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ABSTRACT

My Ph.D. research introduces an approach to learning families of
parametrically related symmetric game instances in both normal-
form and Bayesian settings. This approach eliminates the need to
model each game instance separately, improving data efficiency
and enabling broader exploration of the parameter space. Game-
family models support more comprehensive empirical mechanism
design, and facilitate iterative generation of piecewise best-response
strategies in the Bayesian setting. Overall, my work aims to expand
model expressiveness while prioritizing compactness and data effi-
ciency in simulation-based game environments, promoting diverse
real-world insights.
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1 INTRODUCTION

Building a game-theoretic model of a multi-agent strategic envi-
ronment requires making assumptions about what information is
strategically relevant and how agents use that information to make
decisions. Outcomes depend on agents’ joint strategies and on pa-
rameters of the environment, where each parameter setting induces
a different game instance. My work is motivated by the setting
of simulation-based games, where payoff data comes from an
agent-based simulator [9-11]. Given limited modeling resources,
analysts must decide in advance which parameter settings to ex-
plore (and at what granularity) and which strategies to include,
typically selecting only a small subset of all possible strategies.
These assumptions, while necessary for tractability, may limit
the scope and applicability of the game-theoretic analysis—for ex-
ample, if an omitted parameter setting exhibits different or desirable
equilibrium behavior, or if the strategies are too narrowly defined.
To address these limitations, my dissertation introduces methods for
game-family learning, in which a single neural-network model is
trained to represent a family of game instances related by a common
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environment parameter. These methods also leverage other environ-
ment structure, such as symmetry or agent type, to further promote
data efficiency, which is advantageous for simulation-based game
environments.

2 LEARNING GAME FAMILIES

Normal-Form Game Families. The normal-form representation
is the most basic game-theoretic model of incentives, specifying
each player’s strategy set and a payoff function that measures
their satisfaction with each outcome. Sokota et al. [7] showed that
learning the deviation payoff function—the expected payoff for a
unilateral deviator—enables equilibrium computation in symmetric
normal-form game instances without the combinatorial mixture
summations required with direct payoff functions.

A key hypothesis of my research is that game instances related
by a common environment parameter also have related (deviation)
payoff functions. Accordingly, we proposed augmenting the neural-
network model to also input the environment parameter, and eval-
uated this approach on two classes of random games, where the
number of symmetric players serves as the environment parameter
[3]. We compared a single model trained across the full parameter
space with several fixed-parameter learning models (FPL) [7], one
trained for each game instance, given the same overall training data.
Figure 1 shows that the game-family learning approach (VPL) has
lower payoff error than FPL given the same amount of data, and
remains more accurate even with less. These results suggest that
payoff data from neighboring parameter settings aids game-family
learning, improving approximation of deviation payoffs.
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Figure 1: A game-family model (VPL) achieves lower payoff
error than separately trained models for each parameter
setting (FPL) on two random game classes (“add” and “mult”).

2.0.1 Bayesian Game Families. Bayesian games build upon the nor-
mal form by introducing types, private information players use to
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make decisions. In a Bayesian game, strategies map types to actions,
and payoff functions map joint strategy profiles and type profiles to
payoffs. We aim to approximate an e-Bayes-Nash equilibrium (e-
BNE), where no player can gain more than ¢ payoff by unilaterally
deviating in expectation over player types. The ex ante deviation
payoff function computes this expected payoff across all possible
player types, and is equivalent to the normal-form payoff function
when types are abstracted away. The interim deviation payoff
function represents a player’s deviation payoff given their type, in
expectation over all possible opponent types. Marginalizing over
the deviator’s type then yields the ex ante deviation payoft.

We proposed learning the interim deviation payoff function for
a Bayesian game family to exploit the type-conditional structure of
strategies in Bayesian games [2]. We evaluated both interim and
ex ante (baseline) game-family learning approaches on a dynamic
sponsored search auction game family, with reserve price as the
environment parameter. Figure 2 shows the learning performance
of each approach on the trained parameter range, (0, 8], and beyond
(8,15]. Within the trained range, interim models with sufficient
marginalization samples have errors comparable to ex ante, and all
errors are small relative to the payoff scale. Further, all marginalized
interim models extrapolate well, while the ex ante model exhibits a
noticeable increase in error when extrapolating. As the parameter
range covered by the training data must be set prior to any game-
theoretic analysis, there is a risk that it may be too narrow. A
model that can extrapolate is therefore valuable for applications
like empirical mechanism design.
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Figure 2: With enough marginalization samples, interim
model accuracy matches ex ante on the trained range, (0, 8].
Interim, but not ex ante, models extrapolate well.

3 EMPIRICAL MECHANISM DESIGN

In empirical mechanism design (EMD), a designer sets or influ-
ences an environment parameter, each value of which results in
a different Bayesian game instance induced from simulator data.
The goal is to find the parameter setting that optimizes a rele-
vant objective, such as social welfare or revenue. In past EMD
studies [1, 4, 8], researchers selected a limited set of mechanism
settings, separately modeling and analyzing each game instance.
Once trained, a game-family model can instead evaluate any game
instance within the trained range (and often beyond), supporting
a more granular parameter search. When used in an optimization
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algorithm, it eliminates the need to train separate models at each
iteration, reducing algorithm dependence on the sampling budget.
In our experiments, we also found that the interim approach had
equal or lower absolute error on candidate BNE regret (Figure 3),
where a candidate BNE has predicted regret below ¢. Consequently,
the expected revenue curve in equilibrium with the interim ap-
proach exhibits far fewer holes—where no candidate equilibria
have true regret below ¢—a property crucial for effective EMD.
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Figure 3: Candidate equilibria from the interim approach
have equal or lower regret error compared to the ex ante
approach.

4 ITERATIVE BEST-RESPONSE GENERATION

The interim learning approach enables us to iteratively grow the
strategy set with more sophisticated piecewise best response strate-
gies. In an e-BNE no player can gain by deviating to another strategy
in expectation over player types. However, conditional on its own
type, a player can often benefit by deviating to a strategy not in the
modeled strategy set. We exploit these gains by introducing new
strategies which explicitly condition on type and map to actions
that are more strategically relevant.

For a given ¢-BNE, we can compute a piecewise best response
strategy: for each interval in a partitioned type space, we use the
learned model to predict interim deviation payoffs for many ran-
domly generated types in the interval, and find the average devi-
ation payoff for each strategy. The best response for that interval
is the strategy with the largest interim deviation payoff. We find
that a player can indeed gain additional payoff by deviating to a
piecewise best response when other players play the ¢-BNE.

We can further integrate these piecewise strategies into an ex-
panded model trained without requiring any additional simulation
samples. These operations enable an iterative procedure that ex-
pands the game-family model from an initial set of atomic strategies
through a double oracle [6] approach: repeated generation of new
(piecewise) strategies that best-respond to an equilibrium of the
previous configuration. By choosing an equilibrium from the game
instance that optimizes the environment parameter, this becomes
an iterative method for EMD. In applying this method to the dy-
namic search auction, our results suggest even a couple of iterations
refines the model to produce decisions that improve revenue.

5 FUTURE WORK

In the future, I would like to extend the game-family learning ap-
proach to extensive-form game environments. I am also interested
in incorporating game-family learning into PSRO [5].
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