
Counterfactual Explanations for Model Ensembles
Using Entropic Risk Measures

Erfaun Noorani
University of Maryland

College Park, United States
enoorani@umd.edu

Pasan Dissanayake
University of Maryland

College Park, United States
pasand@umd.edu

Faisal Hamman
University of Maryland

College Park, United States
fhamman@umd.edu

Sanghamitra Dutta
University of Maryland

College Park, United States
sanghamd@umd.edu

ABSTRACT
Counterfactual explanations indicate the smallest change in input
that can translate to a different outcome for a machine learning
model. Counterfactuals have generated immense interest in high-
stakes applications such as finance, education, hiring, etc. In several
use-cases the decision-making process often relies on an ensem-
ble of models rather than just one. Despite significant research on
counterfactuals for one model, the problem of generating a single
counterfactual explanation for an ensemble of models has received
limited interest. Each individual model might lead to a different
counterfactual, whereas trying to find a counterfactual accepted by
all models might significantly increase cost (effort). We propose a
novel strategy to find the counterfactual for an ensemble of models
using the perspective of entropic risk measure. Entropic risk is a
convex risk measure that satisfies several desirable properties. We
incorporate our proposed risk measure into a novel constrained op-
timization to generate counterfactuals for ensembles that stay valid
for several models. The main significance of our measure is that it
provides a knob that allows for the generation of counterfactuals
that stay valid under an adjustable fraction of the models. We also
show that a limiting case of our entropic-risk-based strategy yields
a counterfactual valid for all models in the ensemble (worst-case
min-max approach). We study the trade-off between the cost (effort)
for the counterfactual and its validity for an ensemble by varying
degrees of risk aversion, as determined by our risk parameter knob.
We validate our performance on real-world datasets.
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1 INTRODUCTION
The widespread adoption of machine learning models in critical
decision-making, from education to finance [8, 12, 14, 25], has raised
concerns about the explainability of these models [45, 52]. To ad-
dress this issue, a recently-emerging category of explanations that
has gained tremendous interest is: counterfactual explanation [63].
Given a specific data point and a model, a counterfactual explana-
tion (also referred to as “counterfactual”) is a feature vector leading
to a different model outcome. Typically, counterfactuals are based
on the closest point on the other side of the decision boundary of
the model, also referred to as the closest counterfactual (also see
surveys [4, 37, 50, 65]). For example, in automated lending, a coun-
terfactual can inform a denied loan applicant about specific changes
such as increasing collateral by 10K can lead to loan approval.

In several applications, multiple models with distinct architec-
tures and training processes can be trained for a specific prediction
task, potentially yielding different predictions for the same input.
Ensemble models in machine learning combine the predictions of
multiple such models to improve overall prediction (goes way back
to random forests [9]; also used for neural networks [24, 40]). En-
sembles aggregate insights from a set of models, often leading to
more reliable outcomes. Evidence suggests averaging ensembles
work because each model will make some errors independent of
one another due to the high variance inherent in neural networks
with large number of parameters [24, 40]. Additionally, ensembling
might also be beneficial when different models capture distinct
facets of the input data, akin to how multiple interviewers might
offer varied perspectives on a candidate. Sometimes, ensembling
several smaller models has also been found to be more useful than
training one large model [39]. By leveraging ensembles, machine
learning systems can mitigate biases and errors inherent in indi-
vidual models, enhancing performance. Ensembling techniques are
also commonly employed to address the issue of predictive mul-
tiplicity where multiple equally-well-performing models lead to
different predictions on certain data points [6, 28, 64].

Providing recourse for model ensembles can be challenging since
each individual model would lead to a different closest counterfac-
tual. Finding a single closest counterfactual with a reasonable cost
that remains valid across all models in the ensemble is nontrivial.
This worst-case approach is overly conservative leading to coun-
terfactuals that are potentially quite far from the original point;
sometimes, it may not even identify any counterfactual if there is
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no region where all the acceptance regions overlap. To make sure
counterfactual explanations are useful and actionable to the users,
we not only need them to be close but also require them to stay
valid under a reasonable portion of the models within the ensemble.
In general, it might even be impossible to guarantee the existence
of a counterfactual that stays valid for all possible models in the
ensemble. However, one might be able to ensure acceptance for
a subset of models. This generates a need for an adjustable knob
to obtain counterfactuals that accommodate varying fraction of
models within the ensemble.

Balancing the cost and validity of counterfactuals across an en-
semble of models is crucial due to potential disparities in the cost of
counterfactuals across the ensemble. Understanding this trade-off
will allow practitioners to tailor explanations for specific constraints
and needs effectively. By providing a flexible mechanism to adjust
this trade-off, machine learning systems can better manage the
complexity of ensemble scenarios, ensuring that counterfactuals
are both feasible and aligned with practical considerations.
Our Contributions: In this work, we propose a novel entropic
risk measure to quantify the reliability of the counterfactual for
an ensemble of models. Entropic risk is a convex risk measure and
satisfies several desirable properties. Furthermore, we incorporate
our proposed risk measure in the generation of reliable counter-
factuals. A significance of our measure is its ability to establish
a unifying connection between a worst-case (min-max optimiza-
tion) approach and risk-constrained counterfactuals. Our proposed
measure is rooted in large deviation theory and mathematical fi-
nance [20]. Our contributions can be concisely listed as follows:
An Entropic Risk Measure for Counterfactuals in Model En-
sembles: We propose a novel entropic risk measure to quantify
the reliability of counterfactuals in an ensemble. Our measure is
convex and satisfies several desirable properties. It has a “knob”–
the risk parameter– that can be adjusted to trade off between risk-
constrained and worst-case approaches. While risk-constrained
accounts for general ensemble in an expected sense, the worst-case
scenario prioritizes the worst model within the ensemble, thus
having a higher cost.
Formulation of Constrained-Optimization to Find Counter-
factuals for Model Ensembles: Our proposed entropic risk mea-
sure enables us to obtain risk-constrained reliable counterfactuals
(see constrained optimization P3). The significance of our strategy
is that it enables one to tune “how much” a user wants to prioritize
the worst model by trading off cost (effort). Since calculating expec-
tations over ensembles, especially with infinitely many models, can
be impractical, we use empirical averages instead. This approach
forms the basis of our main formulation in P4, which is crucial for
developing our algorithm.
Connection to Min-Max Optimization:We show that the worst-
case approaches are, in fact, a limiting case of our entropic-risk-
based approach (see Theorem 1). The extreme value of the knob
(risk parameter) maps our measure back to a min-max (adversarial)
approach. By establishing this connection, we show that our pro-
posed measure is not postulated and stems from the mathematical
connection with worst-case analysis.
Experimental Results:We include an algorithm that leverages our
relaxed risk measure and finds counterfactuals for model ensembles.
We provide a trade-off analysis between the cost (distance) and

the validity of the counterfactual on real-world datasets, namely,
HELOC [19], German Credit [26], and Adult Income [5].

Notably, in agent-based systems, agents often operate in envi-
ronments with incomplete or uncertain information and must make
decisions that are robust to varying strategies of other agents. For
example, agents make decisions based on models predicting the
behavior of other agents, but these models can differ due to vary-
ing assumptions or strategies. In a similar vein, our approach uses
counterfactual reasoning with an ensemble of models to explore al-
ternative scenarios, helping agents understand potential outcomes
under different conditions. By ensuring counterfactuals are robust
across a range of models, agents can make more reliable decisions
despite uncertainty and diverse behaviors in the system.
Related Works: Counterfactuals have been extensively studied
in the literature, with numerous papers exploring methodologies
and applications within the context of single models (see surveys
[4, 37, 50, 65]). However, ensemble models are widely recognized
and extensively used in machine learning for their effectiveness
in improving predictive performance. By combining multiple base
models—often diverse in architecture or training data—ensemble
methods harness the collective wisdom of individual models to pro-
ducemore accurate and reliable predictions. Popular techniques like
bagging, boosting, and stacking leverage this diversity to mitigate
biases, reduce variance, and enhance overall model generalization.
For a survey on ensembles, we refer the readers to [48].

Despite significant research on counterfactuals for one model,
the problem of finding counterfactuals for an ensemble has received
limited interest. A well-studied research direction involves robust
counterfactuals that account for changes in models [1, 7, 18, 21–23,
33, 34, 58, 61, 62]. Other works examine counterfactual robustness
to small feature variations (noisy implementation) [10, 15, 17, 42,
46, 53, 57] and and distribution shifts [13, 47, 58]. We refer to recent
surveys on robust counterfactual explanations [36, 51]. Applying
such techniques to ensembles, where the constituent models are
known a priori, may be considered excessive. Unlike scenarios
where the model identities are unknown or variable, our problem
involves a fixed ensemble, allowing for more targeted approaches.

Closely related is robustness under model multiplicity [21, 22,
38, 43, 56]. [56] suggests that counterfactuals within the data man-
ifold are more resilient against model multiplicity compared to
closest counterfactuals. [21, 22] introduce a stability measure to
quantify the robustness of counterfactuals under model multiplicity
and provide probabilistic guarantees. [38] proposes using Pareto
improvement, a multi-objective optimization to generate robust
counterfactuals under model multiplicity. [43] and [35] propose
approaches to compute robust counterfactuals that hold across all
models within an ensemble of neural networks. Our contribution
lies in first developing a rigorous quantification of reliability that
is specifically tailored to generate counterfactual explanations for
ensembles. We use entropic risk measures that arrive with a knob
to tradeoff cost and validity of counterfactuals across the models in
the ensemble. Our contribution lies in developing a methodology
specifically tailored to generate reliable counterfactual explanations
for ensembles using entropic risk measures with a knob that trades
off the cost and overall validity of counterfactuals, aiming to pro-
vide counterfactual with reasonable costs that stay valid under as
many models as possible in the ensemble.
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Entropic risk measure has been the cornerstone of risk-sensitive
control (see [2, 3, 29–32, 41, 54, 55, 60]) and risk-sensitive Markov
decision processes (see [27]). The connection between risk-sensitive
control and robust control has been shown in its full generality in
[32], establishing that the entropic risk measure emerges from the
mathematical analysis of H-infinity output robust control for gen-
eral non-linear systems and has been used to trade off robustness
and performance in feedback control design. Further analytical de-
velopment of such mathematical analysis for financial applications
has been studied extensively; see [20] and references therein.

2 PRELIMINARIES
Here, we provide some contextual details, definitions, and back-
ground materials, and set our notation. We consider machine learn-
ing models𝑚 ∈ M, whereM is a non-empty set of ensemble mod-
els for binary classification that takes an input value 𝑥 ∈ X ⊆ R𝑑
and outputs a probability between 0 and 1. Let S = {𝑥𝑖 ∈ X}𝑛𝑖=1 be
a dataset of 𝑛 independent and identically distributed data points
generated from an unknown density over X.

Definition 1 (Closest Counterfactual C𝑝 (𝑥,𝑚)). A closest counter-
factual with respect to the model𝑚(·) of a given point 𝑥 ∈ R𝑑 such
that𝑚(𝑥) < 0.5 is a point 𝑥 ′ ∈ R𝑑 such that𝑚(𝑥 ′) ≥ 0.5 and the
cost in terms of 𝑝-norm ∥𝑥 − 𝑥 ′∥𝑝 is minimized.

C𝑝 (𝑥,𝑚) = argmin
𝑥 ′∈R𝑑

𝑐 (𝑥, 𝑥 ′) s.t. 𝑚(𝑥 ′) ≥ 0.5.

For example, norm 𝑝 = 1 results in counterfactuals with as few
feature changes as possible, enforcing a sparsity constraint (also
referred to as “sparse” counterfactuals [56]).

In this work, our goal is to generate a single counterfactual that
is accepted by as many models as possible in the ensemble while
minimizing the cost. Towards this goal, we propose an entropic
risk measure as a systematic measure of the reliability of counter-
factuals. Our objective involves: (i) arriving at a measure for the
reliability of a counterfactual 𝑥 under a given ensembleM, that sat-
isfies desirable properties; (ii) establishing the connection between
our entropic-risk-based approach and the worst-case approaches,
and (iii) showing the algorithmic impacts of our measure by devel-
oping a constrained-optimization-based algorithm for generating
counterfactuals for model ensembles based on our reliability mea-
sure which allows for a tunable knob that allows one to trade off
between the cost (effort) and potential validity on multiple models.

3 MAIN RESULTS: RELIABILITY VIA
ENTROPIC RISK MEASURE

For a single model, the counterfactual 𝑥 ′ would simply be the clos-
est point to the original instance 𝑥 that lies on the accepted side.
We would minimize the ℓ2-norm (i.e., the “cost” 𝑐 (𝑥, 𝑥 ′) = ∥𝑥 −𝑥 ′∥2
remains low). However, when we introduce the ensemble, ensuring
that the counterfactual remains valid across a specified fraction
of models in the ensemble can often make it move further from
𝑥 to satisfy this additional requirement. This results in a higher
ℓ2-norm, increasing the cost 𝑐 (𝑥, 𝑥 ′). When generating a counter-
factual for a reference model𝑚𝑟 and an ensemble of models, we
also seek to ensure its validity across multiple models within the
ensemble, defining its *reliability*. The higher the required fraction

of models that must validate the counterfactual, the more robust
(reliable) it must be. However, this robustness comes at a cost: as
more models must agree, the counterfactual tends to shift further
from the original instance. A trade-off arises between the counter-
factual’s distance from 𝑥 and the robustness constraint. To balance
this tradeoff, we formulate a general multi-objective optimization
that hedges against the worst-case models while managing both
cost and robustness, i.e.,

min
𝑥 ′∈R𝑑

(𝑐 (𝑥, 𝑥 ′), max
𝑚∈M

ℓ (𝑚(𝑥 ′))) s.t. 𝑚𝑟 (𝑥 ′) ≥ 0.5. (P)

Here 𝑐 : X × X → R+ is the cost of changing an instance 𝑥 to 𝑥 ′,
e.g., 𝑐 (𝑥, 𝑥 ′) = ∥𝑥 −𝑥 ′∥𝑝 , where 1 ≤ 𝑝 ≤ ∞, and ℓ :M×X → 𝑅+ is
a differentiable loss function that ensures that𝑚(𝑥 ′) is close to the
desired value of 1, e.g., ℓ (𝑚(𝑥)) = 1−𝑚(𝑥). We denote the ensemble
asM, where any model within the ensemble is represented by𝑚.
The reference model of interest, denoted as𝑚𝑟 , is a specific, fixed
model withinM. In P, neither 𝑚 nor 𝑚𝑟 are treated as random
variables. The second objective function max𝑚∈M ℓ (𝑚(𝑥 ′)) is the
worst-case loss over the ensemble setM.

To address a multi-objective optimization problem of this nature,
we can seek the Pareto optimal front using established techniques,
such as linear scalarization or the epsilon-constraint methods [49].
The linear scalarization approach, for instance, entails solving

min
𝑥 ′∈R𝑑

max
𝑚∈M

𝑐 (𝑥, 𝑥 ′) + 𝜆ℓ (𝑚(𝑥 ′)) s.t. 𝑚𝑟 (𝑥 ′) ≥ 0.5 (P1)

for different values of 𝜆 to generate Pareto optimal solutions (e.g.,
a relaxed variant of this approach is employed in [62]), meanwhile,
the epsilon-constraint method addresses the problem by solving

min
𝑥 ′∈R𝑑

𝑐 (𝑥, 𝑥 ′) s.t. max
𝑚∈M

ℓ (𝑚(𝑥 ′)) < 𝜏, 𝑚𝑟 (𝑥 ′) ≥ 0.5 (P2)

for different values of 𝜏 (e.g., a relaxed variant of this approach is
employed in [21]).

By varying 𝜆 in P1 or 𝜏 in P2, different points on the Pareto front
can be obtained (also see the book [49]). To see the equivalence of
the threshold 𝜏 and the multiplier 𝜆, note that the sensitivities of
the cost 𝑐 (𝑥, 𝑥 ′) with respect to changes in the threshold 𝜏 (eval-
uated at the optimal 𝑥 ′∗) is the negative of the optimal multiplier
(dual variable) 𝜆 (for a background on multi-objective optimization,
please refer to Appendix B [11]), i.e, 𝜕𝑐 (𝑥,𝑥 ′∗ )/𝜕𝜏 = −𝜆∗ . Each 𝜆 and 𝜏
results in a point on the Pareto optimal front of the multi-objective
optimization problem [11, 49]. Both P1 and P2 lead to the same
Pareto front, and 𝜆 and 𝜏 can be chosen such that P1 and P2 have
the same solutions. The Pareto front characterizes the trade-off
between the cost and validity of the counterfactuals.

The worst-case loss max𝑚∈M ℓ (𝑚(𝑥 ′)) hedges against the worst
possible model within the ensemble, but can often lead to somewhat
conservative counterfactuals, i.e., ones which are quite well within
the boundary and have a high cost (distance). To mitigate this issue,
we use a risk measure that allows us to hedge against the models
based on their probability of occurrence. We assume𝑀 is a random
model drawn from a probability distribution 𝑃 over the set of models
M. We propose the entropic risk measure as a quantification of
reliability for counterfactuals which is defined as follows:
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Definition 2. The entropic risk measure of model𝑀 with the risk
aversion parameter 𝜃 > 0 is denoted by 𝜌𝑒𝑛𝑡

𝜃
(·) and is given by:

𝜌𝑒𝑛𝑡
𝜃
(ℓ (𝑀 (𝑥 ′))) := 1

𝜃
log(E𝑀∼𝑃 [𝑒𝜃ℓ (𝑀 (𝑥

′ ) ) ]), 𝜃 > 0. (1)

The parameter 𝜃 is called the risk parameter. A positive risk
parameter results in risk-averse behavior. Hence, we refer to a pos-
itive risk parameter as the risk-aversion parameter. We show in
Theorem 1 that as we increase the risk-aversion parameter, our
probabilistic method converges to a worst-case formulation. Defi-
nition 2 allows us to reformulate our problem as follows:

min
𝑥 ′∈R𝑑

𝑐 (𝑥, 𝑥 ′) s.t. 𝜌𝑒𝑛𝑡
𝜃
(ℓ (𝑀 (𝑥 ′))) < 𝜏, 𝑚𝑟 (𝑥 ′) ≥ 0.5. (P3)

3.1 Properties of Entropic Risk Measure
Entropic risk measure is rooted in large deviation theory and is not
postulated. This measure enables establishing a connection toworst-
case approaches for finding counterfactuals. Taylor’s expansion of
the exponential shows that the entropic risk measure is the infinite
sum of the moments of the distribution. Furthermore, it is well-
known [20] that entropic risk measure is a convex risk measure and
as such, for a positive risk parameter 𝜃>0, satisfies the properties
of (1) monotonicity, (2) translation-invariance, and (3) convexity.
(1) Monotonicity. For ℓ (𝑀1 (·)) ≥ ℓ (𝑀2 (·)),

𝜌𝑒𝑛𝑡
𝜃
(ℓ (𝑀1 (·))) ≥ 𝜌𝑒𝑛𝑡𝜃

(ℓ (𝑀2 (·))) .
(2) Translation invariance. For constant 𝛼∈R,

𝜌𝑒𝑛𝑡
𝜃
(ℓ (𝑀 (·)) + 𝛼) = 𝜌𝑒𝑛𝑡

𝜃
(ℓ (𝑀 (·))) + 𝛼.

(3) Convexity. For 𝛼 ∈ [0, 1],
𝜌𝑒𝑛𝑡
𝜃
(𝛼ℓ (𝑀1 (·)) + (1 − 𝛼)ℓ (𝑀2 (·))) ≤

𝛼𝜌𝑒𝑛𝑡
𝜃
(ℓ (𝑀1 (·))) + (1 − 𝛼)𝜌𝑒𝑛𝑡𝜃

(ℓ (𝑀2 (·))) .
For the sake of simplicity, consider the choice of cost function
ℓ (𝑀 (𝑥)) = 1 −𝑀 (𝑥). Then, the monotonicity implies that a model
with greater output probabilities has less risk. The translation invari-
ance implies that adding a constant to the output of the predictor
effectively reduces the risk by the same amount. The convexity is
quite desirable since it means that the risk for a combined model is
lower than the risk for the two of them individually.

To gain a deeper understanding of the risk constraint described
in P3, we examine distributions characterized by their analytical
Moment Generating Functions (MGFs). Two notable examples are
the Uniform and truncated Gaussian distributions. For simplicity,
we use the cost function ℓ (𝑀 (𝑥 ′))=1−𝑀 (𝑥 ′). In our formulation,
this loss function is minimized, encouraging a counterfactual with
a higher predicted value. When using this specific cost function,
any value of the threshold 𝜏 outside the interval [0, 1] renders the
problem infeasible. Given these choices for the cost and model
distribution, we provide the explicit form of the constraint in P3.

Example 1. Let the distribution of the output of the models in the
ensemble at the counterfactual point, 𝑀 (𝑥 ′), follow a uniform dis-
tribution on a 𝛿-ball around the output of a specific model 𝑚(𝑥 ′),
i.e., 𝑀 (𝑥 ′) ∼ U[𝑚(𝑥 ′) − 𝛿,𝑚(𝑥 ′) + 𝛿] for some 𝛿 > 0. With these
choices, the constraint in P3 becomes:

𝑚(𝑥 ′) > (1 − 𝜏) + 𝐾𝛿,𝜃 , 𝐾𝛿,𝜃 :=
1
𝜃
log( 𝑒

𝜃𝛿 − 𝑒−𝜃𝛿
2𝜃𝛿

) .

For the Uniform distribution, due to the monotonicity of 𝐾𝛿,𝜃
with respect to 𝜃 , as the value of 𝜃 increases, a higher value of𝑚(𝑥 ′)
is required to satisfy the constraint. It can be verified that 𝐾𝛿,𝜃 in
limit of 𝜃 → ∞ is 𝛿 . Given this, for the case when 𝜃 → ∞, our
constraint becomes𝑚(𝑥 ′) > 1−𝜏 +𝛿 . As the value of 𝜃 approaches
to 0, 𝐾𝛿,𝜃 approaches 0 and the constraint becomes𝑚(𝑥 ′) > (1−𝜏),
i.e., finding counterfactual 𝑥 ′ with just high𝑚(𝑥 ′).

Example 2 (Truncated Gaussian). Let the distribution of the output
of the models in the ensemble at the counterfactual point, 𝑀 (𝑥 ′),
follow a truncated Gaussian distribution with a mean equal to the
output of the original model 𝑚(𝑥 ′) and a variance of 𝜎2 that lies
between 0 and 1. With these choices, the constraint in P3 becomes:

𝑚(𝑥 ′) > (1 − 𝜏) + 𝜃 𝜎
2

2
+ 1
𝜃
log(𝐾𝜃 ),

𝐾𝜃 :=
Φ(𝛽 + 𝜎𝜃 ) − Φ(𝛼 + 𝜎𝜃 )

Φ(𝛽) − Φ(𝛼)

where 𝛼 := −𝜇𝜎 and 𝛽 := 1−𝜇
𝜎 and Φ(𝑥) = 1/2(1 + erf (𝑥/

√
2)). The

error function, denoted by erf , is defined as erf 𝑧 = 2/√𝜋
∫ 𝑧

0
𝑒−𝑡

2
d𝑡 .

As the 𝜃 approaches 0, our constraint becomes𝑚(𝑥 ′) > 1−𝜏 . As
the value of 𝜃 increases, greater weight is placed on the variance
term, emphasizing its importance. In both examples, when the
distributions are unknown, determining the precise threshold for
model output to satisfy the constraint becomes challenging. This is
because higher values are more conservative (less risky), but incur
higher costs. To address this challenge, we must devise techniques
that do not rely on the explicit knowledge of the distribution, as
explored further in the next subsections.

3.2 Connection of Entropic-Risk-Based
Approach with Worst-Case Approach

We first establish the connection between our risk-based and the
worst-case formulation (getting accepted by all models in the en-
semble). The following theorem shows that the worst-case approach
is the limiting case of our risk-based method as 𝜃 →∞.

Theorem 1. In the limit as the risk-aversion parameter 𝜃 approaches
infinity, the optimization P3, which involves constraining the entropic
risk measure associated with the reliability of models within an ensem-
ble, asymptotically converges to the optimization problem P2, where
the constraint pertains to the robustness of the worst model within
the same ensemble.

Theorem 1 shows how the entropic risk measure provides a
single parameter (knob) that determines the risk-aversion of the
counterfactual and can be used to study the effect of risk-aversion
on the behavior of algorithms that generate reliable counterfactuals
for an ensemble.

Proof Sketch of Theorem1 :We discuss the proof in Appendix A.
The proof uses Vardhan’s Lemma presented here. Such connections
have been shown in the context of robust and risk-sensitive control
and, more recently, risk-sensitive reinforcement learning.

Lemma1. [20] Let𝑋 be a random variable. The entropic riskmeasure
is a convex risk measure and as such has a dual representation with
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the risk aversion parameter 𝜃 > 0 is given by

𝜌ent
𝜃
(𝑋 ) = 1

𝜃
log

(
E𝑋∼𝑃 [𝑒𝜃𝑋 ]

)
= sup

𝑄≪𝑃

{
𝐸𝑄 [𝑋 ] −

1
𝜃
𝐷 (𝑄 |𝑃)

}
where 𝐷 (𝑄 |𝑃) := E𝑄 [log𝑑𝑄/𝑑𝑃] is the Kullback-Libeler (KL) di-
vergence between distributions 𝑃 and 𝑄 , and 𝑄 ≪ 𝑃 denotes the
distribution Q is absolutely continuous with respect to 𝑃 .

3.3 Formulation of the Constrained
Optimization

We substitute the expectation in the risk measure with a computable
empirical mean. This allows us to reformulate the problem as

min
𝑥 ′∈R𝑑

𝑐 (𝑥, 𝑥 ′) (P4)

s.t.
1
𝜃
log

(
1
𝑁

𝑁∑︁
𝑖=1

𝑒 (1−𝜃𝑚𝑖 (𝑥 ′ ) )
)
< 𝜏, 𝑚𝑟 (𝑥 ′) ≥ 0.5,

where𝑚𝑖 ’s are the sample models from the ensembleM.

4 EXPERIMENTAL RESULTS
In this section, we experimentally demonstrate the effect of entropic
risk minimization on generating counterfactual explanations. To
this end, we observe that the risk aversion parameter 𝜃 plays a key
role in the cost-validity trade-off.
Experimental Setup:We consider an ensemble of 20 models, each
with three 128-neuron hidden layers and ReLU activations. The
models are trained employing the Adam optimizer for 200 epochs
with a batch size of 32. The same model architecture and hyperpa-
rameters were used for all the datasets, since it yielded satisfactory
levels of accuracy on all of them. We evaluate the proposed method
over three publicly available datasets namely HELOC [19], German
Credit [26] and Adult Income [5] (see Appendix C for details). Each
dataset is split into a training set and a test set. To generate our
ensembleM, we train each model𝑚𝑖 on a slightly different subset
of the training split, generated by dropping 𝑘 (a hyperparameter)
randomly selected data points prior to training the model. The test
split is used for evaluating model accuracies as well as for generat-
ing the counterfactuals. Table 1 summarizes dataset-specific details.

Table 1: Experimental setup: Standard deviations are given
in parenthesis when applicable.

Property HELOC GERMAN ADULT

Training set size 7844 670 15081
Test set size 2615 330 15081

# Rejected instances 889 186 10216
# Dropped Points (𝑘 ) 1000 100 1000

Average model accuracy 0.66 (0.01) 0.72 (0.02) 0.82 (0.002)

Algorithm: In the experiments, we solve P4 through a two
step process based on gradient descent. First, an ordinary coun-
terfactual 𝑥 ′ is generated for a randomly selected reference model
𝑚𝑟 from the ensemble, using an existing counterfactual generat-
ing method (ℓ1−norm closest counterfactual in our case). Then
the counterfactual is updated until the entropic risk constraint

𝜌ent
𝜃
(𝑥 ′) < 𝜏 is satisfied. This is done through a gradient descent

process 𝑥 ′ ← 𝑥 ′ − 𝜂∇𝑥 ′𝜌ent𝜃
(𝑥 ′). Counterfactuals are generated

only for the instances that were rejected under the said randomly
selected model. Note that for some instances, the counterfactual
generation method fails to render counterfactuals due to the finite
number of gradient descent iterations. A workaround for this issue
is to experiment with different hyperparameters such as the gra-
dient descent step size 𝜂 and the maximum number of iterations.
Algorithm 1 presents the counterfactual generation steps concisely.

Algorithm 1 Entropic risk based counterfactual generation

Require: Input instance 𝑥 , Model ensemble M, 𝜃 > 0, 𝜏 > 0,
Gradient descent step size 𝜂, max_iter ∈ Z+.
Randomly select 𝑚̃ ∈ M.
Generate ordinary counterfactual 𝑥 ′ ← C𝑝 (𝑥, 𝑚̃).
Initialize 𝑖 ← 0.
while 𝜌ent

𝜃
(𝑥 ′) ≥ 𝜏 and 𝑖 < max_iter do

𝑥 ′ ← 𝑥 ′ − 𝜂∇𝑥 ′𝜌ent𝜃
(𝑥 ′)

𝑖 ← 𝑖 + 1
end while
if 𝜌ent

𝜃
(𝑥 ′) < 𝜏 then

return 𝑥 ′ and exit
else

return Error (Invalid counterfactual) and exit
end if

Metrics:We are interested in observing the trade-off between
a counterfactual being easy to achieve (low cost) and being valid
under an ensemble decision, e.g., majority vote (high validity). In
this regard, for each set of parameters 𝜃 and 𝜏 , we compute the
two metrics: (i) Cost: the ℓ1−distance between the counterfactual
and the corresponding original instance (ii) Validity: the ratio of
models in the ensemble with respect to which the counterfactual
is valid. These metrics are averaged over all the counterfactuals
that satisfy the risk constraint. For comparison, we also include the
results for the case 𝜏 = 1 which is equivalent to not having any risk
constraints (i.e., non-robust). In addition, we compute the average
wall clock time taken to generate a counterfactual under each set
of parameters 𝜃 and 𝜏 , which is an indicator of the difficulty in
generating an explanation that satisfies the risk constraint.

Hyperparameter Selection: Values for the gradient descent
step size 𝜂 and the number of maximum iterations were selected
empirically such that the algorithm would converge to a solution
in a reasonable time for most of the input instances. Ranges for 𝜃
and 𝜏 were selected in a dataset-specific manner. For instance, for
HELOC dataset, 𝜃 ∈ {0.1, 1.0, 10.0} results 𝜌ent

𝜃
(𝑥 ′) < 0.8 for most

of the input instances. Achieving 𝜌ent
𝜃
(𝑥 ′) < 0.1 was seen to be

difficult. These values were slightly different for the other datasets.
Results and Discussion: In addition to the real-world data, we

conducted a synthetic experiment with a 2D dataset, to facilitate
easy visualization. Figure 1 demonstrates the results correspond-
ing to one of the input instances. Tables 2, 3, and 4 present the
results of the experiment for HELOC, German Credit, and Adult
Income datasets, respectively. Observe that the validity increases
with increasing 𝜃 for a given value of 𝜏 , indicating how 𝜃 facilitates
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Table 2: Experimental results for HELOC dataset. Standard deviations are given in parenthesis.

𝜃
𝜏 = 0.1 𝜏 = 0.3 𝜏 = 0.5 𝜏 = 0.7 𝜏 = 1.0

COST VAL. COST VAL. COST VAL. COST VAL. COST VAL.

0.1 1.38 (1.29) 0.97 (0.06) 1.18 (1.24) 0.92 (0.11) 1.07 (1.22) 0.87 (0.15) 0.98 (1.22) 0.83 (0.19) 0.89 (1.22) 0.76 (0.24)
1.0 1.39 (1.27) 0.97 (0.06) 1.22 (1.24) 0.93 (0.10) 1.10 (1.24) 0.90 (0.13) 1.00 (1.22) 0.84 (0.18) 0.89 (1.22) 0.76 (0.25)
10.0 1.49 (1.22) 0.97 (0.09) 1.41 (1.23) 0.96 (0.09) 1.37 (1.24) 0.95 (0.11) 1.29 (1.25) 0.93 (0.12) 0.88 (1.23) 0.75 (0.25)

Table 3: Experimental results for German Credit dataset. Standard deviations are given in parentheses.

𝜃
𝜏 = 0.3 𝜏 = 0.5 𝜏 = 0.7 𝜏 = 0.9 𝜏 = 1.0

COST VAL. COST VAL. COST VAL. COST VAL. COST VAL.

0.1 2.20 (1.49) 0.87 (0.07) 1.73 (1.48) 0.77 (0.13) 1.45 (1.41) 0.66 (0.20) 1.16 (1.38) 0.59 (0.28) 1.11 (1.38) 0.58 (0.29)
1.0 2.39 (1.51) 0.90 (0.05) 1.91 (1.47) 0.82 (0.10) 1.55 (1.44) 0.71 (0.16) 1.20 (1.38) 0.60 (0.27) 1.11 (1.38) 0.58 (0.29)
10.0 3.46 (1.49) 1.00 (0.00) 3.39 (1.55) 1.00 (0.00) 3.03 (1.51) 0.97 (0.02) 1.71 (1.47) 0.77 (0.12) 1.13 (1.38) 0.59 (0.29)

Figure 1: A 2D visualization of the proposed method. Black
cross denotes a rejected input instance. Magenta cross is the
closest counterfactual (“cc”) in terms of ℓ1−distance, gen-
erated w.r.t. reference model 𝑚𝑟 . Blue dot represents the
entropic-risk-based counterfactual generated with 𝜃 = 0.1
and 𝜏 = 0.4. Purple line is the decision boundary of another
model𝑚 ≠𝑚𝑟 in the ensemble. Observe that even though the
closest counterfactual is valid under𝑚𝑟 , it is rejected under
the other model𝑚. In contrast, the entropic-risk-based coun-
terfactual remains valid w.r.t. both models.

a smooth trade-off between the two metrics. Figure 2 visualizes this
trade-off. Tables 5, 6, and 7 show the average wall clock time taken
to generate an explanation, which can be considered as a proxy for
the difficulty of generating a valid counterfactual. Notice how the
time decreases with increasing 𝜏 for each value of 𝜃 . Furthermore,
notice that when the risk constraint is inactive (i.e., when 𝜏 = 1,
the averaged cost and validity values are almost the same for all
values of 𝜃 .

Moreover, we observe the effect of ensemble size 𝑁 on the va-
lidity of a counterfactual, for a fixed set of parameters 𝜃 and 𝜏 .
Intuitively, given that the model diversity is constant, the smaller
the ensemble size the lower the chances of getting invalidated.

0.95 1.05 1.15 1.25 1.35 1.45
0.8

0.84

0.88

0.92

0.96

1

Average cost
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er
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e
va
lid

ity

𝜃 = 0.1
𝜃 = 10.0

Figure 2: Cost-validity trade-off curves for different 𝜃 values
on HELOC dataset. Each point on a given curve corresponds
to a distinct 𝜏 ∈ {0.1, 0.3, 0.5, 0.7}. Cost and validity increase
monotonically with increasing 𝜏 .

Hence, when all the other parameters are constant, the validity
should increase with reducing ensemble size. This is indeed the
case observed empirically as reported in Table 8. Note how validity
increases when the number of models in the ensemble is reduced
from 20 to 10, corresponding to each value of 𝜏 .

5 CONCLUSION & LIMITATIONS
With our entropic risk measure, we showed that the risk-aversion
parameter can be adjusted to balance the cost and validity of coun-
terfactuals by considering the impact of theworstmodel.We showed
that theworst-case approach is a limiting case of our approach based
on entropic risk measures. This establishes the connection between
our approach and a worst-case approach and explains the nature of
the counterfactuals generated by our algorithm. Our research also
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Table 4: Experimental results for Adult Income dataset. Standard deviations are given in parentheses.

𝜃
𝜏 = 0.5 𝜏 = 0.7 𝜏 = 0.9 𝜏 = 1.0

COST VAL. COST VAL. COST VAL. COST VAL.

0.1 1.07 (3.13) 0.95 (0.14) 1.02 (3.13) 0.91 (0.20) 1.01 (3.13) 0.89 (0.22) 1.00 (3.14) 0.89 (0.23)
1.0 1.08 (3.13) 0.96 (0.12) 1.03 (3.13) 0.92 (0.19) 1.01 (3.13) 0.89 (0.22) 1.00 (3.14) 0.89 (0.23)
10.0 1.15 (3.12) 0.99 (0.07) 1.11 (3.13) 0.96 (0.14) 1.03 (3.14) 0.91 (0.20) 1.00 (3.14) 0.88 (0.24)

Table 5: Average wall clock time (in milliseconds) taken to
generate a counterfactual – HELOC dataset.

𝜃 𝜏 = 0.7 (robust) 𝜏 = 1.0 (non-robust)

0.1 646 524
1.0 670 525
10.0 1180 520

Table 6: Average wall clock time (in milliseconds) taken to
generate a counterfactual – German Credit dataset.

𝜃 𝜏 = 0.7 (robust) 𝜏 = 1.0 (non-robust)

0.1 1605 972
1.0 1843 960
10.0 4539 941

Table 7: Average wall clock time (in milliseconds) taken to
generate a counterfactual – Adult Income dataset.

𝜃 𝜏 = 0.7 (robust) 𝜏 = 1.0 (non-robust)

0.1 5278 5189
1.0 5277 5181
10.0 5379 5191

Table 8: Effect of ensemble size 𝑁 . Values shown for HELOC
dataset with 𝜃 = 1.0.

𝜏
N=10 N=20

COST VAL. COST VAL.

0.1 1.38 (1.25) 0.96 (0.11) 1.39 (1.27) 0.97 (0.06)
0.3 1.22 (1.24) 0.93 (0.12) 1.22 (1.24) 0.93 (0.10)
0.5 1.11 (1.23) 0.89 (0.14) 1.10 (1.24) 0.90 (0.13)
0.7 1.01 (1.22) 0.83 (0.19) 1.00 (1.22) 0.84 (0.18)

makes a broader connection between the field of explainability and
multi-objective optimization through the lens of risk measures.

Another related research direction is model reconstruction [16]
where it has been found that counterfactuals lead to more efficient
model reconstruction since they are quite close to the decision
boundary. In this context, such strategies of generating counter-
factuals for ensembles could also have potential applications in de-
fending against such extraction attacks since they are less uniquely
tied to a particular model, enhancing privacy.

The integration of machine learning systems into our daily lives
has wide-ranging and complex implications. These implications
range from economic to societal to ethical and legal considerations,
necessitating a comprehensive approach to address the sociotechni-
cal evolution driven by machine learning. While our current work
represents a step towards trustworthy adoption, counterfactual
explanations also suffer from a multitude of other limitations such
as fairness, actionability, and personalization [37, 44, 59]Consider
this scenario, when examining a loan approval, a counterfactual
suggesting an increase in the value of the applicant’s collateral
might be perceived as more preferable for an applicant as opposed
to a counterfactual suggesting an increase in education level even if
they might have the same 𝑙1 cost. Therefore, in our future work, we
will explore approaches that incorporate additional metrics beyond
explainability and reliability to generate counterfactuals, addressing
other relevant considerations.

By ensuring the reliability and trustworthiness of counterfactuals
from both user and institutional perspectives, we can foster greater
trust in machine learning systems, leading to broader economic
benefits and reliable adoption of machine learning in high-stakes
applications. However, it is important to recognize that achieving
the reliability of counterfactuals for ensembles requires solving
computationally more expensive constrained optimization prob-
lems compared to the closest counterfactual for a single model.
Therefore, future efforts should focus on devising more computa-
tionally efficient techniques to overcome this challenge and ensure
the sustainability of counterfactual generation approaches.

A PROOF OF THEOREM 1
Theorem 1. In the limit as the risk-aversion parameter 𝜃 approaches
infinity, the optimization P3, which involves constraining the entropic
risk measure associated with the reliability of models within an ensem-
ble, asymptotically converges to the optimization problem P2, where
the constraint pertains to the robustness of the worst model within
the same ensemble.

The proof of Theorem 1 uses the results in Lemma 1 and 2.

Lemma1. [20] Let𝑋 be a random variable. The entropic riskmeasure
is a convex risk measure and as such has a dual representation with
the risk aversion parameter 𝜃 > 0 is given by

𝜌ent
𝜃
(𝑋 ) = 1

𝜃
log

(
E𝑋∼𝑃 [𝑒𝜃𝑋 ]

)
= sup

𝑄≪𝑃

{
𝐸𝑄 [𝑋 ] −

1
𝜃
𝐷 (𝑄 |𝑃)

}
where 𝐷 (𝑄 |𝑃) := E𝑄 [log𝑑𝑄/𝑑𝑃] is the Kullback-Libeler (KL) di-
vergence between distributions 𝑃 and 𝑄 , and 𝑄 ≪ 𝑃 denotes the
distribution Q is absolutely continuous with respect to 𝑃 .
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Note that𝑄 is absolutely continuous with respect to 𝑃 if𝑄 (𝑥) = 0
when 𝑃 (𝑥) = 0. This assumption ensures that the KL divergence is
finite. Then, we have,

lim
𝜃→∞

𝜌ent (𝑋 ) = sup
𝑄≪𝑃

{
𝐸𝑄 [𝑋 ]

}
. (2)

For simplicity, we let both 𝑄 (𝑚̃) > 0 and 𝑃 (𝑚̃) > 0 over the set of
modelsM which is a compact and bounded set. Next, we show the
following result.

Lemma 2. Let 𝑄 be any probability distribution over the set of
modelsM such that𝑄 (𝑚̃) > 0 everywhere, andM be a compact and
bounded set. Then we have,

sup
𝑄

E𝑄 [ℓ (𝑀)] = max
𝑚𝑖 ∈M

ℓ (𝑚𝑖 )

We prove the equality by establishing two directions of the in-
equality. First, we note that the expected value of a set of values is
always less than or equal to its maximum value. Thus,

E𝑄 [ℓ (𝑀)] ≤ max
𝑚∈M

ℓ (𝑚), ∀𝑄

Since it holds for all 𝑄 ’s we have

sup
𝑄

E𝑄 [ℓ (𝑀)] ≤ max
𝑚∈M

ℓ (𝑚) (3)

To prove the reverse direction, let 𝑄𝑚 be a probability distribution
such that

𝑄𝑚 (𝑚̃) =
{
1 − 𝛿 𝑚̃ =𝑚

𝛿𝑚̃ 𝑚̃ ≠𝑚

where 𝛿𝑚̃ ≠ 0, for all 𝑚̃∈M and 𝛿=
∑
𝑚̃∈M,𝑚̃≠𝑚 𝛿𝑚̃ . Then, we have

E𝑄𝑚
[ℓ (𝑀)] = (1 − 𝛿)ℓ (𝑚) +

∑︁
𝑚̃∈M,𝑚̃≠𝑚

𝛿𝑚̃ℓ (𝑚̃), ∀𝑚

Thus,

sup
𝑄

E[ℓ (𝑀)] ≥ 𝐸𝑄𝑚
[ℓ (𝑀)]

= (1 − 𝛿)ℓ (𝑚) +
∑︁

𝑚̃∈M,𝑚̃≠𝑚

𝛿𝑚̃ℓ (𝑚̃), ∀𝑚

Let𝑚∗ = argmax𝑚 ℓ (𝑚). Then we have,

sup
𝑄

E[ℓ (𝑀)] ≥ (1 − 𝛿)ℓ (𝑚∗) +
∑︁

𝑚̃∈M,𝑚̃≠𝑚∗
𝛿𝑚̃ℓ (𝑚̃)

By noting that 𝛿 can be made arbitrarily small, we have

sup
𝑄

E[ℓ (𝑀)] ≥ max
𝑚∈M

ℓ (𝑚) − 𝜖 (𝛿)

for an arbitrarily small 𝜖 (𝛿) > 0. Thus the result holds.
The setM needs to be such that the maximum exists, e.g., a

bounded and compact set.
Now using Lemma 2, we have

lim
𝜃→∞

𝜌𝑒𝑛𝑡
𝜃
(ℓ (𝑚(𝑥 ′))) := 1

𝜃
log(E𝑀∼𝑃 [𝑒𝜃ℓ (𝑀 (𝑥 ) ])

(𝑎)
= sup

𝑄∈M1

{
𝐸𝑄 [ℓ (𝑀 (𝑥))]

}
(𝑏 )
= sup

𝑚∈M
ℓ (𝑚(𝑥 ′)),

where (a) holds since lim𝜃→∞ 𝜌
ent (𝑋 ) = max𝑄≪𝑃

{
𝐸𝑄 [𝑋 ]

}
as

shown in equation 2 and (b) follows from Lemma 2.

B BACKGROUND ON MULTI-OBJECTIVE
OPTIMIZATION

Consider a non-linear programming problem with inequality con-
straints such as:

min
𝑥 ′

𝑐 (𝑥, 𝑥 ′) subject to: 𝑅(𝑥, 𝑥 ′) ≤ 𝜏

where 𝑐 and 𝑅 are regular enough for the mathematical develop-
ments to be valid over the feasible region. It is also assumed that
the problem has an optimum. Then the sensitivities of the objective
function with respect to the threshold 𝜏 can be calculated using the
following theorem:

Theorem 2. [11] Assume that the solution of the above optimiza-
tion problem is a regular point and that no degenerate inequality
constraints exist. Then, the sensitivity of the objective function with
respect to the parameter a is given by the gradient of the Lagrangian
function

𝐿 = 𝑐 (𝑥, 𝑥 ′) + 𝜆𝑇 (𝑅(𝑥, 𝑥 ′) − 𝜏)

with respect to 𝜏 evaluated at the optimal solution 𝑥∗, i.e.,

𝜕𝑐 (𝑥, 𝑥∗)
𝜕𝜏

= ∇𝜏𝐿 = −𝜆∗

where 𝜆∗ is the dual optimal solution. This shows how much the
objective function value 𝑐 changes when parameter 𝜏 changes.

C EXPERIMENTS
C.1 Datasets
HELOC. The FICO HELOC [19] dataset contains anonymized in-
formation about a home equity line of credit applications made by
homeowners in the US, with a binary response indicating whether
or not the applicant has ever been more than 90 days delinquent
for a payment. It can be used to train a machine learning model to
predict whether the homeowner qualifies for a line of credit or not.
The dataset consists of 10459 rows and 40 features, which we have
normalized to be between zero and one.

German Credit. The German Credit dataset [26] comprises 1000
entries, each representing an individual who has taken a credit from
a bank. These entries are characterized by 20 categorical features,
which are used to classify each person as a good or bad credit risk.
To prepare the dataset, we one-hot encoded the data and normal-
ized it such that all features fall between zero and one.

Adult Income. The Adult Income [5] dataset comprises entries
for 48842 individuals with a collection of 14 features for each of
them. The target is a binary variable that indicates whether the
individual has an income exceeding $50,000 or not. All the features
are normalized to lie between zero and one.
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