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ABSTRACT
Recursive structures are fundamental aspects of many human lan-
guages, allowing the embedding of concepts within other concepts.
These structures are thought to be key factors in the expressiveness
and flexibility of human communication. Such structures evolve
through continuous and iterated learning, transmitted across gen-
erations via the bottleneck of language transmission. In this paper,
we study language acquisition and the emergence of groundedness
and recursive linguistic structures through neural iterated learning,
where expressing a goal requires multiple levels of communication.
We model this process as a language game within the framework
of a decentralized, multi-agent deep reinforcement learning setting,
where agents with local learning and neural cognitive faculties
interact through a series of dialogues. Our examinations reveal the
emergence of a shared depth-1 recursive language, where agents
are able to acquire and generalize their bootstrapped language for
expressing complex concepts.
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1 INTRODUCTION
The ability to articulate ideas using spoken language has stood as
one of humanity’s most intricate yet impactful communication tools.
The humans developed and mastered this technique by forming a
well-structured language that is well grounded in their environment.
The current human language seems to be more refined than what
it was centuries ago, which happened due to the continuous evo-
lution of the language characterized by incremental mutations as
successive generations acquire and adapt language. Embedding the
intricate and ever-evolving nature of human language remains one
of artificial intellegence’s most significant challenges. While the lin-
guistic structures that emerge among AI agents are not predefined,
it is desirable for them to exhibit properties akin to those found
in human language. Some notable emergent properties include
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syntactic structures [15], compositionality, word order, generaliza-
tion, brevity, stability, statistical regularity, complexity, coherence,
and linguistic divergence. The primary work done to study the
computational simulation of evolution, origins, language acquisi-
tion, and other characteristics of human language is being done
by [2, 11, 48, 49, 54, 56]. With the recent advancement in the field
of deep learning [36] with respect to computational tractability,
one could observe rigorous applications of deep learning and deep
reinforcement learning in the context of language games [9, 27],
especially referential/discrimination games [20, 29], reconstruction
games [23], navigation/action games [22, 37] and visual commu-
nication games [41]. The initial array of work [14, 20, 28, 29, 51]
focuses on developing a framework to study the establishment of a
common grounding in an artificial environment where agents are
motivated by achieving a shared goal. A few others study certain
characteristics of natural languages, such as the symbolic ground-
ing [26, 33, 37], compositionality [1, 26, 32, 37, 43, 55], generaliza-
tion [3, 5], brevity, regularity [23, 45], the cultural and architectural
transmission [10, 43], language structures through ease-of-teaching
pressure [32] and networked communication [18]. Some of the
recent works also provide deeper analysis pertaining to the na-
ture and factors affecting the semiotic dynamics underlying the
emergence of language and language constructs. [26, 44, 53] delve
into the factors and constraints such as selectionist criteria, utility,
informativeness, memory capacity, and learning capabilities that
contribute to the development of compositionality and [13, 16, 17]
analyze conditions, inductive biases [13] and intrinsic motivation
required for the emergence of a coherent language. Another direc-
tion in which language emergence is being evaluated is along the
dimension of scale [7, 46], where the correlation between language
characteristics and system complexity and population dynamics
is examined, while [30] incorporates pre-trained general language
models to develop task-specific language models and [6] discusses
the relation between the concepts complexity and message length.

In this paper, we wish to study whether the emergent language
among a multiagent population can be grounded and recursive
[19], a fundamental aspect of human language faculty [39]. For this
purpose, we introduce a novel guessing game setting comprising
of multiple agents with neural faculties, and they must utilize both
sensory input, conceptualization, and verbal communication to es-
tablish a coherent communication language for achieving complex
shared goals. The agents must learn to exploit the implicit recursive
characteristics of the conceptualization to communicate the goals,
which are designed in such a way that a final goal is determined
through intermediate goals. The game involves two phases: (i) the
emergence of a bootstrapped proto-language for communicating ba-
sic concepts; (ii) agents further engage in communicating complex
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goals (containing intermediate goals), whose communication will
require multiple folds of verbal expression combining intermediate
primary messages recursively to identify the final target. Addition-
ally, we study how such language evolves in a multi-generational
setting, where agents learn and transmit language corresponding
to nested concepts across generations through iterated learning.

2 PROBLEM FORMULATION
We model our language game as a partially-observable general-
sum Markov game [34, 40, 47] since we aim for the emergence of
symbolic structures through interactions among agents who pos-
sess the cognitive ability to extract and reinforce commonalities
across multiple experiences. Agents are assumed to possess only
partial observation of the environment, reflecting typical human
experiences where individuals can only perceive their local sur-
roundings and view the world in a simplified manner. The state
of the environment at time step 𝑘 is denoted by 𝑠 (𝑘 ) ∈ S, where
S is the set of all the environment states. We let 𝑜 (𝑘 )

𝑖
∈ O be

the partial observation of agent 𝑖 , which is characterized by the
function 𝑓 : S ↦→ O, where O is the set of all possible obser-
vations. At time instant 𝑘 , agent 𝑖 chooses a random action 𝑎

(𝑘 )
𝑖

which is dependent on the current observation according to a pa-
rameterized stochastic policy 𝜋𝜃𝑖 (·|𝑜

(𝑘 )
𝑖

) which is a conditional
probability mass function over action space A conditioned on the
observation 𝑜

(𝑘 )
𝑖

. For agent 𝑖 , each state transition yields a ran-
dom reward 𝑟

(𝑘 )
𝑖

according to the function R : S × A × S ↦→ R.
The system evolution is stochastic in nature and characterized
by the probability transition function P : S × A × S ↦→ [0, 1],
where P(𝑠, 𝑎, 𝑠′) = P𝑟 (𝑠 (𝑘+1) = 𝑠′ |𝑠 (𝑘 ) = 𝑠, 𝑎 (𝑘 ) = 𝑎) which is
the conditional probability of next state is 𝑠′ conditioned on the
current state and action being 𝑠 and 𝑎 respectively. The collective
goal of the agent population is to collaboratively seek a policy
𝜋𝜃∗ = [𝜋𝜃★1 , 𝜋𝜃★2 , . . . , 𝜋𝜃★𝑁 ] that maximizes the individual long-term
return over the network based solely on local information, 𝑖 .𝑒 .,

𝜃★𝑖 = argmax
𝜃 ∈Θ

𝐽𝑖 (𝜃 ), with 𝐽𝑖 (𝜃 ) = E𝝅𝜽 ,𝜇

[
𝑇−1∑︁
𝑘=0

r(𝑘 )
𝑖

]
. (1)

where E𝝅𝜽 ,𝜇 [·] is the expectation with respect to all 𝑇 length tra-
jectories generated using the policy 𝜋𝜃 with initial distribution 𝜇

and Θ ⊂ R𝑠 is a compact and convex set.

3 LANGUAGE GAME
In this paper, we consider a "guessing game" environment [50] for
studying emergent recursive language, which can be understood
as the complexity addition to the widely used referential game
(Lewis signaling game) [31]. In referential games, the listener and
speaker can immediately reach an agreement on the meaning topic
of an unknown utterance. However, in guessing games, multiple
distinct concepts are present in the context during the interaction.
These additional elements, along with the topic, introduce further
ambiguity for the agents to find an agreement for an unknownword.
This is also known as Quine’s "Gavagai" problem [42] or poverty of
stimulus. This complexity increases even further when the number
of concepts under a category increases due to the combinatorial
explosion of mappings from words to meaning.

In this paper, we introduce a PathFinder game that consists of a
simple connected graph 𝐺 = (𝑉 , 𝐸) on a bounded 2𝐷 plane, where
𝑉 and 𝐸 are vertices and edges, respectively. Although similar in
shape, each vertex is distinct by a unique location (∈ R2) and a color
is assigned to them from a predefined set of colors B. The agents
residing in the environment conceptualize the topology of the envi-
ronment into concept space, C = H ∪W∪B∪ {□} which consists
of a finite collection of segments H , sectors W, colors, B and the
null concept □. A segment is defined as the circular strip formed by
concentric circles centered at a certain point. Sectors are formed
by uniformly dividing the 2D region, 𝑖 .𝑒 ., at 90◦ angles (quadrants)
and 45◦ angles (octants). Please see Figure 1 for illustration. This
conceptualization parallels how humans perceive locations using
cardinal directions. In our setting, the space is conceptualized a
priori as discrete and categorical. The color property assigned to
each node is based on the assumption that agents possess a sen-
sory mechanism to identify color hues. Hence, each node can be
characterized as the ⟨H ,W,B⟩. The sectors belonging toH may
overlap with each other, potentially leading to a poverty of stimulus
scenario. The language game proceeds as follows:

(1) A speaker and listener are chosen from the population 𝑈

and assigned to a random source vertex 𝑠 . Speaker picks
a random target vertex 𝑡 from graph 𝐺 , which is at least
one unit hop away from the source. The speaker’s goal is
to guide the listener to the target vertex 𝑡 from the source
vertex 𝑠 through a finite path 𝑃 = ⟨𝑣0 = 𝑠, 𝑣1, 𝑣2, ..., 𝑣ℎ = 𝑡⟩
by uttering a finite sequence of messages.

(2) The speaker agent sequentially obtains the observation 𝑜 =

⟨𝑜0, 𝑜1, . . . , 𝑜ℎ⟩ corresponding to the path 𝑃 , where 𝒐𝑖 =

𝑓 (𝑣𝑖 ) ∈ R𝑑 . The concept selection module generates the
concept 𝑐 = ⟨𝑐0, 𝑐1, . . . , 𝑐ℎ⟩ based on the observation 𝑜 by
adhering to minimum description length criteria to iden-
tify the essential concepts for conveying the target vertex
𝑡 . Here, the elements of the concept 𝑐 are interrelated as
𝑐𝑖 = Λ(𝑜𝑖 , 𝑜𝑖−1).

(3) The utterance module of the speaker sequentially produces
the messages 𝑚 = ⟨𝑚0,𝑚1, . . . ,𝑚ℎ⟩ corresponding to the
selected concepts, where𝑚𝑖 ∈ Ξ (vocabulary).

(4) The listener hears the sequential message𝑚 uttered by the
speaker and predicts the concepts 𝑐′ = ⟨𝑐′0, 𝑐

′
1, . . . , 𝑐

′
ℎ
⟩ cor-

responding to the message𝑚 and further deduces the path
𝑃 ′ to the target vertex 𝑡 ′. Then the listener navigates to 𝑡 ′
by following the predicted path 𝑃 ′. Note that the listener
does not have access to the concept-utterance mapping of
the speaker.

(5) The listener and speaker are awarded a shared reward if
𝑡 = 𝑡 ′ the listener identifies the target vertex). Steps 1–5
constitute one conversation in a dialogue, which is repeated
for all conversations within the dialogue.

(6) After a predetermined number of dialogues, the successive
generation of language-innocent agents𝑈 ′ is added to the
population, 𝑖 .𝑒 .,𝑈 = 𝑈 ∪𝑈 ′, and then the game resumes.
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Figure 1: Illustration of the PathFinder game with homoge-
neous agents

3.1 Recursive Language Structure
The recursive structure refers to a syntactic or structural pattern in
language where an element is repeated in a self-referential man-
ner within a sentence or a larger linguistic unit. The recursion
is one of the fundamental and innate properties of the language
faculty, which plays a crucial role in the generation of complex
and hierarchically structured expression [19]. “A language that
lacks recursion would be considerably . . . exotic. No sentence in such
a language could contain more than two words” [38]. In linguistics,
recursive language enables the creation of sentences or phrases of
arbitrary complexity through repetitive structures generated by a
grammatical mechanism. In human language, situations are often
expressed by embedding one concept within another. For example,
in the sentence “The dog the cat bit barked", can be marked as a
recursive sentence as follows: “[ [ the dog [ the cat bit ] ] barked
]". Recursion, as exemplified here, is a fundamental linguistic fea-
ture that allows “digital infinity", 𝑖 .𝑒 ., the generation of infinitely
complex expressions from a finite set of rules. It serves as a corner-
stone of human language, facilitating the conveyance of intricate
meanings and ideas. The recursive structures inherent in language
greatly enrich and enhance the flexibility of expression in natural
languages. Recursion, at depth-n, entails embedding a maximum
of 𝑛 + 1 components recursively within a single sentence struc-
ture. In this paper, our primary objective is to observe whether
the emergent communication protocol can gravitate towards a re-
cursive language while describing complex goals. The recursive
language structure used by the agents in the PathFinder game can
be represented using following recursive grammar:

Nonterminals : 𝑆, 𝑃 Start Symbol : 𝑆

Rules : 𝑆 −→ 𝑃𝑆 |□
𝑃 −→ 𝐶1𝐶2𝐶3

𝐶1 −→ 𝑐1,∀𝑐1 ∈ Γ(H ∪ {□})
𝐶2 −→ 𝑐2,∀𝑐2 ∈ Γ(W ∪ {□})
𝐶3 −→ 𝑐3,∀𝑐3 ∈ Γ(B ∪ {□})

The language defined above is right recursive, where each phrase
(also referred to as “derivational layer") forms the atom for the
subsequent derivational layer. In this way, one can parse the recur-
sive message in an iterative manner. However, within the phrase
𝑃 = 𝐶1𝐶2𝐶3, we have sector (𝐶1) followed by segment (𝐶2) and
then color (𝐶3). Importantly, there is no recursion within the
phrase itself; instead, it follows a hierarchical structure based on
the order of sector, segment, and color. This structure makes the
language compositional at the phrase level while allowing for re-
cursive relationships between phrases. In this paper, our objective
is to promote interactions between the agents, where they learn
to communicate through decentralized learning by experimenting
their knowledge of the nearly raw language through dialogues,
which eventually results in the emergence of a shared vocabulary.

Definition (Emergent vocabulary): An emergent vocabulary Γ is
a shared mapping function between lexis Ξ and the concept space
C, 𝑖 .𝑒 ., Γ : Ξ ↔ C collectively agreed upon by all the agents in the
population [12]. Note that there are |C| |Ξ | possible vocabularies for
all the agents to agree upon, which makes it unlikely for all agents
to converge on the same vocabulary without some mechanism for
coordination and consensus.

Figure 2: Transition of one-step communication between
speaker and listener.

3.2 Agent Architecture
In our setting, each agent’s architecture is identical and comprises
of two modules: (i) the speaking module (concept selection mod-
ule and utterance module) and (ii) the listening module. We call
this combined policy architecture of all the modules residing in
one agent a homogeneous agent. A homogeneous agent possesses
the interchangeability property of human language. The concept
selection module in the speaking module regulates the principle
of least effort [4, 57] and allows the agent to optimize the decision
of choosing the number of required spatial concepts for efficiently
conveying the topic vertex. The utterance module is responsible for
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choosing a word according to the chosen concept by following a pol-
icy. Similarly, the listening module processes the uttered concepts
by the speaker and interprets them to identify the conveyed goal.
The utterance module and the concept selection module combine
to form the speaking module, which involves decision-making and
then uttering words. Each module is implemented using recurrent
neural networks to handle sequential actions, such as choosing the
relevant concepts, uttering a sequence of symbols, or processing
a sequence of uttered symbols. The networks build internal repre-
sentations that embody the tacit competence and understanding
of the language. The combined architecture is termed as the policy
architecture, where all the modules work in congruence to achieve
a stable agent that has synchronization between all it’s modules.
The synchronization here means that the agent should learn the
language, 𝑖 .𝑒 ., mappings from concepts to utterance symbols and
vice versa.

Here𝜙,𝜓 , and𝜃 represent the parameters of the concept-selection
network, utterance network, and listening network, respectively.
All the modules of listener and speaker have to synchronize through
trial and error for a successful communication language to emerge.
In our setting, we perform decentralized learning with decentral-
ized execution [14]. Our agents are independent learners [52] and
the channel between speaker and listener is non-differentiable,
which implies that the back-propagation of the listener does not
transmit the gradient backward to the speaker. In our 2D envi-
ronment, there are 𝑁 agents and 𝑀 vertices. The state S of the
game set consists of all relevant details that define the environ-
ment. The state of the environment at time 𝑘 is given by s𝑘 =[
x(1),...,(𝑁 ) , z(1),...,(𝑁 )

𝑘
, q(1),...,(𝑁 ) ,u(1),...,(𝑁 )

𝑘

]⊤
∈ S, wherex(𝑖 ) ∈

R2 is the location of the 𝑖𝑡ℎ vertex in the world, z(𝑖 ) ∈ {1, 2, . . . , 𝑁 }
is the current location of the agent, 𝑖 , q(𝑖 ) ∈ R is the color of the
vertex, 𝑖 and u(𝑖 )

𝑘
is the utterance in the conversation involving

agent 𝑖 . The speaker agent 𝑖 locally perceives the environment,
which characterizes the observation vector of the speaker agent

o(𝑖 )
𝑘

∼
[
z(𝑖 )
𝑘

, g(𝑖 )
𝑘

,u(𝑖 )
𝑘

q(g(𝑖 )
𝑘

) , d(1),...,(𝑀 ) + 𝜖𝑑 , w(1),...,(𝑀 ) + 𝜖𝑤
]⊤,

where 𝜖𝑑 ∼ N(0, 1) and 𝜖𝑤 ∼ N(0, 1) are white Gaussian noises,
g(𝑖 )
𝑘

∈ {1, 2 . . . 𝑀} is the topic vertex, and d,w represent the dis-
tance and the angle of vertices from the speaker’s current vertex
respectively. The interaction pathway consists of multiple networks
across the speaker and listener agents operating sequentially. The
concept-selection network 𝜋𝜓 operates in a one-to-many mode,
where the initial hidden vector is obtained through a linear trans-
formation of the observation vector o𝑘 , and the output is fed back
as input. This network outputs the conception-selection bit-vector,
b𝑘 which is then passed through a differentiable channel to the
speaking module 𝜋𝜃 (many-many mode) along with the spatial
description c𝑘 of the topic vertex as c𝑘

⊙
b𝑘 , where

⊙
is the

coordinate-wise vector product. The network utters the message,
m𝑘 which is transmitted to the listener through a non-differentiable,
noise-free channel. The listening module 𝜋𝜙 in the listener agent
operates in a many-to-many mode, which means it processes the
words in the generated messagem𝑘 sequentially and generates a
probability distribution 𝜋𝜙 (·|m𝑘 ) over the entire concept space C.

This distribution represents the agent’s interpretation of the mes-
sage in terms of different concepts within the concept space. This
distribution is further used to generate the listener interpretation
c′
𝑘
through categorical sampling. The complete architecture of the

agent is depicted in Figure 1.

4 POLICY OPTIMIZATION
The cost function 𝐽 (𝜃,𝜓, 𝜙) combines three different functionalities
involved in the processes, namely the interchangeability function,
the concept selection module, and regularized communication be-
tween agents and training, which requires the joint optimization
of all the components. Since gradients cannot be backpropagated
through the discrete channel between concept selection and utter-
ance network, we use Gumbel-Softmax [21, 35] based sampling to
enable differentiability between concept-selection and utterance
channel, allowing gradients to flow through the samples.

Then 𝐽 (𝜃, 𝜙,𝜓 ) = L1 (𝜃, 𝜙,𝜓 ) + L2 (𝜃, 𝜙,𝜓 ) + L3 (𝜃, 𝜙,𝜓 ),
where L1 (𝜃, 𝜙,𝜓 ) =

EI𝑘

[
𝐾−1∑︁
𝑘=0

r𝑘 + 𝛽H(𝜋𝜃𝐴 (·|c𝑘 )) + 𝛽H(𝜋𝜙𝐵 (·|o𝑘 ))
]

︸                                                             ︷︷                                                             ︸
Regularized cumulative reward

, 𝛽 ≥ 0,

L2 (𝜃, 𝜙,𝜓 ) = −EI
[
∥b∥22 + 𝛽′H(𝜋𝜓𝐴 (·|s))

]
︸                                                     ︷︷                                                     ︸

concept-selection loss

, 𝛽′ ≥ 0.

L3 (𝜃, 𝜙,𝜓 ) = −EI

[
𝛼1D𝐾𝐿

(
𝜋𝜃𝐴 (·|m)

 𝜋𝜙𝐴 (·|m)
)
+

𝛼2D𝐾𝐿

(
𝜋𝜙𝐵 (·|c′)

 𝜋𝜃𝐵 (·|c′)) +
𝛼3D𝐾𝐿

(
𝜋𝜙𝐵 (·|m)

 𝜋𝜓𝐵 (·|o)
) ]

︸                                                                      ︷︷                                                                      ︸
Interchangeability loss

.

where EI [·] be the expectation induced by the 𝑟 .𝑣 .𝑠 . m ∼ 𝜋𝜃𝐴 (·|𝑐),
c′ ∼ 𝜋𝜙𝐵 (·|𝑚), s ∼ 𝜇, o = 𝑓𝐴 (s), o → c and EI𝑡 [·] be the expecta-
tion induced by the 𝑟 .𝑣 .𝑠 .

The goal is to find the optimal parameters 𝜃∗, 𝜙∗,𝜓∗ such that:

𝜃∗, 𝜙∗,𝜓∗ = argmax
𝜃,𝜙,𝜓

𝐽 (𝜃, 𝜙,𝜓 )

4.1 Reward Function
We follow a reward mechanism that balances exploration, coopera-
tion, synchronization, accuracy, and efficiency in communication.
In the Pathfinder game, which entails multi-step communication,
agents are required to focus on delayed rewards. Agents are trained
with shared rewards, fostering cooperation and shared language
formation. To encourage agent exploration, we offer partial and
complete rewards, motivating the agent to try different approaches
and adapt themselves to make informed decisions during training.
Both agents receive a partial reward if the listener infers the right
region where the topic vertex is located but fails to identify the
topic vertex. This acknowledges the successful transmission of rel-
evant information without complete understanding. A full reward
is given if the listener can accurately and unambiguously infer the
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exact topic vertex from the communicated information signifying
a high level of successful communication and concept selection.

r =r[1] + 𝐼 (𝑣1 = 𝑣 ′1)r[2] + . . .

+ 𝐼 (𝑣1 = 𝑣 ′1, 𝑣2 = 𝑣 ′2 . . . 𝑣ℎ−1 = 𝑣 ′
ℎ−1)r[ℎ],

where r[ 𝑗] is the reward associated with the 𝑗𝑡ℎ phrase which is
defined as follows:

r[ 𝑗] =


𝜁1 (∈ R), if 𝑣 𝑗 = 𝑣 ′

𝑗
,

𝜁2 (∈ R ∧ 𝜁2 < 𝜁1), if 𝑗 = ℎ

and C𝑧 (𝑣 𝑗 ) ∩ C𝑧 (𝑣 ′𝑗 ) ≠ ∅,
𝜁3 (𝜁3 ≤ 0 ∧ 𝜁3 < 𝜁2), otherwise.

A penalty is given if communication fails in order to discourage the
respective concept-vocabulary mapping and to prevent incorrect
or ineffective communication choices. The concept-selection mod-
ule of the speaker seeks to select the optional spatial description
to refer to the topic vertex by deactivating redundant concepts.
The mechanism aims to ensure that the sentence corresponding
to the generated spatial description is of optimal length to convey
the intended meaning effectively. To support optimal word-order
selection, we penalize the speaker for choosing a suboptimal se-
quence of concepts. In cases where a concept is deactivated, the
agent chooses to remain silent at that particular instant of the corre-
sponding generated message. To enable this, the utterance module
chooses a NULL utterance Γ(□) to indicate silence. The concept of
⊥ utterance is significant since we do not explicitly impose it a
priori; rather, it is learned through interactions. In order to promote
consistency and coherence in the use of the Γ(□) utterance across
different word categories in a sentence, we employ a strategy to
positively reward r′ the speaker for the reuse of the same word for
the □ concept, irrespective of its temporal position in a phrase. This
reward system encourages the emergence of a common word for
the □ concept across different contexts, regardless of its position in
the message u𝑘 .

r′𝑡 =

{
𝜁 ′1 (∈ R), if |{Γ(𝑎) |𝑎 ∈ u𝑡 ∧ 𝑎 = ⊥}| = 1,
𝜁 ′2 (𝜁 ′2 < 𝜁 ′1), otherwise.

4.2 Iterated Learning
In this paper, we consider an iterated learning framework to study
the propagation and evolution of recursive language through gen-
erations, where the language has to pass through the bottleneck
of cultural transmission. Iterated learning [24] is a framework to
study emergent language structures by simulating cultural evolu-
tion. Iterated learning can be explained as the inductive process
by which a certain behaviour develops in one individual through
finite realizations of the same behaviour in another individual who
acquired that behaviour in a similar manner. The iterated learning
model is used to simulate the language evolution process based
on the idea that the simulated language must be learned by new
speakers at each generation from finite samples while also being
used for communication [24, 25]. The language structure evolves
through continuous and iterated learning due to inter-generational
language discrepancies that arise when language is passed down
through the bottleneck of inter-generational language transmis-
sion. In the iterated learning model (Figure 3), agents of generation

Figure 3: An agent from generation 𝑖, utilizing language 𝐿𝑖 ,
produces utterances 𝑈𝑖 to convey concepts 𝐶𝑖 to the next
generation, 𝑖 + 1. The agents of generation 𝑖 + 1 then derive
their language 𝐿𝑖+1 from these utterances, perpetuating the
iterative refinement and transmission of language over gen-
erations.

𝑖 + 1 update their language 𝐿𝑖+1 by learning from the utterances𝑈𝑖
produced by the previous generation 𝑖 . This iterative process drives
the gradual evolution of linguistic structures across generations.
As language is passed down, recurring patterns stabilize, leading to
the emergence of systematic communication strategies.

5 EXPERIMENTS & DISCUSSIONS

Figure 4: Concept space and the corresponding conceptual-
ization of vertices.

In our experiments, we start with random initial values of the hy-
perparameters (learning rate, batch size, and regularization length).
These hyperparameters are fine-tuned by a continuous process of
rigorously observing the experiment results. We consider a graph
with 6 vertices setup for our 2D grid-world environment. The source
and target vertex pairs used for experiments have a maximum dis-
tance or depth of 2 between them, which indicates that either the
source and target vertex are neighbours or they have one intermedi-
ate vertex between them. Initial experiments start with two homo-
geneous agents who can be seen as the adult population. This initial
population of agents is involved in playing the PathFinder game
and developing the initial communication protocol. Each dialogue
consists of 100 conversations (batch size). The interchangeability
property is explored by switching the roles of the speaker and lis-
tener every 500 epoch. The speaking and listening module within
the agent’s architecture utilizes an LSTM cell. Speaker’s observa-
tion consists of coordinates of source location s, target location t.
For having a local understanding of the whole environment, the
observation vector also contains the angle and Euclidean distance
of each vertex in the graph𝑤.𝑟 .𝑡 . source vertex. The lexis size (|Ξ|)
is taken as 25. The observation vector 𝑜𝑡 by the speaker agent is
transformed into a feature vector (∈ R25) by passing it through
a fully connected neural network. This feature vector forms the
hidden input of the concept selection module (𝜓 ) whose hidden

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

1239



size is also taken as 25. The speaking and listening modules are
implemented as a single-layer LSTM cell with a hidden size of 250.
The LSTM networks output the sequence of words (for the speaker)
or concepts (for the listener) with a maximum length of 3. For the
Gumbel-Softmax-based continuous relaxation within the concept
selection module, the temperature parameter 𝜏 is set to 0.5. Gra-
dients originating from all modules are clipped with a maximum
value of 50. Additionally, successful communication rewards both
the speaker and listener with 100, and partial success merits a re-
ward of 50. The concept space C consists of 4 sectors, 3 segments,
and 4 colors. The concept space C is illustrated in Figure 4. Since
there are overlapping sectors (Sectors 1, 3, and 4) we have a poverty
of stimulus situation. We encode concepts using integers, where 0
is used for the null concept □, {1, 2, 3} represent segments belong-
ing to H , {4, 5, 6, 7} for sectors W and {8, 9, 10, 11} for colors B
respectively.

During every conversation in a dialogue, a random vertex (ex-
cept the source vertex) is chosen as the topic vertex. In this paper,
we consider two-timescale networks [8] to obtain synchronized
convergence, where the utterance network is calibrated using a
faster timescale compared to the conception selection network. In
this approach, the concept selection network can be considered to
be pseudo-stationary, while the utterance network converges with
respect to the stationary values of the concept selection network,
and this cycle repeats itself in the long run. To achieve this, we em-
ploy the vanilla stochastic gradient algorithm with learning rates
of the respective networks differing by order of magnitude.

In our experiments, we explicitly test the emergence, stability,
and adaptability of recursive language in settings that mimic in-
creasing environmental and architectural complexity. By explor-
ing key language-shaping phenomena, such as dynamic environ-
ment complexity, role interchangeability, iterated learning, and
an expanding lexis size, we provide strong evidence that recur-
sive language not only emerges but thrives, even when faced with
real-world challenges. These controlled yet demanding conditions
reveal how recursive language can converge and remain stable in
fluctuating environments.

5.1 Groundedness and Interchangeability
During the initial phase, agents’ vocabulary mappings are randomly
generated, allowing for exploration that drives the evolution of co-
herent language within a limited number of dialogues. Coherence in
this context refers to the consistent and meaningful use of language,
where words and expressions convey clear and shared meanings.
This coherence is evidenced by the convergence of loss functions
and the maximization of average rewards, as depicted in Figures
5 and 6. To improve communication, we adjust policy parameters
using policy gradient methods over a non-differentiable channel
between speakers and listeners. Positive rewards, indicating suc-
cessful communication, are rare but crucial for reinforcing effective
strategies. However, random neural network initialization and topic
pair distribution may hinder this reinforcement, impacting the sys-
tem’s behavior.

Furthermore, the homogeneous agent architectures facilitate
role-switching between agents, ensuring flexibility in communica-
tion. By incorporating a component for learning reverse mappings

in the cost function, agents can sustain learned mappings during
continuous language evolution. This is evident when agents switch
roles periodically, minimizing the interchangeability loss (L2) in
the cost function. Furthermore, the continuity of learning is demon-
strated in Figure 8, where dips in success ratio (attributed to role
switching) gradually diminish, ensuring near-seamless progress.

Figure 5: Evolution of the total cost function, interchange-
ability loss, and description length over time.

Figure 6: The mean reward achieved across interactions
within a single dialogue.

5.2 Complex Goal Identification
During conversation, the speaker can either choose the depth-0 or
depth-1 vertex. After choosing the topic vertex, both agents engage
in a round of dialogue where the length of the message uttered by
the speaker depends on the intermediate vertex between the source
and target vertices. Initially, agents successfully communicate goals
with a path length of 1. As shown in Figure 10, grounding emerges
in the environment as agents are able to comprehend larger path
length-2 goals. This ability stems from the recursive structure inher-
ent in the language, enabling speakers to embed messages within a
single sequence. The message conveyed for path length 1 serves as
the foundation for achieving goals involving intermediate vertices
with greater path lengths. Agents adhere to a recursive structure
in their messages, as described in Section 3.1. For depth-1 samples
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(denoted by 𝑃 = {𝑠 = 𝑣0, 𝑣1, 𝑡 = 𝑣2}), the message𝑚 combines the
messages associated with the individual paths (𝑣0, 𝑣1) and (𝑣1, 𝑣2).
In these cases, the agent simultaneously produces the sequence
of messages𝑚 =𝑚1,𝑚2 simultaneously, and the listener unfolds
the message using the recursive structure to navigate to the target
vertex 𝑡 .

Figure 7: First, second, and third word accuracy.

Figure 8: Ratio of correct target vertex prediction 𝑖 .𝑒 ., listener
was able to navigate to target vertex.

5.3 Cultural Evolution and Adaptation
We conducted experiments to explore the propagation of recursive
language across successive generations. New agents, initially un-
familiar with the language, were introduced into the environment
and assigned the role of listener for a certain period before being
assigned the role of speaker. Two agents were introduced at differ-
ent intervals (one at dialogue 5000 and the other at dialogue 10000)
to observe how the language structure propagates. Throughout the
training process, we observed significant fluctuations in success ra-
tio and reward, as depicted in Figures 8 and 6, respectively. Notably,
there are notable drops and subsequent rises in these metrics. By
epoch 12000, all agents, including the newcomers, had converged
to almost identical language structures as the original parents, as
evidenced by the similarities in the language heatmaps shown in
Figures 9 and 11.

Figure 9: Consolidation of vocabulary symbols across con-
cepts

Figure 10: The accuracy for conversation between agents for
goal vertex with distance 1 and 2

Figure 11: Consolidation of vocabulary symbols among child
agents across concepts

Limitations: In some trials (< 5%), successful behavior is not ob-
served, primarily due to the lack of positive rewards resulting from
random initialization of neural network weights and the distribu-
tion bias of the source-topic vertices pair chosen for conversations.
Additionally, our study focuses on recursive language up to depth-1,
which can be further scaled to explore deeper levels of recursion.

6 CONCLUSION
In this paper, we demonstrate the emergence of grounded recursive
language, where longer messages are communicated by breaking
them down into comprehensible parts. This approach ensures that
all parts of lengthy messages are interconnected through shared
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contexts. We observed that agents learn to consistently use com-
mon symbols for identical concepts within messages. Our findings
underscore the enduring nature of recursive structures, indicating
their transmission across generations of communicators and empha-
sizing their fundamental role in shaping effective communication
dynamics over time.
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