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ABSTRACT
In strategic multi-agent sequential interactions, detecting dynamic
coalition structures is crucial for understanding how self-interested
agents coordinate to influence outcomes. However, natural-language-
based interactions introduce unique challenges to coalition detec-
tion due to ambiguity over intents and difficulty inmodeling players’
subjective perspectives. We propose a new method that leverages
recent advancements in large language models and game theory to
predict dynamic multilateral coalition formation in Diplomacy, a
strategic multi-agent game where agents negotiate coalitions using
natural language. The method consists of two stages. The first stage
extracts the set of agreements discussed by two agents in their
private dialogue, by combining a parsing-based filtering function
with a fine-tuned language model trained to predict player intents.
In the second stage, we define a new metric using the concept of
subjective rationalizability from hypergame theory to evaluate the
expected value of an agreement for each player. We then compute
this metric for each agreement identified in the first stage by as-
sessing the strategic value of the agreement for both players and
taking into account the subjective belief of one player that the
second player would honor the agreement. We demonstrate that
our method effectively detects potential coalition structures in on-
line Diplomacy gameplay by assigning high values to agreements
likely to be honored and low values to those likely to be violated.
The proposed method provides foundational insights into coalition
formation in multi-agent environments with language-based nego-
tiation and offers key directions for future research on the analysis
of complex natural language-based interactions between agents.
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1 INTRODUCTION
The process of coalition formation in multi-agent systems involves
agents forming coalitions to work together towards aligned ob-
jectives by coordinating their actions [33, 38]. This process has
been studied extensively for both static and dynamic cases in game
theory and logic. Past game-theoretic approaches have focused on
studying which coalitions are likely to form based on various types
of equilibria [18] and evaluating the value of a coalition to an agent.
Meanwhile, logic-based approaches have focused on evaluating
whether a given coalition can enforce a temporal property, regard-
less of how the agents not in the coalition behave [1, 29]. However,
neither of these approaches is suitable for studying coalition for-
mation in natural language negotiation, where the ambiguity in
language often leads players to interpret game states differently.
This phenomenon is commonly observed in real-world scenarios
such as human-robot teaming [8], computer games [23, 32].

In this work, we study the problem of predicting dynamic multi-
lateral coalition structures in sequential multi-agent interactions
where players coordinate their actions using natural language. A
coalition structure [16] is a graph where nodes represent play-
ers and the edges represent agreements between players over co-
ordinated actions. While traditional approaches define coalition
structures to be a partition of players, we model a coalition as a
multi-graph allowing multiple agreements between two players, in
addition to allowing a player to form bilateral agreements with mul-
tiple players simultaneously. We model multi-agent interactions as
reactive games, where the player can renegotiate their agreements
in every round. Our aim is to predict these coalition structures
from the perspective of an external observer, similar in spirit to an
agency monitoring a computer network for anomalous behavior.

We use the board game Diplomacy [7] as a testbed for dynamic
coalition structure detection over natural-language negotiations.
Diplomacy is a seven-player board game that exemplifies key chal-
lenges inmulti-agent systems research, combining semi-cooperative
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strategic dynamics with natural language-based negotiation. Play-
ers aim to control a majority of 34 supply centers on a map of
Europe by coordinating the movement of units. While Diplomacy
is a zero-sum game, players must negotiate strategic coalitions to
support their own plans or counteract the moves of other players.

Diplomacy highlights three key challenges central to studying
coalition formation in games with natural-language negotiations:
decision-making under incomplete information, reasoning based on
mental models of opponents, and multilateral negotiations. Since the
negotiations are pairwise and private, each player has incomplete
information about the negotiations a second player has had with
other players. As a result, players must anticipate others’ actions
without full knowledge of all agreements. This requires a player to
construct a mental model of the other player’s incentives to esti-
mate the likelihood they would honor the agreement in addition to
weighing their own incentives to honor the agreement. Lastly, since
a player can simultaneously negotiate multiple agreements about
the same unit with different players, a player must ultimately select
a subset of agreements to honor based on the strategic advantage
they offer to the player and the likelihood of them being honored
by the player with whom the agreement is made.

We define a novel method that addresses these challenges in
dynamic coalition structure detection over natural language nego-
tiations, as visualized in Figure 1. Our approach consists of two
stages: agreement detection and strategic reasoning. To detect
agreements negotiated via natural language in Diplomacy, we lever-
age large language models to parse dialogue, as well as fine-tuned
“intent” models from CICERO [11], a Diplomacy-playing agent.
By comparing the distribution over all moves involving parsed
territories for a given unit before and after a phase of dialogue,
we can learn whether a coalition was formed in the dialogue for
that phase. Given a set of potential agreements identified, we then
predict the set of honored agreements, which defines a coalition
structure, using a deep reinforcement-learning based method. Due
to the large action space and incomplete-information nature of
Diplomacy, traditional enumerative game-theoretic approaches are
intractable. To address these challenges, we extend the approach in
[4] to compute the strategic value of an agreement for both players.
We then sample from the intent model to determine the likelihood
that both players will uphold the coalition, allowing us to measure
the rationalizability of a coalition structure.

The three main contributions of this work are:

(1) Approach. We introduce a novel method that integrates
large language models and game theory to predict dynamic
multilateral coalition formation inmulti-agent systemswhere
agents negotiate coalitions using natural language.

(2) Agreement detection.We develop a procedure that com-
bines pretrained language models with game dynamics to
extract agreements from dialogues between agents, enabling
the detection of coalition structures in real-time interactions.

(3) Strategic reasoning. We propose a new metric based on
subjective rationalizability from hypergame theory, which
evaluates the likelihood that agents will adhere to agree-
ments by accounting for their subjective views of the game
and strategic uncertainty.

We validate our method on a dataset of online Diplomacy game-
play experiments. We find that our hybrid agreement detection
outperforms existing baselines and that our rationalizability metric
effectively distinguishes between when players will honor coali-
tion agreements and when they will not. These findings highlight
the value of integrating natural language techniques with game-
theoretic analysis. They extend existing game-theoretic dynamic
coalition prediction approaches to handle natural language negoti-
ations, bridging toward more realistic real-world applications.

1.1 Related Work
Game theory. The study of coalition formation in game theory
focuses on identifying and characterizing stable coalitions by esti-
mating the value of possible coalitions to an agent. Solution con-
cepts such as the core [2], the kernel [37], the nucleolus [26], and
the Shapley value [3] have been introduced to analyze stability in
transferable utility games, where side payments are allowed, and
non-transferable utility games, where they are prohibited. However,
these approaches do not account for sequential interactions where
agents strategically join coalitions to achieve their goals.

The study of dynamic coalition formation in game theory has
mainly focused on understanding the effects of externalities, where
the formation of one coalition impacts the gains of other co-existing
coalitions. [31] presented a computational study of coalitional
games with externalities, arguing that such externalities are com-
mon in real-world settings. The study of such externalities was
extended by work including [24, 39, 40]. While these approaches
were able to better capture the impacts of externalities on other
coalitions, they assume that complete information available to all
agents, which is not applicable to games such as Diplomacy.

Logic. Strategic decision-making within coalitions has been stud-
iedwithin the logic community. Coalition Logic [29] andAlternating-
time Temporal Logic [1] formalize reasoning about the existence
of joint strategies for agents in coalitions to achieve their goals
regardless of how the non-coalitional agents act. However, these
logics only study static coalitions.

There is an ongoing effort to extend coalition logic to handle
dynamic settings. In [41], authors introduce coordinated coali-
tions that represent a predefined sequence of coalitions for model
checking. [17] presents a complex framework that enriches Con-
current Game Models (CGM) by incorporating negotiations, where
promises—represented as epistemic logic formulas—are embedded
into states and existence of strategies that ensure goal satisfaction
are verified through model checking. These methods requires full
access to the gamemodel, which is impractical for large-scale games
like Diplomacy. Moreover, they model negotiations as deterministic
statements, failing to capture the inherent ambiguity of natural
language.

Negotiation in Natural Language.While significant past work
has studied negotiation and coordination as a natural language task,
the analysis of coalition formation in games involving natural lan-
guage negotiations remains relatively understudied. [21] collected
a dataset of human negotiation dialogues in a semi-cooperative ne-
gotiation task, then trained natural language agents to perform the
same task using the dataset. More recently, large language model-
based agents have been used to achieve stronger performance on a
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Figure 1: Proposed two-stage approach for learning coalition structures from natural language interactions in Diplomacy games.
Stage 1 extracts agreements from pairwise dialogues to form an unweighted coalition structure. Stage 2 applies hypergame
theory to assess the rationalizability of agreements for each player separately, which are then integrated into a weighted
coalition structure representing the likelihood that an external observer believes agreements will be honored.

range of social influence tasks [9], including negotiation in a self-
play environment over both zero-sum [13] and non-zero-sum [22]
games. [14] demonstrates that incorporating more explicit search
and belief tracking into language models can improve their negoti-
ation performance over a wide range of environments. [25] specif-
ically seeks to model political coalition formation with language
model-based agents, arguing that previous language model-based
approaches to negotiation do not fully capture the full complex-
ity and iterative nature of human negotiations. They contribute a
multilingual dataset of European political party manifestos, as well
as coalitions that they formed with other parties. While we simi-
larly seek to model the multi-issue, iterative dynamics of natural-
language coalition formation, we additionally analyze this problem
from a game-theoretic perspective that accounts for agents’ models
of each other.

Diplomacy has also attracted attention from the natural language
community as a testbed for the analysis of coordination dynamics
in a strategic multi-agent environment. [28] studies the formation
and termination of long-term alliances from a linguistic perspective,
finding linguistic cues that presage acts of betrayal. [30] models
deception over long-term relationships in Diplomacy, finding that a
model that uses both game dynamics and dialogue cues can predict
player deception at a near-human level. [42] analyzes games be-
tween CICERO and human Diplomacy players, noting that despite
CICERO’s strong strategic capabilities, it is still less persuasive com-
pared to human players. Finally, [27] devises a novel positive-sum
variant of Diplomacy, finding that language model-based agents
are capable of attaining high joint welfare in this setting.

2 PROBLEM FORMULATION
We use Diplomacy as a testbed to study dynamic multilateral coali-
tion formation. Diplomacy is a deterministic game where players
negotiate before concurrently submitting actions for their units,
such as hold, move, or support. The game state transitions based
on these actions, and the negotiation phase repeats. In this paper,
we only consider the movement phases of the Diplomacy game.
We note the high complexity of the game: each unit has an aver-
age of 26 valid orders, with up to 34 units on the board, making
enumerative approaches intractable [4].

Game model. Diplomacy can be modeled as a concurrent mul-
tiplayer game [1] with rewards, 𝐺 = (𝑁, 𝑆,𝐴,𝑇 , 𝑠0, 𝑅), where 𝑁 =

{𝑃𝑖 | 𝑖 = 1, 2, . . . 𝑛} is a set of players, 𝑆 is a set of states, 𝐴 is a set
of actions, 𝑇 : 𝑆 × 𝐴 → 𝑆 is a deterministic transition function,
𝑠0 ∈ 𝑆 is an initial state, and 𝑅 : 𝑆 ×𝐴→ R is a reward function. A
game play in𝐺 is determined in two phases: Given a state 𝑠 ∈ 𝑆 , the
players in 𝑁 privately negotiate non-binding bilateral agreements
with each other.

Definition 1 (Agreement). Given a state 𝑠 ∈ 𝑆 , an agreement
between two players 𝑃𝑖 , 𝑃 𝑗 is a tuple (𝑢1, 𝑢2, 𝑎1, 𝑎2), where 𝑢1 is a
unit controlled by 𝑃𝑖 , 𝑢2 is a unit controlled 𝑃 𝑗 , and 𝑎1, 𝑎2 are legal
actions for units 𝑢1, 𝑢2 in state 𝑠 .

The content of these negotiations and the agreements are only
known to the players involved in the negotiation, unless one of
these players explicitly shares this information with other players.
At the conclusion of negotiation phase, all players choose an action,
assigning an order to each unit controlled by them. Together, these
actions determine the joint action 𝑎 = (𝑎1, 𝑎2, . . . , 𝑎𝑛), which in
turn uniquely determines the next state 𝑠′ = 𝑇 (𝑠, 𝑎). We denote
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by 𝑑𝑡 the set of all natural language messages exchanged between
any pair of players in round 𝑡 . Therefore, a game can be denoted as
the sequence of state-dialogue-action pairs, 𝜌 = 𝑠0𝑑0𝑎0𝑠1𝑑1 . . . 𝑠𝑛 .
A game in Diplomacy is of finite duration since a player will either
win the game, or the game will be declared a draw. For a more
detailed description, see [36].

A policy for a player 𝑃𝑖 is a map 𝜋𝑖 : 𝑆 → D(𝐴𝑖 ), where D(𝐴𝑖 )
is a set of probability distributions over actions 𝐴𝑖 of player 𝑃𝑖 . A
policy profile is a collection of policies of all players, 𝜋 = (𝜋1, ..., 𝜋𝑛).

Coalition structure. A coalition is a set of honored agreements.
The coalition structure, given a game state, is represented as an
undirected multigraph with players as nodes and parallel edges
indicating agreements between them. Since agreements are inferred
from potentially ambiguous natural language dialogue, we assign
weights to the edges. Intuitively, these weights represent the likeli-
hood of each agreement being honored.

Definition 2. A coalition structure is a graph𝐶 = (𝑁, 𝐸,Agmt,wt),
where 𝑁 is the set of players, Agmt is a set of agreements, 𝐸 ⊆
𝑁 ×𝑁 ×Agmt is the set of edges, and wt : 𝐸 → R is a function that
assigns a real-valued weight to each edge.

Note that in Diplomacy, the coalition structure is not static; we
denote the coalition structure in round 𝑡 as 𝐶𝑡 . This background
motivates the problem of coalition structure prediction.

Problem 1. Given a concurrent multiplayer game𝐺 , a round 𝑡 ≥ 0,
and the play 𝜌 = 𝑠0𝑑0𝑎0 . . . 𝑠𝑡𝑑𝑡 until round 𝑡 , predict the coalition
structure 𝐶𝑡 .

3 BACKGROUND: HYPERGAME THEORY
Diplomacy is characterized by both incomplete information and
unawareness. In Diplomacy, players make decisions without full
knowledge, as they may be unaware of message exchanges between
other players or the content of thosemessages. As a result, a player’s
rationality must be assessed based on their subjective view of the
game, shaped by their knowledge (c.f. [19, 20]).

Hypergame is a game-theoretic model designed for games with
incomplete information and unawareness [5, 35]. In a hypergame,
each player has a subjective view of their interaction, shaped by
their knowledge of the game and others’ perspectives. This struc-
ture allows players to independently form subjective views and
make decisions based on their own subjective game, effectively
capturing player unawareness within the model.

Formally, hypergames are defined inductively based on players’
levels of perception. A level-0 (L0) hypergame represents a game
with complete, symmetric information, where both players have
the same perception of the game, identical to the true game. In a
level-1 (L1) hypergame, at least one player misperceives the game,
but neither player is aware of this discrepancy. Each player believes
their perceptual game is the true game and plays accordingly, with
these perceptual games being level-0 hypergames. In a level-2 (L2)
hypergame, one player becomes aware of the misperception and
can reason about the other player’s perceptual game. This concept
can be extended to higher hypergame levels; however, in this paper,
we restrict ourselves to L2-hypergames, which are most directly
relevant to Diplomacy.

Subjective rationalizability [34] is a solution concept for hy-
pergames that evaluates the rationality of players’ actions based
on their subjective views of the game, considering their knowledge
and beliefs about other players’ perspectives and actions.

Definition 3 (Subjective Rationalizability). Let 𝐻2 = ⟨𝐻1
1 , 𝐻

1
2 ⟩

denote a L2-hypergame, where 𝐻1
𝑖
= (𝐺𝑖

1,𝐺
𝑖
2) is player 𝑃𝑖 ’s L1-

hypergame and 𝐺𝑖
1 is the subjective game of 𝑃1 as perceived by 𝑃𝑖 .

Then, a strategy 𝜋
∗,2
𝑖

is said to be subjectively rationalizable for
player 𝑃2 if and only if it satisfies the following condition for all 𝜋𝑖 :

𝑢2𝑖 (𝜋
∗,2
𝑖

, 𝜋
∗,2
𝑗
, 𝑥) ≥ 𝑢2𝑖 (𝜋𝑖 , 𝜋

∗,2
𝑗
, 𝑥),

where (𝑖, 𝑗) ∈ {(1, 2), (2, 1)} and 𝑥 is a distribution over Φ repre-
senting 𝑃2’s hypothesis over some aspect of 𝑃1’s game. In this
case, the utility is calculated based on the expectation, that is,
𝑢2
𝑖
(𝜋𝑖 , 𝜋 𝑗 , 𝑥) =

∑
𝜑∈Φ 𝑥 (𝜑)𝑢2𝑖 (𝜋𝑖 , 𝜋 𝑗 , 𝜑). The strategy 𝜋

∗,1
1 is sub-

jectively rationalizable for 𝑃1 if and only if it satisfies the following
condition for all 𝜋1,

𝑢11 (𝜋
∗,1
1 , 𝜋

∗,2
2 , 𝜑1) ≥ 𝑢11 (𝜋1, 𝜋

∗,2
2 , 𝜑1),

where 𝜋∗,22 is subjectively rationalizable for 𝑃2.

Def. 3 enables evaluating when a player’s strategy is rational
within their own subjective view of the game. For 𝑃2, a strategy
is subjectively rationalizable if, given its information about 𝑃1’s
game (𝐻1

2 ), 𝑃2 cannot improve their utility by choosing a different
strategy. Specifically, 𝑃2’s utility from its chosen strategy, given
the other player’s strategy and their own beliefs (represented by
a distribution 𝑥), must be at least as high as the utility from any
other strategy they might choose. Subjective rationalizability is
understood similarly for 𝑃1.

4 COALITION STRUCTURE PREDICTION
METHODOLOGY

We introduce a two-stage approach as shown in Fig. (1) that in-
tegrates recent developments in LLMs with subjective rationaliz-
ability in hypergames to solve the problem of dynamic coalition
structure prediction, as defined in Section 2.

The first stage identify the set of candidate agreements Agmt𝑡
being discussed given a play 𝜌𝑡 . We assume that all agreements
are discussed in natural language and no side channels exist for
forming agreements. Letting 𝐶𝑡 be the coalition structure at round
𝑡 , the set Agmt𝑡 determines the set of edges of 𝐶𝑡 .

The second stage assigns weights to the edges in Agmt𝑡 , referred
to as the rationalizability score. For an agreement 𝛼 ∈ Agmt𝑡 , this
score represents the likelihood that an external observer, with ac-
cess to the full state, action, and dialogue history, believes that 𝛼
will be honored by both players. To compute the rationalizability
score wt𝑖 (𝛼), we estimate the likelihood of a player 𝑃𝑖 honoring
the agreement using a L2-hypergame constructed by filtering the
messages to include only those exchanged between the two players
involved in 𝛼 .

Formally, the rationalizability score of an agreement 𝛼 for a
player 𝑃𝑖 is computed by evaluating the strategic value (utility) of
𝛼 for 𝑃𝑖 in its hypergame 𝐻1

𝑖
. Formally, it is given by

wt𝑖 (𝛼) = 𝑉𝑖 (𝛼) ∗𝑉 𝑖
𝑗 (𝛼),
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where 𝑉𝑖 (𝛼) is the game-theoretic value of agreement for 𝑃𝑖 and
𝑉 𝑖
𝑗
(𝛼) is 𝑃𝑖 ’s belief about the likelihood of 𝑃 𝑗 honoring the agree-

ment. Based on Def. 3, this weight reflects how subjectively ratio-
nalizable an agreement is for 𝑃𝑖 , with higher weights indicating
greater rationalizability.

Given the rationalizability scores wt𝑖 (𝛼) and wt𝑗 (𝛼) of 𝑃𝑖 and
𝑃 𝑗 , respectively, the rationalizability score of the agreement 𝛼 for
an external observer is given by

wt(𝛼) = wt𝑖 (𝛼) ∗ wt𝑗 (𝛼).

Note that the proposed two stage approach separates the language-
based reasoning from game-theoretic one. The strategic values 𝑉𝑖
and 𝑉 𝑖

𝑗
are derived from game-theoretic solution concepts and do

not rely on dialogue. Whereas, the set of agreements Agmt𝑡 is
inferred directly from the dialogue.

In the remainder of this section, we first outline how agreements
are identified from dialogue, followed by the computation of their
rationalizability score.

4.1 Agreement Detection
To detect agreements in Diplomacy gameplay from game tran-
scripts, we combine (1) a filtering stage where mentioned locations
that a coalition can be formed over are extracted by a language
model, and (2) an intent extraction stage where specialized Diplo-
macy models are used to extract player intents for classification.

Figure 2 outlines our method for agreement detection. First,
for each state-players tuple (𝑆, 𝑃1, 𝑃2), we first prompt GPT-4o1, a
strong language model, with the dialogue between the two players
at state 𝑆 and information about the Diplomacy board. We then use
the model to extract all locations that were explicitly mentioned in
negotiation between 𝑃1 and 𝑃2. In addition to information about
whether two countries are sufficiently close to form a coalition, we
will use this in a later filtering step.

We then leverage the intent models used in CICERO [11]; these
are 2.7-billion parameter language models that predict player ac-
tions from dialogue. Specifically, they are trained using behavioral
cloning over a subset of “truthful” player dialogues collected from
WebDiplomacy. Notably, this intent model only takes the conversa-
tion between 𝑃1 and 𝑃2 for a given phase, excluding any dialogue
either player had with other players, to restrict the model to direct
coordination between the two players. By computing a distribution
of move likelihoods over all possible moves for a unit before and af-
ter player dialogue, we can estimate whether a coalition was formed
over the unit in question. We extract for each (𝑆, 𝑃1, 𝑃2, 𝑢 ∈ 𝑢1∪𝑢2)
a most likely action 𝑎∗ for the unit in this state. We also compute the
probability of 𝑎∗ before and after dialogue, as well as the entropy
of the distribution of moves 𝑃 (𝑎 |𝑆, 𝑃1, 𝑃2) before and after dialogue.
After filtering out all units where a coalition is not possible, or
where none of the territories involved in the move are mentioned
in the dialogue, we then train a logistic regression classifier on
these features to predict whether a coalition was formed over the
unit in question.

This method allows us to leverage the advantages of both us-
ing a larger, general language model and a smaller, Diplomacy-
specialized language model. While using the intent model allows us

1https://platform.openai.com/docs/models/gpt-4o

to capture more implicit coalition agreements that may not be iden-
tified with an explicit parser, it may also raise many false negatives
due to noise in how the distribution changes as a result of unrelated
dialogue. Adding a filtering step allows us to identify cases where
the distribution shifts due to identifiable discussion of the provinces
in question, as identified by the larger model. Indeed, in Section 5.2,
we show that this hybrid method outperforms methods that only
rely on large language model annotation or learning from intent
distributions.

4.2 Strategic Value of Agreements
Determining the strategic value 𝑉𝑖 (𝛼) of an agreement 𝛼 = (𝑢1, 𝑢2,
𝑎1, 𝑎2) ∈ Agmt for a player 𝑃𝑖 is a challenging task in large games
like Diplomacy. It requires 𝑃𝑖 to determine the rational actions for
all units controlled by 𝑃𝑖 as well as the other players conditioned on
the unit 𝑢1 being assigned action 𝑎1 and the unit 𝑢2 being assigned
action 𝑎2. Traditional game-theoretic approaches [15] enumerate
all possible actions and evaluate them under a solution concept to
determine the action that yields highest value from a given state.
These approaches are inapplicable to games like Diplomacy due to
the large size of players’ action spaces.

Instead, we employ a deep reinforcement learning approach that
first learns a probability distribution

Pr(𝑎 | 𝑠0, . . . , 𝑠𝑡 , 𝑎0, . . . , 𝑎𝑡−1, 𝛼) (1)

over joint actions of all players conditioned on 𝑃𝑖 and 𝑃 𝑗 honoring
a given agreement in addition to the state and action histories.
Intuitively, every joint action in the support of the distribution in
Eq. (1) constitutes a Nash equilibrium in which 𝑃𝑖 and 𝑃 𝑗 honor the
agreement 𝛼 .

Learning joint action distribution. We leverage order sam-
pling models trained as part of the CICERO agent [11], which
use Double oracle reinforcement learning for action exploration
(DORA) [4] to learn the distribution in Eq. (1). DORA simultane-
ously learns a state-value function and an joint action probability
distribution using neural networks trained by bootstrapping on an
approximate Nash equilibrium for the stage game each turn.

DORA is a Nash Q-Learning based approach to approximate
Nash equilibrium in games with large state and action spaces. It
accommodates the large action spaces of Diplomacy by training
a neural network 𝜋 (𝑠;𝜃𝜋 ) to predict joint action probability dis-
tribution with parameters 𝜃𝜋 that approximates the distribution
of actions under the equilibrium policy at state 𝑠 . The candidate
actions to explore are determined by sampling a large number of
actions from 𝜋 (𝑠;𝜃𝜋 ) for each player and selecting actions with
highest likelihood. The Nash equilibrium is then estimated using
regret minimization [12] in the matrix sub-game that includes only
the sampled actions, assuming that the values of successor states
are given by a learned network V(𝑠 ;𝜃𝑣), using the following update
equation:

V(𝑠) ← (1 − 𝛽)V(𝑠) + 𝛽 (𝑟 (𝑠) + 𝛾𝜎 (𝑎)V(𝑇 (𝑠, 𝑎))) .

We refer interested readers to [4] for more details on the imple-
mentation. While we rely on CICERO-trained models for this work,
versions of all of the specialized Diplomacy models used can be
trained in novel game settings where human data is available [4].
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Figure 2: An overview of our agreement detection framework. In this case, we are analyzing whether Italy and Austria have
come to an agreement over Italy’s unit F ION, and determine that an agreement has been reached for Italy to move this unit to
the Eastern Mediterranean Sea (EAS).

Value of agreement. The order sampling model and the value
model provide a way to determine not only the joint action prob-
abilities conditioned on an agreement, but also the value of the
resulting state. Hence, we determine the value of an agreement
by sampling from these distributions and computing the expected
value of next state reached by the player by honoring 𝛼 ,

𝑉𝑖 (𝛼) =
∑︁

Pr(𝑎 | ®𝑠𝑡 , ®𝑎𝑡−1, 𝛼)V(𝑠′), (2)

where 𝑠′ = 𝑇 (𝑠, 𝑎) is the new state reached when joint action 𝑎 is
performed in state 𝑠 .

4.3 Perceived Value of Agreement to Opponent
While Eq. (2) determines the value of an agreement for 𝑃𝑖 , it does not
allow 𝑃𝑖 to estimate its value for 𝑃 𝑗 due to incomplete information
about 𝑃 𝑗 ’s negotiations with others. Instead, 𝑃𝑖 must infer 𝑃 𝑗 ’s
intent from their mutual dialogue and by estimating the value of
various actions in the current state for 𝑃 𝑗 .

We interpret a players’ intent as a probability distribution over
the actions they assign to their units in the next round. To estimate
the likelihood that 𝑃 𝑗 will honor an agreement from 𝑃𝑖 ’s perspective,
we approximate the intent distribution discussed in Sec. 4.1. This
enables us to extract action probabilities from the dialogue to inform
the agreement value computation.

Given the distribution in Eq. (1), we compute the likelihood of 𝑃 𝑗
respecting 𝛼 using the following equation. We denote the support
of a probability distribution d by Supp(d). Given a joint action
𝑎 ∈ 𝐴, let 1𝑗 (𝑎, 𝛼) ↦→ {⊤,⊥} denote whether the action 𝑎 assigns
the same action with 𝑃 𝑗 ’s unit as that assigned under 𝛼 .

𝑉 𝑖
𝑗 (𝛼) =

∑︁
𝑎∈Supp(d)

𝛽Pr(𝑎 | ®𝑠𝑡 , ®𝑑𝑡 , ®𝑎𝑡−1)
𝛽Pr(𝑎 | ®𝑠𝑡 , ®𝑑𝑡 , ®𝑎𝑡−1) + (1 − 𝛽)Pr(𝑎′ | ®𝑠𝑡 , ®𝑑𝑡 , ®𝑎𝑡−1)

,

where 𝛽 = 1𝑗 (𝑎, 𝛼) and 𝑎′ ≠ 𝑎 is a valid action assigned to unit 𝑢2
by 𝑃 𝑗 .

Intuitively, 𝑉 𝑖
𝑗
(𝛼) measures the relative value that 𝑃 𝑗 achieves

by selecting an action that honors 𝛼 when compared with selecting
an action that does not honor 𝛼 , as players are more likely to honor
agreements that are more strategically advantangeous.

5 EXPERIMENTS
We evaluate the two stages of our proposed method separately. First,
we outline the dataset employed for evaluation, and then present
the results for each of the two stages.

5.1 Dataset
We source previous Diplomacy games from WebDiplomacy2, a
multiplayer online implementation of Diplomacy. We consider a
dataset of 140 full-press games played over the standard Diplomacy
map. In order to calibrate our agreement detection classifier, we
manually annotate five games from this dataset, randomly sampling
from games with at least 250 total messages sent. This gives us a
total of 16962 (𝑆, 𝑃1, 𝑃2, 𝑢) tuples over 1603 combinations of a state
𝑆 and players 𝑃1, 𝑃2. This dataset is highly imbalanced, with 444
(2.6%) of all (𝑆, 𝑃1, 𝑃2, 𝑢) tuples having a coalition formed.

After we validate our usage of the agreement detection clas-
sifier, we then use it to label the remainder of the games with
detected agreements. This resulting dataset consists of 415001 total
(𝑆, 𝑝1, 𝑝2, 𝑢) tuples. Of these tuples, 11008 have agreements detected
by our automatic method, 8344 of which are upheld (i.e. the player
played the agreed-upon move).

5.2 Validating Agreement Detection Method
We use the manually-annotated data sample described in Section 5.1
to test our agreement detection method, with an 80-20 train-test
split. While this dataset is strongly imbalanced, we mitigate the
impact of the dataset imbalance by only training on instances that
pass our language model-based filter, which reduces our classifier
training data to 1768 tuples, and by tuning a classification threshold
to optimize F1-score on our training dataset. We benchmark three
methods on this dataset:

• GPT-4o, which prompts a strong language model to directly
identify units over which an agreement has been reached,
• Classifier, which trains a classifier on intent model distri-
butions before and after dialogue over all (𝑆, 𝑃1, 𝑃2, 𝑢) tuples
in the dataset, and

2https://webdiplomacy.net/
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Method F1 Score Precision Recall

GPT-4o 0.34 0.26 0.47
Classifier 0.44 0.43 0.45
Hybrid 0.55 0.63 0.48

Table 1: Classification metrics over the test dataset for our
three methods. Hybrid methods outperform both purely
language model-based and intent model distribution-based
approaches at detecting whether an agreement has been
reached over a specific unit.

• Hybrid, our approach, which first filters using GPT-4o-
parsed locations and player adjacency before training a clas-
sifier on the filtered data.

The results of our evaluation are in Table 1. Our hybrid method
outperforms both training a classifier on unfiltered intent data and
prompting a strong language model on identifying units over which
agreements have been reached. Extraction of coalition agreements
from Diplomacy dialogue is a challenging task, due to the length
of many dialogues in Diplomacy as well as the implicitness and
fluctuating nature of negotiation over a multi-party dialogue. Fine-
tuningmore generally capable languagemodels following the intent
model formula in CICERO, in combination with more sophisticated
parsers such as the one trained in [42], could yield even stronger
performance improvements, which we leave to future work in this
direction.

5.3 Evaluating Rationalizability Score
The rationalizability score establishes a ranking of potential agree-
ments for a unit within a specific game state. To evaluate the effec-
tiveness of the score in predicting coalition structures, we analyze
the rankings induced by the score on honored agreements in com-
parison to those of violated agreements.

We utilize both hand-labeled data and data labeled through the
hybrid approach for the evaluation. We consider a total of 7434
agreements labeled using the hybrid approach for evaluation. For
each agreement identified in the agreement detection stage, we
generate a set of alternative agreements by sampling different or-
ders for the units involved in the agreement. The results of this
evaluation for honored and violated agreements are presented in
Table 2. Given that the output of our model is a ranked list based
on the rationalizability score, we employ two information retrieval
metrics: mean reciprocal rank (MRR) [10] and Brier score [6]. The
MRR is calculated using both the top-1 and top-5 ranked elements.

The ranking generated by the rationalizability score effectively
differentiates between honored and violated agreements. Our find-
ings indicate that honored agreements typically receive lower ranks,
while violated agreements tend to rank higher. This is observed
through both the MRR and Brier scores. When calculating the Brier
score, we normalize the rationalizability scores, such that a score
close to 1 reflects that honored agreements usually have low ranks
and violated agreements have higher ranks. Notably, MRR scores
that are close to 1 in the top-1 case suggest that honored agreements
are frequently assigned a rank of 0, suggesting that this metric can
very precisely recognize upheld coalitions.

Hand-Labelled Hybrid
Honored? Metric Value R-Score@1 R-Score@5 Value R-Score@1 R-Score@5

Yes MRR (↑) 0.2842 0.9444 0.9722 0.3602 0.7416 0.8294
No MRR (↓) 0.2583 0.0 0.125 0.3682 0.2628 0.3354
Yes Brier (↓) 0.0802 0.0422 0.0422 0.0739 0.0311 0.0311
No Brier (↑) 0.7303 0.7494 0.7494 0.5706 0.6145 0.6145

Table 2: Evaluation metrics for honored and violated agree-
ments based on hand-labeled and hybrid datasets. The rank-
ing induced by rationalizability score (RScore) on the set of
agreements assigns lower ranks to honored agreements and
higher ranks to violated agreements when compared to the
ranking induced by Nash approximation-based predictions.

We also compare our rationalizability score to a more conven-
tional coalition formation prediction method, approximate Nash
equilibrium (as estimated by the CICERO value model). We find
that even when such approximate equilibrium-based methods are
adapted for games with large state and action spaces, they remain
inadequate for predicting coalition formation in such dynamic en-
vironments. Our R-Score yields a significantly higher MRR and
a lower Brier score than the value model score in all cases. This
suggests that our rationalizability framework is significantly better
at distinguishing between coalitions that are upheld and coalitions
that are not upheld than Nash approximation-based predictions.

6 CONCLUSION
The detection of dynamic coalition structures is a key problem
in understanding sequential interactions in strategic multi-agent
environments. While many such environments use language, the
study of coalition structure detection over natural language-based
coordination is relatively understudied. This is compounded in
settings like the board game Diplomacy, where players make deci-
sions with incomplete information using dialogue-informed mental
models of their opponents’ future actions, and where relationships
between players can shift drastically between turns as information
is revealed.

Drawing from hypergame theory and the concept of subjective
rationalizability, we propose a general method to dynamically pre-
dict coalition structures over sequential multi-agent interactions.
In our method, we first extract detected agreements using the com-
bination of a large language model-based parser and a specialized
language model to predict player intents before and after the nego-
tiation phase. We then compute the value of the agreement using a
deep reinforcement-learning based value function, which we use
in combination with player intents to compute the likelihood that
each player will honor the agreement.

We validate the success of our method over sampled interactions
between human Diplomacy players, using components of Meta’s
CICERO agent to compute player intents and action values. When
compared to approximate Nash Equilibrium-based methods, our
rationalizability score is significantly better at predicting the coali-
tion structure at a given timestep. Our method can also generalize
to other multi-agent, dialogue-based games, as long as sufficient
human data exists upon which similar, game-specific models can
be trained.
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Extending coalition structure detection to natural language-
based negotiation environments such as Diplomacy presents unique
challenges in a setting where agents have incomplete information,
negotiations are both multi-issue and multi-party, and where agents
must reason over mental models of their opponents. However, for
artificial agents to handle such complex environments properly,
they must be capable of understanding the coalition dynamics of
the environment at a given state. Our method and experiments
serve as an important first step in this direction. We hope that
future work will be able to extend our framework to new settings,
including those with more complex negotiations and less existing
domain-specific models, paving the way for agents that can reason
over such information in deployment settings.
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