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ABSTRACT
In semi-cooperative settings, cooperation is induced by appropri-
ate incentives that align individual agents’ goals with a common
objective. The primary challenge is balancing personal and col-
lective goals, which introduces new complications. A key issue is
that cooperating with all agents equally can result in poor deci-
sions, suboptimal cooperation, and inefficiencies in task execution.
Furthermore, agents must manage the trade-off between staying
connected to share cooperation-related information and pursuing
their own objectives. To tackle these issues, we propose a novel
framework incorporating a filtered reward-reshaping mechanism
with two main components: (1) a reputation system that evaluates
trust and competency, allowing agents to assess and filter peers’
contributions, collaborate with reliable partners, and improve learn-
ing efficiency, and (2) a density-focused Potential-Based Reward
Shaping (PBRS) mechanism that promotes connectivity and en-
courages exploration by adjusting rewards based on the density of
agents in the observable space. Our approach was tested against
PED-DQN and Independent Q-Learners, demonstrating enhanced
performance in high-dimensional semi-cooperative environments.
Additionally, theoretical stability analysis confirmed the system’s
convergence to a desirable equilibrium, ensuring long-term stabil-
ity.
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1 INTRODUCTION
One of themain challenges in semi-cooperativemulti-agent systems
arises when agents, despite exhibiting diverse levels of competence
and trustworthiness, are treated as equals. This lack of differen-
tiation can lead to suboptimal outcomes, as agents may blindly
follow peers who are less competent or even deceptive, resulting
in ineffective learning and coordination. Agents often predict their
peers’ policies to anticipate or influence their behavior [2, 7, 18, 23].
However, when agents base their decisions on inaccurate predic-
tions from peers, they risk adopting suboptimal policies, leading to
inefficiencies in task execution. This is especially prominent in high-
dimensional environments where agents have to rely on partial
observability. Another challenge arises from the conflict between
staying connected to other agents and pursuing individual task
objectives [10, 11]. In many semi-cooperative MAS environments,
agents need to collaborate by sharing information or coordinating
actions, yet they also have individual goals that require indepen-
dent actions [1, 12, 25]. To overcome these challenges, we propose
a Filtered Reward Reshaping approach (FRR) based on two key
mechanisms.

First, a novel reputation mechanism that bootstraps cooperation
based on trust and competency. This mechanism allows agents to
assess and filter their peers’ contributions by measuring both their
trustworthiness and their ability to enhance the overall system’s
performance. By filtering agents based on trust and competency,
the reputation mechanism addresses the issue of suboptimal coop-
eration by ensuring that agents collaborate with reliable, competent
partners, leading to more efficient and productive learning.

Second, to handle the challenge of performing tasks while main-
taining the connectivity of the agents, we introduce a density-
focused Potential-Based Reward Shaping (PBRS) mechanism. This
mechanism encourages agents to remain connected by shaping
their rewards based on the density of other agents within their
observable area, promoting proximity and preventing isolation.
This enhances cooperation and maintains communication chan-
nels, which are essential for information exchange and coordinated
action. At the same time, the proposed PBRS incentivizes agents
to explore new areas of the environment during the early phases
of learning, even if it involves some risk. By balancing these incen-
tives, agents are guided to make strategic decisions that promote
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exploration without sacrificing the benefits of staying connected
to peers.

Together, the reputation mechanism and the density-focused
PBRS contribute to addressing the core challenges not only in de-
veloping effective cooperation but also in maintaining connectivity
within a semi-cooperativeMAS. The stability of the learning process
is enhanced through the boundedness of the reshaping functions
and Lyapunov stability. This stability is essential for preventing the
learning dynamics from becoming chaotic or unpredictable, with
Lyapunov stability ensuring that once agents’ strategies converge,
their behavior remains consistent over time [4, 26].

2 RELATEDWORK
Semi-cooperative settings in Multi-agent Reinforcement Learning
(MARL) frameworks serve as a middle ground between fully co-
operative and non-cooperative frameworks [3, 16]. Previous work
has examined mechanisms to promote cooperation in the latter. [7]
induces cooperation in a non-cooperative setting by incorporating
the anticipated learning of neighboring agents into each agent’s
policy update. [18] proposes a peer-rewarding mechanism, called
gifting, which allows agents to guide each other toward prosocial
equilibria. While effective, gifting can inadvertently incentivize self-
ish behavior, as agents act based on separate reward functions. [8]
addresses this limitation through distributed reward reshaping (RS),
such that the agent’s perception of the equilibrium gears towards
optimizing social welfare. Given that prior approaches may not
fully account for the possibility that some neighbors’ assessments
may be unreliable or compromised, we propose filtered reward
reshaping (FRR), a novel approach that incorporates intelligent
filtering mechanisms to induce cooperation in semi-cooperative
multi-agent systems (MAS). In what follows, we outline the state
of the art relevant to the proposed work.

Reward reshaping is an effective technique for addressing the
sample efficiency issue of Reinforcement Learning by incorporating
domain knowledge into additional rewards. [13] aims to improve
the convergence speed by adjusting rewards based on a potential
function through Look-Back Advice and Look-Ahead Advice. The
latter is the first approach that guarantees the policy invariance
property. Another relevant approach is Difference Rewards [20],
designed for fully cooperative multi-agent systems.

Reputation & trust Reputation mechanisms are a bridge be-
tween Evolutionary Game Theory and Reinforcement Learning.
From the perspective of EGT, reputation can be seen as a form of
indirect reciprocity, where an agent’s fitness (success of strategy)
is affected by how they are perceived by others, leading to strate-
gies that promote good reputations. While there are no universal
definitions for trust and reputation, [15] defines the latter as "the
opinion or view of one about something," formed and updated over
time through direct interactions or shared information. Alterna-
tively, [19] describes reputation as "a peer’s belief in another peer’s
capabilities, honesty, and reliability". [9] defines trust as being multi-
faceted and integrates four distinct sources of trust information to
evaluate an agent’s performance and trustworthiness.

Lyapunov stability ensures that the reshaping of rewards in a
Markov game does not disrupt the system’s equilibrium, prevent-
ing instability in learned policies and preserving the theoretical

convergence of agents. [24] introduced a Lyapunov stability con-
straint into the MARL framework to guide policy improvement
and ensure stability. [21] used candidate Lyapunov functions to
perform a detailed stability analysis. [6] focused on accelerating the
MARL training process by shaping rewards based on a Lyapunov
function, while [5] worked on constructing a Lyapunov function
to guarantee policy stability during learning.

3 MATHEMATICAL FRAMEWORK
Notations: We use the following mathematical notations through-
out the paper: 𝑖 refers to an agent, 𝑢 to the actions taken by agents,
𝑟𝑏 is the base reward of agents, and 𝑟 the reshaped reward. The total
number of agents in the system is denoted by 𝜈 , the set of agents
is denoted by 𝜗 and (𝑥,𝑦) represents the coordinates of an agent’s
location in the environment. 𝜑 denotes inter-agent assessments, 𝛿
is the temporal difference error, 𝑐 represents agent competency, and
𝑡𝑖 𝑗 is the trust score shared between agents. Let 𝑁𝑒𝑖 (𝑡) be the set
of neighbors of agent 𝑖 at time-step 𝑡 and 𝑁𝑒𝑖 (𝑡) the filtered subset
of neighbors. 𝑛𝑒𝑖 = Card(𝑁𝑒𝑖 ) and 𝑛𝑒𝑖 = Card(𝑁𝑒𝑖 ) represent the
cardinality of the set of neighbors of agent 𝑖 and the filtered subset,
respectively. 𝑑𝑖 (𝑡) represents the agent density in a part of the en-
vironment, specifically the density of neighbors 𝑁𝑒𝑖 (𝑡) observable
by agent 𝑖 .

Dec-POMDP We consider a Decentralised Partially Observable
Markov Decision Process, where each agent acts based on its lo-
cal observations and the information shared by its neighbors. We
focus on decentralized training and execution, where the training
of agent policies and the policies themselves are fully decentral-
ized between the agents. The Dec-POMDP is defined by the tuple
(𝑆, {𝑈𝑖 }𝑛𝑖=1,𝑇 , {𝑅𝑖 }

𝑛
𝑖=1, {𝑂𝑖 }𝑛𝑖=1,𝑂,𝛾). The set of states 𝑆 contains

the agents’ positions in the environment, as well as local informa-
tion on nearby obstacles and peers. Each agent 𝑖 has a set of actions
𝑈𝑖 = {up, down, left, right, stay} and receives observations 𝑜𝑖 ∈ 𝑂𝑖

from a dynamic partially observable space centered around its posi-
tion. The transition function𝑇 : 𝑆×(𝑈1×𝑈2×· · ·×𝑈𝑛)×𝑆 → [0, 1],
defining the probability 𝑃 (𝑠′ | 𝑠,𝑢1, 𝑢2, . . . , 𝑢𝑛) of moving to a new
state 𝑠′ given the current state 𝑠 and actions 𝑢1, 𝑢2, . . . , 𝑢𝑛 of all
agents. Each agent receives a reward 𝑅𝑖 : 𝑆 ×𝑈𝑖 → R based on their
contribution to the system, with 𝑅𝑖 (𝑠,𝑢𝑖 ) = 𝑟𝑖 , balancing individual
goals with the collective objective of all agents. The observation
function 𝑂 : 𝑆 ×𝑈1 ×𝑈2 × · · · ×𝑈𝑛 ×𝑂1 ×𝑂2 × · · · ×𝑂𝑛 → [0, 1]
provides the likelihood 𝑃 (𝑜1, 𝑜2, . . . , 𝑜𝑛 | 𝑠,𝑢1, 𝑢2, . . . , 𝑢𝑛) of each
agent’s observations given the state and actions taken. Finally, the
discount factor 𝛾 ∈ [0, 1] ensures future rewards are considered,
promoting strategic planning.

4 FRR METHOD OVERVIEW
The proposed reward reshaping method is based on two reshaping
functions with two filtering mechanisms. The first reshaping func-
tion is based on inter-agent assessments, where agents evaluate the
contributions of their peers in order to encourage cooperation. The
assessment score is computed using the Temporal Difference (TD)
error, which reflects how much each agent’s action contributes
to the system’s performance. Agents’ reshaped rewards include
their base rewards plus the average assessments from their neigh-
bors, promoting teamwork. These assessments are filtered using
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trust and competency: trust reflects consistent cooperative behav-
ior, while competency measures the ability to maximize rewards. A
competent agent may not always be trustworthy if it acts selfishly,
while a less competent agent can still be trustworthy if it consis-
tently demonstrates willingness to cooperate. This ensures that only
agents balancing cooperation and performance influence rewards.
The second reward-reshaping function introduces a density-focused
PBRS method, designed to further promote cooperation by encour-
aging agents to stay close to one another. Additionally, during the
exploration phase, this reshaping function is filtered to encourage
agents to explore under-explored states, aligning exploration with
cooperative goals.

4.1 Reward Reshaping through Inter-agent
Assessments

We propose an inter-agent assessment score that enables agents
to evaluate their peers’ contributions to the overall system. This
approach creates a collaborative environment, where agents work
together to improve performance and address the non-stationarity
of the environment by sharing these assessments. The goal is to
induce cooperation amongst agents in order to achieve faster learn-
ing and convergence. We define this assessment as the TD error of
each peer 𝑖:

𝜑𝑖 (𝑡) = 𝑟𝑏𝑖 (𝑡) + 𝛾 𝑚𝑎𝑥𝑢𝑄𝑖 (𝑜𝑖 (𝑡 + 1), 𝑢 |𝜃𝑖 (𝑡))
−𝑄𝑖 (𝑜𝑖 (𝑡), 𝑢𝑖 (𝑡) |𝜃𝑖 (𝑡))

(1)

with 𝑟𝑏
𝑖
being the base reward returned by the environment to

agent 𝑖 , 𝑄𝑖 (𝑜𝑖 , 𝑢𝑖 |𝜃𝑖 ) being the Q-value quantifying the quality of
the state-action pair (𝑜𝑖 (𝑡), 𝑢𝑖 (𝑡)) at time-step 𝑡 , 𝑜𝑖 (𝑡), and 𝑢𝑖 (𝑡)
the observation of agent 𝑖 and the action it took at time-step 𝑡 ,
and 𝜃𝑖 (𝑡) are the weights of the neural networks. TD errors can
be used as an estimation of the Bellman error, which measures the
discrepancy between the predicted and actual rewards. By incorpo-
rating the TD error as an inter-agent assessment score, agents can
better evaluate the impact of their peers’ actions on the system’s
overall performance, allowing for a more collaborative learning
environment.

For each agent, we average the assessments received by neigh-
bors, as shown in 1. The reshaped reward becomes:

𝑟𝑖 (𝑡) = 𝑟𝑏𝑖 (𝑡) +
1

𝑛𝑒𝑖 (𝑡)
∑︁

𝑗∈𝑁𝑒𝑖 (𝑡 )
𝜑 𝑗 (𝑡) (2)

Figure 1: Inter-agent assessments to contribute in peer’s re-
ward reshaping

Averaging inter-agent assessments to reshape peers’ rewards
does not adequately account for the varying reliability of different
agents. Even in homogeneous groups, giving equal weight to all as-
sessments—regardless of their quality—can dilute the effectiveness
of aggregated feedback, leading to inefficiencies and slowing the
learning process. To address this issue, we propose a filtering mech-
anism for the reshaping function that utilizes agents’ reputation
scores.

4.2 Introducing a Reputation Mechanism
We propose a reputation mechanism that operates on two key di-
mensions: trust among agents and competency of each individual
agent. We introduce a novel 2-dimensional trust mechanism that
considers not only the level of trust each agent has in its peers but
also the potential loss of trust if a peer becomes a Byzantine agent
or is subjected to a cyber-attack [22]. We define:

(1) trust based on mutual winnings: based on the fact that agents
can benefit from cooperation to maximize their own individ-
ual rewards.

(2) trust based on selfishness: If an agent chooses to conserve its
energy and refrain from contributing to the overall system,
it is considered untrustworthy by its peers. This decision
negatively impacts the trust score that agent 𝑖 ∈ 𝑁𝑒 𝑗 assigns
to agent 𝑗 .

We represent trust evaluation using individual trust vectors. At
each time step 𝑡 , an agent 𝑖 monitors and updates the trust scores
of up to four neighbors with the highest reputation. To illustrate
this concept, we define a square, non-symmetric trust matrix:

𝑇𝜈 =


𝑡11 𝑡12 · · · 𝑡1𝑛
𝑡21 𝑡22 · · · 𝑡2𝑛
.
.
.

.

.

.
. . .

.

.

.

𝑡𝑛1 𝑡𝑛2 · · · 𝑡𝑛𝑛


(3)

where 𝑇𝑖 = [𝑡𝑖 𝑗 ] 𝑗∈𝑁𝑒𝑖∪{𝑖 } represents the trust vector for agent 𝑖
and 𝑇𝜈 = [𝑇1,𝑇2, · · · ,𝑇𝑛]𝑇 serves as a conceptual representation of
the system. The trust scores are dichotomous variables: if agents 𝑖
and 𝑗 cooperate at time 𝑡 , 𝑡𝑖 𝑗 (𝑡) is set to 1; otherwise, it is 0. Initially,
all trust values are set to 0. The trust scores are updated using
Exponential Smoothing:

𝑡𝑖 𝑗 (𝑡) = (1 − 𝜆)𝑡𝑖 𝑗 (𝑡 − 1) + 𝜆𝑡𝑖 𝑗 (𝑡) (4)

with 𝜆, the smoothing factor, ensuring that trust values remain
within the range [0,1]. This formulation ensures that trust scores re-
tain information from past evaluations while avoiding the need for
agents to track the trust values of all peers, making the mechanism
scalable to larger systems.

We define competency as the ability of an agent 𝑖 ∈ 𝜗 to take
actions that maximize its individual rewards and help other agents
gear towards social success. Quantifying the competency score is
based on current Temporal Difference errors: we use the inter-agent
assessments of agents from the reputation mechanism.

The competency score is then expressed as:

𝑐𝑖 (𝑡) =
1

𝜑𝑖 (𝑡)
(5)
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When the temporal difference error increases, it indicates that
the agent is not performing competently. This rising error suggests a
misalignment between the agent’s actions and the optimal strategy.
In contrast, as the agent progresses toward convergence, the TD
error is expected to approach zero. This reduction in error implies
that the agent is effectively learning and optimizing its actions,
potentially leading to convergence.

Reputation scores are then calculated using the expression:

𝑅𝑒𝑝𝑖 (𝑡) = 𝑤1 ×
1

𝑛𝑒𝑖 (𝑡)
∑︁

𝑡𝑖 𝑗 (𝑡) +𝑤2 × 𝑐𝑖 (𝑡) (6)

with𝑤1, 𝑤2 being the weights assigned to trust and competency
scores. These task-dependent weights can be adjusted to emphasize
specific behaviors, such as collaboration or individual efficiency.

Figure 2: Inter-agent assessments to Contribute in Peer’s
Reward Reshaping through a Reputation-based Filter.

Reputation scores will serve to filter out agents whose evalua-
tions will not contribute to agent 𝑖’s learning process, as shown
in 2. Let 𝑅 be the matrix filter such that, if an agent 𝑗 ’s reputa-
tion ranks among the top four within the neighborhood 𝑁𝑒𝑖 , its
assessment 𝜑 𝑗 (𝑡) will contribute to the calculation of 𝑟𝑖 (𝑡), and
𝑓 = 1

𝑛𝑒𝑖 (𝑡 )
∑
𝜑 𝑗 (𝑡). The reward 𝑟𝑖 (𝑡) is then computed as:

𝑟𝑖 (𝑡) = 𝑟𝑏𝑖 (𝑡) + 𝑅 × 𝑓 (7)

4.3 Reward Reshaping with Densities-focused
PBRS

To promote agents’ execution of individual tasks while maintaining
connectivity and enhancing communication, we propose a density-
focused Potential-Based Reward Shaping (PBRS) mechanism. This
method incentivizes agents to remain connected by adjusting their
rewards based on the density of other agents in their observable
area. The density of agents 𝑗 ∈ 𝑁𝑒𝑖 (𝑡) within the observable space
of another agent 𝑖 serves as a metric to both motivate individual
performance and foster cooperation. The PBRS function will be
defined as:

𝑔 = 𝛾𝜙 (𝑠′) − 𝜙 (𝑠) = 𝛾𝑑 (𝑠′) − 𝑑 (𝑠) (8)

The density is calculated using:

d(𝑠𝑖 ) =
𝑛𝑒𝑖 (𝑡)
𝑑𝑙 × 𝑑𝐿

(9)

with 𝑑𝑙 and 𝑑𝐿 : the dimensions of the observable space of agent 𝑖
(i.e., supposing we are working on a 2-dimensional space). Agent
𝑖 receives a penalty for moving away from other agents and is

Algorithm 1 Decentralized Semi-Cooperative MARL with Filtered
Reward Reshaping Functions
1: Inputs: Number of agents 𝜈 , environment 𝐸𝑛𝑣 , number of

episodes 𝑁𝑒𝑝 , maximum steps per episode 𝑇
2: Initialize replay buffers 𝐷𝑖 for each agent 𝑖 ∈ {1, . . . , 𝜈}
3: Initialize primary Q-networks 𝑄𝑖 and target Q-networks 𝑄̂𝑖

with random weights for each agent 𝑖 ∈ {1, . . . , 𝜈}
4: for episode = 1 to 𝑁𝑒𝑝 do
5: Reset the environment and obtain initial state 𝑠0
6: for t = 0 to 𝑇 − 1 do
7: for each agent 𝑖 ∈ {1, . . . , 𝜈} do
8: Select action 𝑢𝑖 (𝑡) using 𝜖-greedy policy based on
9: 𝑄𝑖 (𝑠𝑡 , ·)
10: Observe next state 𝑠 (𝑡 + 1) and reward 𝑟𝑏

𝑖
(𝑡)

11: Store transition (𝑠 (𝑡), 𝑢𝑖 (𝑡), 𝑟𝑖 (𝑡), 𝑠 (𝑡 + 1)) in replay
12: buffer 𝐷𝑖

13: Store encounters 𝑜𝑝𝑖 𝑗 with neighbors 𝑗 ∈ 𝑁𝑒𝑖
14: Calculate inter-agent assessment 𝜑𝑖 (𝑡)
15: Calculate competency 𝑐𝑖 (𝑡) and trust scores 𝑡𝑖 𝑗 (𝑡)
16: Calculate reputation score 𝑅𝑒𝑝𝑖 (𝑡)
17: Filter out the assessment reshaping function 𝑅 × 𝑓

18: Calculate densities of neighbors in observable space
19: if Exploration Phase then
20: Filter out the Densities-based PBRS function
21: using Optimism
22: end if
23: Use Densities-based PBRS with no filter to reshape
24: the reward
25: Reshape reward 𝑟𝑖 (𝑡) = 𝑟𝑏

𝑖
(𝑡) + 𝑅 × 𝑓 + 𝐸 × 𝑔 and

26: store it
27: end for
28: 𝑠 (𝑡) ← 𝑠 (𝑡 + 1)
29: if terminal state reached then
30: break
31: end if
32: for each agent 𝑖 ∈ {1, . . . , 𝜈} do
33: Sample random minibatch of 𝐵 transitions
34: (𝑠,𝑢, 𝑟, 𝑠′) from 𝐷𝑖

35: Set target 𝑦𝑖 = 𝑟𝑖 + 𝛾 max𝑢′ 𝑄̂𝑖 (𝑠′, 𝑢′)
36: Periodically update target network 𝑄̂𝑖 ← 𝑄𝑖

37: end for
38: end for
39: end for

rewarded positively for staying near its neighbors. The reshaped
reward becomes:

𝑟𝑖 (𝑡) = 𝑟𝑏𝑖 (𝑡) + 𝑅 × 𝑓 + 𝑔 (10)

4.4 Filtering during Exploration Phase
In MARL, the exploration phase is important for agents to learn
effective policies in an environment where multiple agents interact.
Exploration allows agents to discover new strategies, states, and
rewards that they may not encounter if they only exploit known
information.
We add a filter to the second reshaping function 𝑔 to encourage
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Figure 3: FRR Architecture. At Each time step 𝑡 , agents interact with the environment by receiving observations 𝑜 𝑗≠𝑖 (𝑡) and
giving back actions 𝑢 𝑗 (𝑡). Neighbors of agent 𝑖 share their assessment scores 𝜑 𝑗 and their trust scores 𝑡 𝑗𝑖 as inputs to the
reputation mechanism. Densities of neighbors in the partially observable space of agent 𝑖 are calculated in time steps 𝑡 and 𝑡 + 1
to calculate the PBRS function. Reshaped rewards of all agents are then fed to the buffer, along with the current transition
(𝑠 (𝑡), 𝑢 (𝑡), 𝑠 (𝑡 + 1), 𝑟 (𝑡)).

agents to take advantage of the exploration phase:

𝑟𝑖 (𝑡) = 𝑟𝑏𝑖 (𝑡) + 𝑅 × 𝑓 + 𝐸 × 𝑔 (11)

Assuming that the reshaping function 𝑓 that induces cooperation
is filtered using the filter matrix 𝑅, 𝐸 is a filter that focuses on
bringing positive incentivization to agents during the exploration
phase:

𝐸 = 1𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 · 1𝑔≥0 + 1𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛 · 1𝑔≠0 (12)

with the function 1𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 indicating that the reshaping func-
tion 𝑔 will only be incorporated into the reshaped reward when
agents are engaged in the exploration phase. This exploration-
guided reshaping mechanism utilizes a function that encourages
agents to work towards individual and collective objectives. Ini-
tially, agents can explore the state space, and once the exploration
phase (i.e., determined by the number of exploration episodes dur-
ing training) concludes, they are rewarded or penalized based on
the PBRS value. If the PBRS value 𝑔 is negative during the exploita-
tion phase, the agent is guided to reconsider its decisions regarding
the exploitation of states that may not yield positive rewards.

Adding optimism to the intrinsic filter: By integrating an
optimism factor into the proposed exploration filter, we seek to
motivate agents to engage with those they have not sufficiently
collaborated with in the past. This approach provides a ARLore
robust exploration strategy that balances discovering new opportu-
nities and achieving individual objectives. Optimism is inspired by
the Upper Confidence Bound (UCB) approach, which encourages
exploration by favoring less-visited state-action pairs. The constant
(0.9) in our optimism factor promotes collaboration while avoiding
excessive exploration. The exploration-based filter becomes:

𝐸 = 1𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 · 1𝑔≥0 · optimism
+ 1𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛 · 1𝑔≠0

(13)

An interaction occurs when agent 𝑗 is within the observable space
of agent 𝑖 (i.e., the distance between them is below a specified
threshold) and results in an encounter if the agents collaborate
and achieve mutual winnings. Encounters are incrementally up-
dated based on the number of successful collaborative interactions
between agents 𝑖 and 𝑗 . We define optimism as follows:

optimism =
0.9√︁

1 +∑𝑜𝑝𝑖 𝑗
(14)

with 𝑜𝑝𝑖 𝑗 : the number of all encounters between agent 𝑖 and agent
𝑗 ∈ 𝑁𝑒𝑖 (𝑡). Increased cooperation with new neighbors results
in higher rewards for agent 𝑖 during the exploration phase (see
Algorithm 1). Both optimism and the reputation filtering param-
eters are environment-dependent and task-specific. For instance,
higher optimism values are suited to cooperative scenarios to en-
courage collaboration, while stricter filtering enhances reliability
in adversarial settings.

5 CONVERGENCE AND STABILITY ANALYSIS
We employ Lyapunov stability to ensure that the system’s overall
state, including all agents’ states, converges to a desirable equi-
librium and remains stable. In this work, instead of considering
a stability-constrained MARL, we allow agents to explore/exploit
the environment and update their policies in a Dec-POMDP with
no pre-defined constraints. We start with a Boundedness analy-
sis, which ensures that the system doesn’t experience unbounded
growth in Q-values or TD errors, which could lead to instability
in learning. Additionally, Bounded TD errors allow the updates to
converge gradually to an equilibrium rather than diverging.
We prove that the proposed reshaped reward is bounded:

𝑟 = 𝑟 + 𝑅 × 𝑓 + 𝐸 × 𝑔 ≤ 𝑐1 (15)
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with 𝑐1 being a constant. Let’s note: 𝑟𝑏
𝑗
the maximum base reward

an agent 𝑗 can get back from the environment (since agents are
homogeneous: 𝑟𝑏

𝑗
= 𝑟𝑏

𝑖
,∀(𝑖, 𝑗) ∈ 𝜗), 𝑑𝑚𝑎𝑥 and 𝑑𝑚𝑖𝑛 the maximum

and minimum densities of agents { 𝑗 ∈ 𝜗 − {𝑖}} in the observable
space of an agent 𝑖 respectively, (𝑠′, 𝑢′, 𝑠, 𝑢) being, respectively, the
next and actual pair of state-action of agent 𝑗 , and 𝜆1, 𝜆2, 𝜆3 positive
constants.
Let’s note that the filter 𝑅 does not affect the boundedness proof for
the first filtered reshaping function, as the reputation mechanism
allows agent 𝑖 to consider only the four best assessments from its
neighbors:

|𝑓 | = |
4∑︁
𝑗=1

𝛿 𝑗 (𝑟𝑏𝑗 ) |

= |
4∑︁
𝑗=1
(𝑟𝑏𝑗 + 𝛾𝑚𝑎𝑥𝑢′𝑄 𝑗 (𝑠′, 𝑢′) −𝑄 𝑗 (𝑠,𝑢 𝑗 ) |

≤ |
4∑︁
𝑗=1
(𝑟𝑏𝑗 +𝑚𝑎𝑥𝑢′ (𝛾𝑄 𝑗 (𝑠′, 𝑢′) −𝑄 𝑗 (𝑠,𝑢 𝑗 )) |

≤ |4 × 𝑟𝑏𝑗 +
4∑︁
𝑗=1
(𝑚𝑎𝑥𝑢′ (𝛾𝑄 𝑗 (𝑠′, 𝑢′) −𝑄 𝑗 (𝑠,𝑢 𝑗 )) |

(16)

Since the Q-values are bounded (as will be proven in the theoretical
convergence analysis), we get:

∀(𝑠,𝑢) ∈ 𝑆 ×𝑈 , 𝑄 (𝑠,𝑢) ≤ 𝜆3

→𝑚𝑎𝑥𝑢′ (𝛾𝑄 𝑗 (𝑠′, 𝑢′) −𝑄 𝑗 (𝑠,𝑢 𝑗 )) < 2𝜆3
(17)

This implies the first reshaping function is bounded such that:

|𝑓 | ≤ 4(𝑟𝑏 + 2𝜆3) (18)

The second reshaping function is a densities-based PBRS. For an
agent 𝑖:

|𝑔 | = |𝛾𝑑 (𝑠′𝑖 ) − 𝑑 (𝑠𝑖 ) |
≤ |𝛾𝑑𝑚𝑖𝑛 (𝑠′𝑖 ) − 𝑑𝑚𝑎𝑥 (𝑠𝑖 ) |
≤ 𝜆2

(19)

Since 𝐸 filters 𝑔 during the exploration phase and we induced a
constrained optimism such that 0.9√

1+∑𝑜𝑝𝑖 𝑗
< 1, consequently:

|𝐸 × 𝑔| ≤ |𝑔| ≤ 𝜆2 (20)

We get an upper bound of the reshaped reward:

𝑟 ≤ |𝑟𝑏𝑗 + 𝑅 × 𝑓 + 𝐸 × 𝑔|

≤ |𝑟𝑏𝑗 + 𝜆1 + 𝜆2 |
(21)

5.1 Theoretical Convergence
For the system to converge, we assume the following conditions
hold as 𝑡 →∞ with 𝜋∗

𝑖
being the optimal policy for agent 𝑖:

lim
𝑡→∞

𝜋𝑖 (𝑡) = 𝜋∗𝑖 (22)

Under the optimal policy 𝜋∗
𝑖
, as 𝑡 →∞:

𝑄𝑖 (𝑠,𝑢) −→ 𝑄∗ (𝑠,𝑢)
𝜃 −→ 𝜃∗

𝛿 (𝑟 ) −→ 0
(23)

The Q-values𝑄𝑖 (𝑠,𝑢) are expected to converge to their optimal val-
ues𝑄∗ (𝑠,𝑢), and the TD error 𝛿 (𝑟 ) should asymptotically approach
zero. This implies that the agent’s policy 𝜋𝑖 (𝑡) converges to the
optimal policy 𝜋∗

𝑖
over time.

The convergence of the Q-values is guaranteed under certain con-
ditions on the learning rate 𝛼 . The Q-values will converge to their
optimal values if 𝛼 satisfies the Robbins-Monro conditions [14]:

∞∑︁
𝑡=0

𝛼𝑡 = ∞ and
∞∑︁
𝑡=0

𝛼2𝑡 < ∞ (24)

These conditions ensure that the learning rate decreases sufficiently
over-time to stabilize the learning process while still allowing
enough updates for convergence.
As established in the boundedness analysis, the reshaped reward
𝑟 is bounded by a constant 𝑐1, ensuring that the TD error 𝛿 (𝑟 )
remains bounded as well. Specifically:

|𝛿 (𝑟 ) | ≤ 𝑟𝑏𝑗 + 𝜆1 + 𝜆2 + 2𝜆3 (25)

Since the TD error 𝛿 (𝑟 ) is bounded, the Q-value updates remain sta-
ble, preventing divergence and ensuring that the Q-values 𝑄𝑖 (𝑠,𝑢)
gradually converge to their optimal values 𝑄∗ (𝑠,𝑢). Introducing
the reshaped reward accelerates learning by providing additional
guidance to the agents through reward shaping, leading to faster
learning of agents. However, the bounded nature of the reshaped re-
ward ensures that this acceleration does not destabilize the learning
process.

5.2 Lyapunov Stability Analysis
We propose a Lyapunov function 𝐿(𝑠,𝑢) = 𝑉 (𝑄 (𝑡)), which takes
strictly positive values and is formulated as the sum of squared
errors in Q-values. We define Φ𝑖 = 𝑄𝑖 (𝑠,𝑢) −𝑄∗ (𝑠,𝑢) such that:

𝑉 (𝑄 (𝑡)) = 1
2

𝜈∑︁
𝑖=1

Φ2
𝑖

=
1
2

𝜈∑︁
𝑖=1

(
𝑄𝑖 (𝑠,𝑢) −𝑄∗ (𝑠,𝑢)

)2 (26)

This function represents a cost function that must decrease over
time for the multi-agent system to achieve Lyapunov stability. This
condition is equivalent to the time derivative ¤𝑉 (𝑄 (𝑡)) having neg-
ative values:

¤𝑉 (𝑄 (𝑡)) =

𝜈∑︁
𝑖=1
(Φ𝑖 ) · ¤Φ𝑖 (27)

With respect to the Q-value updates, we have:
¤Φ = 𝛼 ( [𝑟 + 𝑅 × 𝑓 + 𝐸 × 𝑔]
+ 𝛾 max

𝑢′
𝑄𝑖 (𝑠′, 𝑢′) −𝑄𝑖 (𝑠,𝑢))

(28)

The Lyapunov function’s time derivative becomes:

¤𝑉 (𝑄 (𝑡)) =
𝜈∑︁
𝑖=1
[ (𝑄𝑖 (𝑠,𝑢) −𝑄∗ (𝑠,𝑢))

× 𝛼 ( [𝑟 + 𝑅 × 𝑓 + 𝐸 × 𝑔]
+ 𝛾 max

𝑢′
𝑄𝑖 (𝑠′, 𝑢′) −𝑄𝑖 (𝑠,𝑢)) ]

(29)
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The TD error with the reshaped reward 𝑟 is proven to be bounded:

|𝛿𝑖 (𝑟 ) | ≤ [ |𝑟𝑏𝑖 + 𝑅 × 𝑓 + 𝐸 × 𝑔|
+𝑚𝑎𝑥𝑢′ |𝛾𝑄 𝑗 (𝑠′, 𝑢′) −𝑄 𝑗 (𝑠,𝑢 𝑗 ) | ]

≤ 𝑟𝑏𝑗 + 𝜆1 + 𝜆2 + 2𝜆3

(30)

We introduce a new positive constant 𝜆 that reflects the discrepancy
between the optimal Q-value and the agent’s current Q-value at
each time step:

𝜆 = 𝑄∗ (𝑠 (𝑡), 𝑢 (𝑡)) −𝑄𝑖 (𝑠 (𝑡), 𝑢 (𝑡)) > 0
↔ −𝜆 = 𝑄𝑖 (𝑠 (𝑡), 𝑢 (𝑡)) −𝑄∗ (𝑠 (𝑡), 𝑢 (𝑡)) < 0

(31)

with 𝛼 the learning rate, 𝜆 and |𝛿𝑖 (𝑟 ) | being all positive, we prove
that 𝑉 (𝑄 (𝑡)) does decrease in time, leading to the convergence of
the agents:

¤𝑉 (𝑄 (𝑡)) ≤ −
∑︁

𝛼𝜆 |𝛿𝑖 (𝑟 ) |

< −
∑︁

𝛼𝜆 |𝛿𝑖 (𝑟 ) |2 < 0
(32)

6 EXPERIMENT
6.1 Environment
The environment is defined as a dynamic grid world, characterized
by a variety of elements including empty cells, walls, and entities
such as hunters and prey. The focus is centered on training the
hunters within this grid. Each hunter is equipped to navigate and
interact within the grid, using local information and observations
limited to a partially observable space centered around its position.
Prey move freely, avoiding predators when possible. For a prey to
be captured, it must be fully surrounded by hunters. The grid’s
dimensions, as well as the number of prey and hunters, are varied
to test the adaptability of our algorithm to high-dimensional and
semi-cooperative settings. The hunters must balance the objectives
of surrounding and capturing prey while conserving their battery
levels.

6.2 Numerical Results
We use two baselines to evaluate the performance of agents us-
ing our approach, both are adjusted to encourage cooperation in
partially observable semi-cooperative environments. The first base-
line is the PED-DQN framework [8], which is a value-based MARL
method designed to enhance cooperation by reshaping rewards
through peer evaluation. This peer evaluation metric incorporates
feedback from other agents to encourage socially optimal actions.
The second baseline is Independant Q-learners (IQL) [17]. IQL em-
ploys the classic Q-learning algorithm, where agents update their
Q-values based solely on their experiences, which consist of their
own state-action pairs and the rewards received.

We define the filtering parameter as a reputation-related user-
defined value that specifies the number of peers whose assessments
will be included in the reward reshaping process. Figures 5a and 5b
show that different filtering parameters of the reputation mecha-
nism lead to varying rates of improvement of the learning of agents.
Setting the filtering parameter to 4 demonstrates a better perfor-
mance of hunters compared to the others, showcasing that choosing
a high filtering parameter is not necessarily the best option. In what
follows, we set the filtering parameter to 4 by default.

(a) Results with reputation filter-
ing parameters = {2, 4, 6}.

(b) Results with reputation filter-
ing parameters = {6, 8, 10}.

Figure 5: Smoothed results of the FRR mechanism in a 12 by
12 grid with 20 hunters and 19 preys.

We evaluate the performance of agents using the different build-
ing blocks of our mechanism in the same setting (as shown in 4d) to
demonstrate that agents are more encouraged to cooperate when
their rewards are reshaped using both filtered reward reshaping
functions:
• Mechanism M0: We average the inter-agent assessments

𝜑 𝑗 (𝑡) received by neighbors in the partially observable space of
each agent 𝑟𝑖 (𝑡) = 𝑟𝑏

𝑖
(𝑡) + 1

𝑛𝑒𝑖 (𝑡 )
∑

𝑗∈𝑁𝑒𝑖 (𝑡 ) 𝜑 𝑗 (𝑡), such that 𝑁𝑒𝑖

does not account for all neighbors but only the neighbors with the
least assessments (i.e., as an indicator of good learning).
•Mechanism M1: We filter the proposed first reshaping func-

tion using the reputation mechanism. The reshaped reward be-
comes: 𝑟𝑖 (𝑡) = 𝑟𝑏

𝑖
(𝑡) + 𝑅 × 𝑓 .

•Mechanism M2: We add the second reshaping function with
only the exploration-based filter to reshape the reward: 𝑟𝑖 (𝑡) =
𝑟𝑏
𝑖
(𝑡) + 𝑅 × 𝑓 + (1𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 · 1𝑔≥0 + 1𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛 · 1𝑔≠0) × 𝑔.

6.3 Interpretations
6.3.1 Cooperation and scalability. Figures 4a, 4b, and 4c illus-
trate the moving average of rewards across different settings. IQL
experiences slow learning and adopts suboptimal policies due to
interference among independent learners. While IQL agents im-
prove gradually in 4a and 4c, their performance in 4b stagnates
because the high environment density impedes effective learning
and convergence. PED-DQN uses peer evaluations to encourage
cooperation among agents, resulting in better performance com-
pared to IQL. FRR outperforms both IQL and PED-DQN by filtering
assessments, allowing agents to rely on the most competent collab-
orators. In the scenario shown in 4c, FRR achieves a 78% increase
in rewards over IQL and a 16% increase over PED-DQN. FRR ef-
fectively transforms the scalability challenges often encountered
in multi-agent systems into a significant advantage, enabling the
system to achieve higher rewards. This benefit of cooperation is
especially evident in Figure 4b, where FRR’s density-focused PBRS
mechanism encourages agents to remain close to their collabora-
tors. 4e shows that FRR indeed enhances prey capture rates while
efficiently conserving energy. Conversely, IQL initially focuses on
conserving energy but eventually shifts its strategy towards prey
capture as it yields to higher rewards.
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(a) Setting: 12 by 12 grid with 20 hunters
and 19 preys

(b) Setting: 12 by 12 grid with 26 hunters
and 25 preys

(c) Setting: 13 by 13 grid with 20 hunters
and 19 preys

(d) Performance of FRR building blocks
mechanisms

(e) Preys captured vs Agents’ Battery con-
sumption

(f) Robustness to variability in exploration
Phases

Figure 4: Performance evaluation of the proposed FRR approach compared to baseline methods (PED-DQN and IQL) across
different grid settings and exploration phases. (a), (b), and (c) show the moving average of rewards over training episodes for
environments with varying grid sizes and numbers of agents. (d) illustrates the performance of FRR building block mechanisms
(M0, M1, and M2 explained in 6.2). (e) presents a comparison of preys captured versus agents’ battery consumption in a setting
with 23 hunters and 22 preys in a 12 by 12 grid. (f) demonstrates the robustness of the proposed FRR approach and baselines
across different exploration phases.

6.3.2 Comparison between mechanisms. Figure 4d shows
that mechanism M0, which averages inter-agent assessments with-
out filtering, leads to the slowest learning progress. Mechanism M1,
with Reputation-based filtering, improves performance by allowing
agents to rely on more competent collaborators. Mechanism M2,
by adding an exploration-based filter, improves learning by dynam-
ically adjusting agent behavior in the exploration and exploitation
phases. FRR, which combines both filters, outperforms all mecha-
nisms by encouraging cooperation using the reputation mechanism
and the densities-focused PBRS, demonstrating the most effective
learning and achieving the highest rewards. This combination accel-
erates learning and ensures more consistent cooperation between
agents in high-dimensional settings.

6.3.3 Exploration phase. Figure 4f illustrates the robustness
of FRR and the baseline methods in a 12x12 grid with 23 hunters
and 22 preys over 2 million steps. FRR’s optimistic exploration
filter accelerates improvement beyond the exploration phase and
achieves a maximum of 96 preys captured during a 500,000-step
exploration phase. Similarly, PED-DQN also shows improvement
with sufficient exploration, capturing 90 preys at its peak with the
same exploration length. IQL reaches a maximum prey capture of
64 more quickly with sufficient exploration but still falls short of
the performance achieved by PED-DQN and FRR due to its lack of
coordination and independent learning approach.

7 CONCLUSION AND FUTUREWORK
In this work, we introduced a novel framework for promoting co-
operation and optimizing task performance in high-dimensional

semi-cooperative multi-agent systems. By integrating a reputation-
based reward reshaping mechanism that filters agent contributions
based on trust and competency, we ensure that only the most re-
liable agents influence their peers’ learning process. Additionally,
our density-focused PBRS mechanism encourages agents to main-
tain connectivity by adjusting rewards according to the density of
their neighbors, allowing both individual and collective success.
The combination of these mechanisms allows for more effective
coordination in multi-agent settings, addressing challenges such
as communication, connectivity, and the conflict between individ-
ual objectives and group connectivity. By reshaping rewards using
competency assessments, reputation filtering, and neighborhood
densities, we create an environment where agents can better bal-
ance exploration with task achievement and collaboration. In future
work, we aim to improve the estimation of the reputation filtering
parameter by enabling agents to learn and adaptively choose the
filtering parameter best suited to each scenario, ensuring optimal
learning dynamics across different settings. Furthermore, we plan to
extend this framework to environments with heterogeneous agents
that may have different capabilities, objectives, or action spaces,
allowing us to explore the challenges of maintaining cooperation
and stability in multi-agent systems with more complex tasks.

REFERENCES
[1] Sara Amini and Mohsen Afsharchi. 2014. Finding Better Teammates in a Semi-

cooperative Multi-agent System. In 2014 IEEE/WIC/ACM International Joint Con-
ferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), Vol. 3.
143–150. https://doi.org/10.1109/WI-IAT.2014.161

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

1743

https://doi.org/10.1109/WI-IAT.2014.161


[2] Ariyan Bighashdel, Daan de Geus, Pavol Jancura, and Gijs Dubbelman.
2023. Off-Policy Action Anticipation in Multi-Agent Reinforcement Learning.
arXiv:2304.01447 [cs.MA] https://arxiv.org/abs/2304.01447

[3] Noam Buckman, Sertac Karaman, and Daniela Rus. 2023. Studying the Impact
of Semi-Cooperative Drivers on Overall Highway Flow. In 2023 IEEE Intelligent
Vehicles Symposium (IV). 1–8. https://doi.org/10.1109/IV55152.2023.10186563

[4] Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and Mohammad
Ghavamzadeh. 2018. A Lyapunov-based Approach to Safe Reinforcement Learn-
ing. arXiv:1805.07708 [cs.LG] https://arxiv.org/abs/1805.07708

[5] Julio B. Clempner. 2022. A Lyapunov approach for stable reinforcement learning.
Computational and Applied Mathematics 41, 279 (2022). https://doi.org/10.1007/
s40314-022-01988-y

[6] Yunlong Dong, Xiuchuan Tang, and Ye Yuan. 2020. Principled reward shaping
for reinforcement learning via lyapunov stability theory. Neurocomputing 393
(2020), 83–90. https://doi.org/10.1016/j.neucom.2020.02.008

[7] Jakob Foerster, Richard Y. Chen, Maruan Al-Shedivat, Shimon Whiteson, Pieter
Abbeel, and Igor Mordatch. 2018. Learning with Opponent-Learning Awareness.
In Proceedings of the 17th International Conference on Autonomous Agents and
MultiAgent Systems (Stockholm, Sweden) (AAMAS ’18). International Foundation
for Autonomous Agents and Multiagent Systems, 122–130.

[8] David Earl Hostallero, Daewoo Kim, Sangwoo Moon, Kyunghwan Son, Wan Ju
Kang, and Yung Yi. 2020. Inducing Cooperation through Reward Reshaping based
on Peer Evaluations in Deep Multi-Agent Reinforcement Learning. In Proceedings
of the 19th International Conference on Autonomous Agents andMultiAgent Systems
(Auckland, NewZealand) (AAMAS ’20). International Foundation for Autonomous
Agents and Multiagent Systems, Richland, SC, 520–528.

[9] Trung Dong Huynh. 2006. Trust and reputation in open multi-agent systems.
https://api.semanticscholar.org/CorpusID:38269536

[10] Jiechuan Jiang and Zongqing Lu. 2018. Learning Attentional Communication for
Multi-Agent Cooperation. arXiv:1805.07733 [cs.AI] https://arxiv.org/abs/1805.
07733

[11] Daewoo Kim, Sangwoo Moon, David Hostallero, Wan Ju Kang, Taeyoung Lee,
Kyunghwan Son, and Yung Yi. 2019. Learning to Schedule Communication in
Multi-agent Reinforcement Learning. arXiv:1902.01554 [cs.AI] https://arxiv.org/
abs/1902.01554

[12] Adam Lerer and Alexander Peysakhovich. 2018. Maintaining cooperation in com-
plex social dilemmas using deep reinforcement learning. arXiv:1707.01068 [cs.AI]
https://arxiv.org/abs/1707.01068

[13] Andrew Y Ng, Daishi Harada, and Stuart Russell. 1999. Policy invariance under
reward transformations: Theory and application to reward shaping. In Proceedings
of the 16th International Conference on Machine Learning (ICML’99). 278–287.

[14] Herbert E. Robbins. 1951. A Stochastic Approximation Method. Annals of
Mathematical Statistics 22 (1951), 400–407. https://api.semanticscholar.org/
CorpusID:16945044

[15] Jordi Sabater and Carles Sierra. 2001. REGRET: A reputation model for gregarious
societies. https://api.semanticscholar.org/CorpusID:749615

[16] Reid Sawtell, Sarah Kitchen, Timothy Aris, and Chris McGroarty. 2024. Learning
Cohesive Behaviors Across Scales for Semi-Cooperative Agents. The International
FLAIRS Conference Proceedings (2024). https://api.semanticscholar.org/CorpusID:
269900826

[17] Ming Tan. 1993. Multi-agent reinforcement learning: independent versus cooper-
ative agents. In Proceedings of the Tenth International Conference on International
Conference on Machine Learning (Amherst, MA, USA) (ICML’93). Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 330–337.

[18] Woodrow Z.Wang, Mark Beliaev, Erdem Bıyık, Daniel A. Lazar, Ramtin Pedarsani,
and Dorsa Sadigh. 2021. Emergent Prosociality in Multi-Agent Games Through
Gifting. arXiv:2105.06593 [cs.MA] https://arxiv.org/abs/2105.06593

[19] Y. Wang and J. Vassileva. 2003. Trust and reputation model in peer-to-peer
networks. In Proceedings Third International Conference on Peer-to-Peer Computing
(P2P2003). 150–157. https://doi.org/10.1109/PTP.2003.1231515

[20] David H. Wolpert, Kevin R. Wheeler, and Kagan Tumer. 2000. Collective Intelli-
gence for Control of Distributed Dynamical Systems. EPL (Europhysics Letters)
49, 6 (2000), 708.

[21] Federico M. Zegers, Matthew T. Hale, John M. Shea, and Warren E. Dixon. 2021.
Event-Triggered Formation Control and Leader Tracking With Resilience to
Byzantine Adversaries: A Reputation-Based Approach. IEEE Transactions on
Control of Network Systems 8, 3 (2021), 1417–1429. https://doi.org/10.1109/TCNS.
2021.3068348

[22] Federico M. Zegers, Matthew T. Hale, John M. Shea, and Warren E. Dixon. 2021.
Event-Triggered Formation Control and Leader Tracking With Resilience to
Byzantine Adversaries: A Reputation-Based Approach. IEEE Transactions on
Control of Network Systems 8, 3 (2021), 1417–1429. https://doi.org/10.1109/TCNS.
2021.3068348

[23] Chongjie Zhang and Victor Lesser. 2010. Multi-Agent Learning with Policy
Prediction. Proceedings of the National Conference on Artificial Intelligence 2.

[24] Qingrui Zhang, Hao Dong, and Wei Pan. 2020. Lyapunov-Based Reinforcement
Learning for Decentralized Multi-agent Control. In Distributed Artificial Intelli-
gence, Matthew E. Taylor, Yang Yu, Edith Elkind, and Yang Gao (Eds.). Springer
International Publishing, Cham, 55–68.

[25] Xiaoqin Zhang and Victor Lesser. 2011. Solving Negotiation Chains in Semi
Cooperative Multi-Agent Systems. (05 2011).

[26] Liqun Zhao, Konstantinos Gatsis, and Antonis Papachristodoulou. 2023. Stable
and Safe Reinforcement Learning via a Barrier-Lyapunov Actor-Critic Approach.
arXiv:2304.04066 [eess.SY] https://arxiv.org/abs/2304.04066

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

1744

https://arxiv.org/abs/2304.01447
https://arxiv.org/abs/2304.01447
https://doi.org/10.1109/IV55152.2023.10186563
https://arxiv.org/abs/1805.07708
https://arxiv.org/abs/1805.07708
https://doi.org/10.1007/s40314-022-01988-y
https://doi.org/10.1007/s40314-022-01988-y
https://doi.org/10.1016/j.neucom.2020.02.008
https://api.semanticscholar.org/CorpusID:38269536
https://arxiv.org/abs/1805.07733
https://arxiv.org/abs/1805.07733
https://arxiv.org/abs/1805.07733
https://arxiv.org/abs/1902.01554
https://arxiv.org/abs/1902.01554
https://arxiv.org/abs/1902.01554
https://arxiv.org/abs/1707.01068
https://arxiv.org/abs/1707.01068
https://api.semanticscholar.org/CorpusID:16945044
https://api.semanticscholar.org/CorpusID:16945044
https://api.semanticscholar.org/CorpusID:749615
https://api.semanticscholar.org/CorpusID:269900826
https://api.semanticscholar.org/CorpusID:269900826
https://arxiv.org/abs/2105.06593
https://arxiv.org/abs/2105.06593
https://doi.org/10.1109/PTP.2003.1231515
https://doi.org/10.1109/TCNS.2021.3068348
https://doi.org/10.1109/TCNS.2021.3068348
https://doi.org/10.1109/TCNS.2021.3068348
https://doi.org/10.1109/TCNS.2021.3068348
https://arxiv.org/abs/2304.04066
https://arxiv.org/abs/2304.04066

	Abstract
	1 Introduction
	2 Related Work
	3 Mathematical Framework
	4 FRR Method Overview
	4.1 Reward Reshaping through Inter-agent Assessments
	4.2 Introducing a Reputation Mechanism
	4.3 Reward Reshaping with Densities-focused PBRS
	4.4 Filtering during Exploration Phase

	5 Convergence and Stability Analysis
	5.1 Theoretical Convergence
	5.2 Lyapunov Stability Analysis

	6 Experiment
	6.1 Environment
	6.2 Numerical Results
	6.3 Interpretations

	7 Conclusion and future work
	References



