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ABSTRACT
Agents built on LLMs have shown versatile capabilities but face diffi-
culties in being cooperative in social dilemma situations.Whenmak-
ing decisions under the strain of selecting between long-term con-
sequences and short-term benefits in commonly shared resources,
LLM-based agents are vulnerable to the tragedy of the commons,
i.e. individuals’ greed exploitation leads to early depletion. We pro-
pose LLM agents that consider future consequences to aid them
in navigating intertemporal social dilemmas. We introduce two
approaches—prompting and intervention—to equip the agent with
the ability to consider future consequences when making a decision,
which results in a new kind of agent—CFC-Agent. Furthermore, we
enable the CFC-Agent to act toward different levels of consideration
for future consequences. Our experiments in different settings show
that agents that consider future consequences exhibit sustainable
behaviour and achieve high common rewards for the population.
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1 INTRODUCTION
Social dilemmas such as common pool resources [5, 9] require co-
operation among individuals. We, humans, can effectively resolve
dilemmas under different conditions [4, 11]; however, it still is a
challenge for artificial agents to do so. Recent AI research in this
area typically has long been focused on the paradigm where the
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sheer amount of training is required for training cooperative be-
haviour in specific situations, e.g. reinforcement learning agents
[2, 6, 7, 10]. Parallel to this development is the rise of large language
models (LLMs) [1, 3], allowing us to build coordinated agents in a
zero-shot manner. This new paradigm of building artificial agents
[8] potentially helps to overcome training issues in achieving rea-
sonable social behaviours, which is worth developing along with
traditional learning agents. However, merely utilising the implicit
decision-making model of LLMs for agents under social dilemmas
can lead to a low level of cooperation in different settings, including
sharing common pool resources. In this paper, we aim to construct
a framework for LLM-based multi-agents in which they achieve
sustainable use of shared resources without any extra effort of
fine-tuning.

Our framework is constructed based on the foundation of an
essential concept in social psychology, namely, Consideration of
Future Consequence (CFC), defined as the extent to which individuals
consider the potential future outcomes of their current behaviour [12].
CFC is a personality trait that has been shown to be an important
factor in social dilemmas [13, 14]. An instrument to gauge this trait
is the CFC Scale, consisting of a list of 12 statements that describe
the individuals’ considerations of potential consequences [12]. This
list is divided into two categories: (1) short-term related items, e.g.
I only act to satisfy immediate concerns, figuring the future will take
care of itself ; and (2) long-term related items, e.g. Often I engage
in a particular behaviour in order to achieve outcomes that may not
result for many years. We employed these categories to trigger the
LLM-based agents to have different traits in decision-making in
sequential social dilemmas.

Although CFC was extensively studied in social science research,
it has not been studied to aid LLMs in making decisions. We present
two approaches for integrating CFC into the decision-making pro-
cess of LLMs. Our first method leverages a cost-effective strategy to
induce the desired behaviour through prompting mechanisms, re-
ferred to as CFC-Prompt. The second approach involves intervening
in the hidden states of LLMs during inference to guide their deci-
sions towards anticipating future outcomes, known as CFC-Excitor.
Both methods require only a single call to the LLM for each decision.
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CFC-Short-Prompt
Your trait 
+ You only act to satisfy immediate concerns, figuring 
the future will take care of itself.
+ Your behavior is only influenced by the immediate 
(i.e., a matter of days or weeks) outcomes of your 
actions.
+ Your convenience is a big factor in the decisions 
you make or the actions you take.
+ You generally ignore warnings about possible 
future problems because you think the problems will 
be resolved before they reach crisis level.
+ You think that sacrificing now is usually 
unnecessary since future outcomes can be dealt with 
at a later time.
+ You only act to satisfy immediate concerns, figuring 
that you will take care of future problems that may 
occur at a later date.
+ Since your day to day work has specific outcomes, 
it is more important to you than behavior that has 
distant outcomes.
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CFC-Long-Prompt
Your trait 
+ You consider how things might be in the 
future, and try to influence those things 
with your day to day behavior. 
+ Often You engage in a particular 
behavior in order to achieve outcomes that 
may not result for many years. 
+ You are willing to sacrifice your 
immediate happiness or well-being in 
order to achieve future outcomes. 
+ You think it is important to take warnings 
about negative outcomes seriously even if 
the negative outcome will not occur for 
many years. 
+ You think it is more important to perform 
a behavior with important distant 
consequences than a behavior with less-
important immediate consequences.

CFC-Short

Figure 1: CFC-Agent via Prompting Mechanisms (CFC-Prompt).
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Figure 2: The CFC-Agent via Intervention (CFC-Excitor).

Additionally, we design and examine LLM-based agents capable
of considering future consequences at varying levels, utilising a
coefficient that regulates the CFC during the intervention.

2 APPROACHES
Our LLM-based cooperative agent is inspired by the concept of
Considerations to Future Consequences (CFC) [12]. This is done
via: (1) function prompt(·); or (2) via intervening to the features at
the inner layers LLM while doing inference.

Incorporating CFC via Prompting. CFC plays an important role
in the decision-making process and is a determinant to encourage
cooperative behaviour between agents in social dilemmas [13].
In human studies, the degree to which an individual considers
future consequences in decision making is measured by the CFC
Scale [12]—a 12-items questionnaire. Items in the questionnaire
are divided into two categories, i.e. two sets: (1) five items that
attribute the subject as only considering long-term benefit; and (2)

seven items that attribute the subject as only considering short-term
benefit. The overall structure of our agents is shown in Figure 1.

Incorporating CFC via Intervention. Intervening on the hidden
states of LLMs [15, 16] allows us to enable the agents to consider
the future consequences of their actions without the external CFC
instructions in the LLM(·). In our approach, the agent will be built-
in with a CFC-Excitor module to interact with the representation
generated at every selected hidden layer of the LLMs (Figure 2). The
CFC-Exciting Vector 𝑐 (𝑙 ) is identified based on pairs of items in the
CFC-Scale sets. It is worth noting that training CFC-Exciting Vector
only involves the inference process of LLM(·), but does not need to
update its weights 𝜃LLM. Powered by the CFC-Excitor module, the
LLM-based agent can change its behaviour toward considering long-
term consequences or short-term benefits by varying the coefficient
𝛼CFC that manipulates the effects of the CFC-Exciting Vector to the
hidden states at the inner layers of the LLMs.

3 EXPERIMENTS
Our experiments in Common Harvest, which is a game following
the dynamic of the common dilemma, show that LLM-based agents
that are instructed to consider long-term consequences while mak-
ing decisions will have more sustainable behaviour, delaying the
time to resource depletion. Experiments on heterogeneous popu-
lations suggest that having more agents that consider long-term
consequences will increase the common reward. Furthermore, our
advancements allow us to construct methods to achieve different
levels of CFC, andwe empirically found that the interventionmecha-
nism can help the LLM-based agents exhibit CFC-related behaviour
in a fine-grained manner.

4 CONCLUSIONS
In this paper, we propose to equip LLM-based agents with the
ability to consider to future consequence in making decisions under
the dynamics of intertemporal social dilemmas. We introduce two
approaches to incorporating CFC into the decision-making process
of LLMs: (1) prompting mechanisms (CFC-Prompt); and (2) the
intervention mechanism (CFC-Excitor).
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