the actor based on goal, action,
and intention predictions of the theory of mind model. We simply
concatenate these outputs of the theory of mind models to create
the feature vector of states observed from the environment. All in-
formation is given to two heads, the actor and the critic, in order to
predict the action and the expected value, respectively. We trained
the RL agents with this actor-critic structure by Proximal Policy
Optimisation (PPO) algorithm [37].

Fig. 9 compares the performance of ToM–augmented policies in
the helping task. For each ToM–augmented agent, we report the
mean and standard deviation measures over 6 runs. Since Trait-
ToM can give better prediction for both type of policies, it can help
agents to achieve higher success rates than ToMnet helped agents.
Although both ToMnet and Trait-ToM can assist actors achieve its
task more frequent than acting on their own (all bars higher than
the horizontal black dot line in the most left figure), Trait-ToM can
help actors to complete tasks faster, i.e. the average episode length is
smaller (the middle figure). Comparing two groups of assistants, the
reinforcement learners perform better than the procedure policies
on this task, both in term of success rates and times to completion.
Interestingly, although the reinforcement learning agent with Trait-
ToM does not need to give as much assistance as ToMnet, it still
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Figure 8: The architecture of the theory of mind augmented
reinforcement learner. The dash lines indicate there is no
gradient flowduring training the assistance policy. The ToM
model is used as a forwardmodel to generate goal, intention
and action predictions.

Figure 9: Performance of ToM–augmented assistants in help-
ing hypo-actor with the 3x3 field of view. The black dot line
shows the performance of actors without help. RL assistants
assist better than procedure policy. Trait-ToM RL assistants
assists more efficiently than ToMnet RL assistants.

maintains higher success rates (the far left figure) and lower time to
achieve the task (the far right figure). This highlights the importance
of understanding false belief in helping other agents where accurate
false-belief understanding assists better and is more efficient.

5 CONCLUSIONS
We have proposed a new Trait-based Theory of Mind (Trait-ToM)
model to equip social observers with the ability to infer the mental
states and goals of other actors through observing their past and
current behaviours. Central to our model is the idea that stable
character traits hold the key prior information that influences the
transient mental states. We hypothesise that such an influence has
a multiplicative nature – traits may modulate the prediction path
from the mental states to the future behaviours. We realised these
ideas through the concept of ‘fast weights’, in that the weights of the
prediction network are determined by the latent traits, which are
functions of the past behaviours, forming a hypernet architecture
for Trait-ToM. We designed and conducted a suite of experiments
over a key-door environment, in which actors have varied preference
and intention traits. The results showed that themultiplicative inter-
actions between the past and the present help make more accurate
future predictions, especially when trained in varying settings such
as a mixed or sequential population. Trait-ToM based assistant can
also achieve a better performance in providing helping behaviours,
known as indirect assessment of false belief understanding.
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