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ABSTRACT
Multi-agent reinforcement learning (MARL) offers prospects of
efficient control in large distributed systems such as complex energy
grids. The development of MARL algorithms is hampered by a
scarcity of realistic benchmarks. In this paper, we introduce EnEnv
1.0 — a simulation benchmark for MARL in modern energy grids.
EnEnv 1.0 is a set of environments in which the energy grids are
simulated with uncontrollable renewable energy sources, fossil fuel
generators, and consumers. The role of learning agents is to control
and coordinate batteries in a distributed Battery Energy Storage
System (BESS) based on readouts such as weather forecasts and
load demand forecasts. The energy grids in EnEnv 1.0 are based
on standard test systems of different topological structures. These
include the modified standard IEEE 33, Illinois 200, and PEGASE
89 bus systems. These networks are adjusted to serve as the MARL
benchmark by introducing real weather observations, demand data
for European locations, and software interfaces that enable coupling
with a number of existing implementations of MARL algorithms,
as well as single-agent reinforcement learning (SARL) algorithms.
In the experimental study, we verify the performance of a catalog
of MARL and SARL methods on EnEnv 1.0.
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1 INTRODUCTION
Multi-agent reinforcement learning (MARL) [8, 38–40, 60] promises
efficient control in large-scale systems through the collective learn-
ing of many agents in dynamic environments. Multiple agents inter-
act within a shared environment to learn optimal policies. MARL is
defined as the process where agents optimize their behaviors based
on the history of their interactions with the environment, i.e., on
their experience. Research in this area aims to design methods that
enable agents to learn quickly, i.e., from minimal experience. The
challenges and complexities in using MARL for controlling multi-
agent systems include coordination among agents, non-stationary
environments due to evolving agent policies, and scalability is-
sues. Advanced MARL approaches often involve sophisticated tech-
niques such as decentralized training, communication protocols
among agents, and hierarchical methods to manage multi-agent
interactions as effectively as possible. Theoretical advancements
and practical applications of MARL demonstrate its potential in
diverse fields ranging from robotics [41] and autonomous driving
[1, 49, 61] to telecommunications [13, 28].

Development in MARL and other areas of artificial intelligence
is based on the availability of benchmark environments in which
various learning methods can be verified and compared. These
benchmarks should ideally represent challenging real-life problems
whose solutions could be profitably implemented. However, few
benchmarks in MARL represent real-life problems to which MARL
could actually be applied.

Energy Grids (EGs) present complex systems that naturally de-
fine a number of distributed control problems. These problems have
become especially interesting recently due to the rapidly growing
presence of renewable energy sources (RES). The output of these
sources is weather-dependent, not controllable, and only predictable
to a certain extent, which causes numerous operational challenges,
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such as managing active and reactive power to maintain voltage
and frequency in real-time within permissible limits [6, 14, 34] and
ensuring economic performance [29, 35, 36]. Another challenge is
controlling the back-feeding or reverse power flow to external net-
works in case of surplus renewable energy generation [17, 24, 66].

Replacing controllable power generators based on fossil fuels
with uncontrollable RES raises an issue of potential mismatch be-
tween power supply and demand within the modern grids, causing
instability in terms of voltage and frequency and potential outages.
There are two general solutions to this issue. The first one is to
adjust the demand to match the supply, that is, to consume energy
when it is being produced. The second one is based on a Battery
Energy Storage System (BESS): The storing of energy when it is
produced and releasing it when there is demand for it. In this paper,
we focus on the second solution and consider MARL for efficient
control of component batteries of a distributed BESS. It has been
noticed that there is no such environment available to simulate
modern energy grids using MARL, which includes built-in renew-
able energy sources and batteries integrated into large energy grids.
Therefore, we propose an environment with a MARL interface to
simulate modern energy grids.

The contributions of this paper are as follows:
(1) We formalize the problem of distributed BESS control as a

Multi-Agent Markov Decision Problem.
(2) We introduce EnEnv 1.0, a benchmark for control learning al-

gorithms in which the role of agents is to control distributed
BESS. The nature of the algorithms may be diverse, but it is
especially suitable for MARL and SARL.

(3) We report the application of a catalog of MARL and SARL
algorithms in EnEnv 1.0.

2 RELATEDWORK
Multi-Agent Reinforcement Learning (MARL)
Single-Agent Reinforcement Learning (SARL) [54] addresses trial-
and-error learning of sequential decision-making under uncertainty.
In Multi-Agent Reinforcement Learning (MARL) [39], a group of
agents learns to act in the same dynamic environment, collectively
modifying its state. There are a number of different settings for
MARL, depending on whether the agents operate synchronously
or asynchronously, have common goals or adverse ones, and other
circumstances. In this paper, we focus on the synchronous and
cooperative MARL, with a single reward value for all agents at
every time instance.

MARL has been addressed by extending well-established SARL
algorithms: Multi-Agent SAC [58], Multi-Agent PPO [63], Multi-
Agent DDPG [33].

Generally, cooperative MARL adopts a centralized training with
a decentralized execution (CTDE) paradigm, which suffers from
the global action–value function, whose complexity grows expo-
nentially with the number of agents [21]. Therefore, action–value
function decomposition is a fundamental problem in MARL. Exist-
ing decomposition methods include VDN [53], QMIX [46], QTRAN
[51], Weighted QMIX [45], QPLEX [56], Qatten [62] and NA2Q
[32].

Another fundamental problem in the cooperative MARL is coor-
dinating agents’ activity with a certain communication protocol. A

number of solutions have been proposed for that purpose, including
CommNet [52], TarMAC [5], NDQ [57], GA-Comm [30], IS [20],
MAIC [64], DHCG [31] and [15], also solutions in which the agents
communicate in natural language: Symbolic PPO [59], TWOSOME
[55], and Verco [27].

MARL benchmarks
Two MARL frameworks support the most recent computational
technologies: MARLlib [19] and BenchMARL [3]. They both sup-
port running a catalog of MARL algorithms in most benchmark
environments ever used in MARL research. MARLlib is provided
with the SMAC, MPE, GRF, MAMuJoCO, and MAgent environ-
ments, while BenchMARL is provided with VMAS, SMACv2, MPE,
Pursuit, Waterworld, and MeltingPot. Each environment comes
with several different tasks.

StartCraft Multi-Agent Challenge (SMAC), [48] and SMACv2
[10] are based on SartCraft, a multiplayer strategic game originally
introduced for human players in 1998. Multi Particle Environment
(MPE) [33] is a communication oriented environment where par-
ticle agents can (sometimes) move, communicate, see each other,
push each other around, and interact with fixed landmarks. Google
Research Football (GRF) [25] is an environment where agents are
trained to play football in an advanced, physics-based 3D simula-
tor. Multi-Agent Mujoco (MAMuJoCo) [44] is an environment for
continuous cooperative multi-agent robotic control. Based on the
popular single-agent robotic MuJoCo control suite, it provides a
wide variety of novel scenarios in which multiple agents within
a single robot have to solve a task cooperatively. MAgent [65] is
an environment where large numbers of pixel agents in a grid
world interact in battles or other competitive scenarios. Vectorized
Multi-Agent Simulator (VMAS) [2] is a simulator comprised of a
vectorized 2D physics engine and a set of multi-robot scenarios.
In Multiwalker [16], three planar robots collectively carry a pack-
age on them. Pursuit [16], aka Predator-Pray [33], is a grid world
in which slowly moving pursuers are rewarded for surrounding
faster-moving evaders. Waterworld [16] is a square in which agents
pursue food targets and avoid poison targets, both moving. Melt-
ingPot [26] has 18 variants; it is a grid world in which the agents
observe only their immediate surroundings and perform one of 6
actions.

Papoudakis et al. [42] analyze the performance of various MARL
algorithms on five benchmarks: MPE and SMAC mentioned above,
also grid-world based Level-Based Foraging and Multi-Robot Ware-
house, and Repeated Matrix Games with 2 players, 3 actions and
predefined payoff matrices.

The Overcooked [27] is a 7x7 grid-size kitchen where two agents
communicate in natural language to make different salads with the
provided raw materials and tools.

To summarize this section, we may conclude that the existing
MARL benchmark may be challenging problems, but they are rela-
tively far from real-life applications. This contrasts SARL bench-
marks that represent difficult real-life problems, especially in robot-
ics. Therefore, the environment proposed in this paper is intended
to be a benchmark similar to the actual control problem in power
systems.

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

362



SARL and MARL for energy storage control
Various control problems in power systems have already been ad-
dressedwith SARL andMARL. Samende et al. [47] applied theMAD-
DPG algorithm to optimize the scheduling of the hybrid energy
storage system and energy demand in real-time for grid-connected
microgrid. The model-free reinforcement learning algorithms that
completely ignore the physics-based modeling of the energy grid
compromise scalability challenges. Krishnamoorthy et al. [22] ad-
dress this issue and proposes imitation learning-based improve-
ments in deep SARL to provide a good initial policy that increases
training efficiency to solve the single agent battery storage dis-
patch problem for frequency regulation in the power distribution
systems. Pei et al. [43] address the voltage regulation and peak
demand in real feeders through two agents called PV inverter and
battery storage; for this, they proposed two-stage deep reinforce-
ment learning. A single-agent energy management problem for
BESS and on-grid supply is addressed using the DQN algorithm
in [50]. Krishnamoorthy et al. [23] propose an OpenDSS-RL wrap-
per for voltage regulation power distribution grid considering step
voltage regulators, capacitor banks, and batteries as agents.

Fan et al. [12] proposes PowerGym, an open-source SARL envi-
ronment for Volt-Var and reactive power control in Power distri-
bution systems combining OpenDSS and OpenAI gym considering
transformer taps, batteries, capacitors, and regulators as agents. On
the other hand, Gym-ANM [18] is a simulator that allows users to
design a power grid with lines, generators, appliances, and storage
and simulate their work with various control mechanisms, includ-
ing SARL.

It is observed that most of the work presented in the literature
considers voltage and reactive power control in power distribution
systems using SARL algorithms. However, the dynamics of the
power grid with distributed BESS are more profound because of
the changing state of charge of the batteries. Also, control of this
system is naturally distributed because of the locality of available
information. Therefore, MARL for distributed BESS control in the
distribution networks for energy management considering power
losses and reverse power flow is not explored sufficiently and needs
to be addressed carefully. In this order, we propose a MARL-based
framework for cooperative distributed BESS control in the power
distribution system to minimize transmission loss while ensuring
maximum renewable energy utilization.

3 MULTI-AGENT REINFORCEMENT
LEARNING

In this paper, we discuss the problem of MARL using the formalism
of a cooperative Multi-Agent Partially Observable Markov Deci-
sion Process (MAPOMDP). A MAPOMDP is defined by a tuple,
⟨N, S,A,P,O,R⟩, where N = {1, . . . , 𝑛} is a team of agents, S is
a space of environmental states, A = A1 × · · · × A𝑛 is a space of
team actions of the agents, P is the state transition probability,
O is the observation function, and R is the reward function. We
generally assume that all the considered spaces are continuous, and
in particular, dim(A𝑖 ) = 𝑑 for all 𝑖 . At the time 𝑡 = 1, 2, . . . each
𝑖-th agent makes an observation, 𝑜𝑖𝑡 = O𝑖 (𝑠𝑡 ), of the environment
state 𝑠𝑡 and based on this observation, performs an action, 𝑎𝑖𝑡 ∈ A𝑖 .

The team action 𝑎𝑡 = [(𝑎1𝑡 ), . . . , (𝑎𝑛𝑡 )] impacts the next environ-
ment state 𝑠𝑡+1 ∼ P(·|𝑠𝑡 , 𝑎𝑡 ) and the reward 𝑟𝑡 = R(𝑠𝑡+1) is given
collectively to all agents.

The agents choose their actions based on their policies, 𝑎𝑖𝑡 ∼
𝜋𝑖 (·|𝑜𝑖𝑡 ), where 𝜋𝑖 is the policy of 𝑖-th agent. The goal of the agents’
learning is to optimize their team policy 𝜋 = [𝜋1, . . . , 𝜋𝑛] for the
team to expect in each environment state 𝑠 the highest sum of
discounted rewards

V𝜋 (𝑠) = 𝐸

(∑︁
𝑖≥0

𝛾𝑖𝑟𝑡+𝑖
���𝑠𝑡 = 𝑠, policy in use = 𝜋

)
,

where 𝛾 ∈ [0, 1] is the discount factor.

4 CONTROL OF DISTRIBUTED BESS
AS A MULTI-AGENT MARKOV DECISION
PROCESS

In this section, we characterize the Energy Grid (EG) and how it
defines a MAPOMDP problem in the previous section. EG can be
represented by a graph. Its edges represent transmission lines. In
nodes of the graph, there are power consumers and power sources,
i.e., power generators based on fossil fuels (FG), wind turbines
(WT), photovoltaic farms (PV), as well as batteries (Battery Energy
Storage, BES). Together, the batteries create a distributed Battery
Energy Storage System (BESS). EG is connected to the external
world through a node called slack bus. EG may purchase energy
from the external world and sell energy to the external world. How-
ever, because the buy price is higher than the sell price, it is the
most efficient for EG to maximize its self-sufficiency. We adopt the
following assumptions about the operation of EG:

(1) The power load demand (consumption) changes according
to the statistical profile of households.

(2) Power generated by the FGs is just constant.
(3) Power generated by theWTs and PVs depends on theweather.
(4) The only controllable devices in EG are BESs. The policy of

their control is optimized with RL.
(5) The energy exchange between EG and the slack bus is a

residual of energy generated and absorbed inside EG.
(6) The energy generation and demand inside EG are calibrated

so that their yearly sums are approximately equal. The role
of BESS control can be understood as minimizing the mo-
mentary energy imbalances.

The volatility of WT and PV generation results in scenarios
where power generation in the system is surplus or deficit, causing
an imbalance in generation and load demand. However, the system
operator needs to manage the operation of the EG to achieve a
balance between the volatile generation from the WT and PV and
fluctuating load demand at a particular time period under safe
operating conditions, such as voltage and thermal limits at each
bus and line given by (1,2) are not violated.

𝑉𝑚𝑖𝑛 ≤ 𝑉𝑗,𝑡 ≤ 𝑉𝑚𝑎𝑥 (1)

𝐼𝑘,𝑡 ≤ 𝐼𝑚𝑎𝑥
𝑘

(2)

where,𝑉𝑚𝑖𝑛 and𝑉𝑚𝑎𝑥 are the upper and lower limit of bus voltage.
𝑉𝑗,𝑡 is the actual voltage of 𝑗-th bus at 𝑡-th hour. 𝐼𝑘,𝑡 is the current
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Figure 1: Distributed BES control interactive network setting

flows in 𝑘-th line at 𝑡-th hour. 𝐼𝑚𝑎𝑥
𝑘

is the maximum limit for the
current beyond which the line melts.

The operation and control of BES at time step 𝑡 relies on the
State of Charge (SoC) available at the current time step and various
SoC-related constraints. The future SoC at the (𝑡 + 1) time step is
given by (3):

𝐶𝑖,(𝑡+1) = 𝜂𝑠 ·𝐶𝑖,𝑡 + Δ𝑡 · 𝑃𝑐ℎ𝑖,𝑡 · 𝜂𝑐 −
Δ𝑡 · 𝑃𝑑𝑖𝑠

𝑖,𝑡

𝜂𝑑
(3)

such that 𝑃𝑐ℎ
𝑖,𝑡

· 𝑃𝑑𝑖𝑠
𝑖,𝑡

= 0, where, 𝑃𝑐ℎ
𝑖,𝑡

and 𝑃𝑑𝑖𝑠
𝑖,𝑡

are the charging and
discharging power of 𝑖-th BES agent respectively. 𝜂𝑠 , 𝜂𝑐 and 𝜂𝑑
are standing loss efficiency, charging and discharging efficiency,
respectively, and Δ𝑡 = 1 is the time step of charging or discharging
of the 𝑖-th BES.

Also, the charging/discharging operation of BES should not vio-
late the SoC constraint given by (4)

𝐶𝑚𝑖𝑛
𝑖 ≤ 𝐶𝑖,(𝑡+1) ≤ 𝐶𝑚𝑎𝑥

𝑖 (4)

where, 𝐶𝑚𝑖𝑛
𝑖

and 𝐶𝑚𝑎𝑥
𝑖

are the minimum and maximum SoC limit
of 𝑖-th BES agent respectively.

4.1 Problem formulation
We model the problem of control of distributed energy storage by a
cooperativeMAPOMDP, introduced in Section 3. In thisMAPOMDP,
time 𝑡 defines hours. An agent controls a BES in the grid by apply-
ing an action, 𝑎𝑖𝑡 ∈ [−1, 1], which defines how much energy will
be absorbed, within the following hour, from the grid to the BES
or released in the opposite direction. 𝑖-th agent chooses its actions

based on the regional information relevant to the operation of this
agent and the aggregate information relevant to the operation of
the whole EG.

At each hour 𝑡 , the load demand in the grid nodes is set, as is
the generation in energy sources. The agents determine how much
energy is stored into or released from the BESS. Based on this input,
the energy flow over the system is determined using the Newton-
Raphson numeric procedure to satisfy the constraints (1) and (2)
and calculate the total transmission loss within the grid. In the
process, an amount of energy 𝑃𝑠𝑙𝑎𝑐𝑘𝑡 is determined to be purchased
from (or sold to) the slack bus to balance the system.

4.1.1 Reward function. Since the grid typically sells energy at a
lower price than it purchases, agents should avoid exchanging en-
ergy with the slack bus. Instead, they should charge the BESS during
moments of energy surplus and discharge it during moments of
energy deficit. Additionally, they should coordinate their operations
effectively to minimize transmission losses and internal inefficien-
cies within the grid. Therefore, we formulate the reward function
as the sum of the following components:

• Battery Power Loss, 𝑃𝑏 : This is defined as the sum of the
battery’s internal power loss due to self-discharge and exter-
nal power conversion losses. The battery power loss for 𝑖-th
agent is given by (5)

𝑃𝑏𝑖,𝑡 =𝐶𝑖,𝑡 · (1 − 𝜂𝑠 ) + Δ𝑡 · 𝑃𝑐ℎ𝑖,𝑡 · (1 − 𝜂𝑐 )

+ Δ𝑡 · 𝑃𝑑𝑖𝑠𝑖,𝑡 ·
(
𝜂−1
𝑑

− 1
) (5)

which corresponds to how the battery state of charge is
updated in (3).
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The total battery power loss at 𝑡-th time is given by (6)

𝑃𝑏𝑡 =

𝐵∑︁
𝑖=1

𝑃𝑏𝑖,𝑡 (6)

where 𝑃𝑏𝑡 is the total battery power loss at 𝑡-th time, a sum
of losses of each battery, and 𝐵 is the number of batteries in
the system.

• Transmission Loss, 𝑃𝐿 : These are the power losses that occur
in the transmission lines during power flow in the energy
grid. The transmission losses are obtained by executing the
Newton-Raphson (NR) load flow algorithm.

• Slack Bus Loss, 𝑃𝑠 : We define slack bus losses as the financial
losses that occur due to energy exchange. For instance, the
grid operator purchases a unit of energy for 𝑝 > 0 and sells
the same unit for𝑞 ·𝑝 , where𝑞 ∈ (0, 1). In this case, whenever
a unit of energy is purchased or sold, we assume it to incur
a cost of (1 − 𝑞)/2 to the grid operator because if it is sold
(or purchased), the same amount of energy will eventually
need to be purchased (or sold), thus incurring a total cost
proportional to (1−𝑞). Therefore, the slack bus loss is given
by (7)

𝑃𝑠𝑡 = |𝑃𝑠𝑙𝑎𝑐𝑘𝑡 | · (1 − 𝑞)
2

(7)

where 𝑞 is the cost of selling the energy relative to its buying,
and 𝑃𝑠𝑙𝑎𝑐𝑘𝑡 is the amount of energy sold or purchased by the
grid operator. If 𝑃𝑠𝑙𝑎𝑐𝑘𝑡 > 0, energy is sold; otherwise, it is
purchased. In our experiments, we assume 𝑞 = 0.5.

The mathematical expression for the reward function is given
by

R = −
(
𝑃𝑏𝑡 + 𝑃𝐿𝑡 + 𝑃𝑠𝑡

𝑟 𝑓

)
(8)

where 𝑟 𝑓 is a reward standardization factor described in Appendix
C.

5 ENENV 1.0. PROPOSED BENCHMARK
EnEnv 1.0 code is available in the official GitHub repository [7].

5.1 Energy grid networks
To test the efficiency of the RL algorithms on complex energy grid
networks, the proposed benchmark uses various standard EGs avail-
able in Pandapower, the IEEE 33, PEGASE 89, and Illinois 200 bus
systems. The IEEE 33 is a low/medium voltage network and exhibits
a radial structure consisting of loads on nodes. At the same time, the
Illinois 200 and PEGASE 89 are high-voltage networks exhibiting a
meshed structure with several fossil fuel-based generators, loads,
and static generators located on different nodes. The default stan-
dard systems are not integrated with renewable energy sources and
BESs. They are steady in nature, which is not suitable for studying
realistic operating scenarios where the operator needs to control
BES in coordination with uncertain and dynamic generation from
RES, as well as load demand. For this purpose, we transform these
networks into dynamic settings, as explained in Section 5.2. Also,
we proposed suitable RL interfaces to simulate these modern grid
environments.

5.2 The data
Wefit the topology of the standard IEEE 33, Illinois 200, and PEGASE
89 systems to the entire map of Germany and obtained weather
data for the grid bounded by extreme eastern, western, northern,
and southern coordinates. Additionally, we considered a number of
distributed BES agents to be in control in different grid networks,
such as 4, 11, and 37 in IEEE 33, PEGASE 89, and Illinois 200, respec-
tively, at various locations. These are discussed in detail further in
this subsection.

5.2.1 Predictions. Observations available to the agents include pre-
dictions of future load, wind, and solar irradiation. In training and
evaluation, we use the following method of randomized generation
of predictions. This method addresses the following requirements:

(1) The predictions are similar to the predicted values.
(2) The relative error increases with the prediction horizon.
(3) The above relative error equals 𝜀 for a prediction horizon of

𝐻 , where 𝜀 and 𝐻 are based on the reported accuracy of the
predictions of the considered values.

(4) Predictions of the same value available at adjacent times are
similar.

Let 𝑥𝑡+ℎ |𝑡 be a prediction of the value 𝑥𝑡+ℎ available at time 𝑡 ; ℎ
is the prediction horizon. We generate a sequence of independent
prediction deviations, 𝜉𝑡 ∼ 𝑁 (0, 1). We assume the prediction

𝑥𝑡+ℎ |𝑡 = 𝑥𝑡
(
1 + tanh

(
𝑧𝑡,ℎ

) )
, (9)

where

𝑧𝑡,ℎ = 𝜎

ℎ∑︁
𝑖=1

𝜉𝑡+𝑖/(𝑖 + 1), 𝜎 = 𝜀/

√√√
𝐻∑︁
𝑖=1

(𝑖 + 1)−2 (10)

The above requirements 1-4 are satisfied as follows. As long as
the variance of 𝑧𝑡,ℎ is small, 𝑥𝑡+ℎ |𝑡 is close to 𝑥𝑡+ℎ , because tanh is
continuous and tanh(0) = 0. The variance of 𝑧𝑡,ℎ equals 𝜎2

∑ℎ
𝑖=1 (𝑖+

1)−2, which increases with the prediction horizon ℎ. For ℎ = 𝐻 , it
is 𝜀2. Thus, the relative prediction error for a horizon of 𝐻 equals 𝜀,
as required. The predictions 𝑥𝑡+ℎ |𝑡 and 𝑥𝑡+ℎ |𝑡+1 are close to each
other because their respective determinants 𝑧𝑡,ℎ and 𝑧𝑡+1,ℎ−1 are
sums of overlapping sets of random components.

5.2.2 Load demand. The hourly load demand of the network is
obtained by considering the nominal loads of the system and the
realistic historical hourly load demand curve for Germany, sourced
from ENTSO-E, for the years 2017 to 2024 [11]. Furthermore, we ob-
tain the hourly load data for each bus in the network by processing
it in the following two stages:

(1) Load distribution: At this stage, the hourly load curve for all
load buses is obtained by scaling the nominal loads by an
auto-regressive load scaling factor 𝑃𝑑,𝑠𝑐𝑎𝑙𝑖𝑛𝑔

𝑗,𝑡
, calculated for

each bus as follows.

𝑋 𝑗,𝑡 = 𝑋 𝑗,(𝑡−1) · 𝛼 + 𝜉 𝑗,𝑡 · 𝜎 ·
√︁
1 − 𝛼2 (11)

where, 𝑋 𝑗,𝑡 and 𝜉 𝑗,𝑡 ∼ 𝑁 (0, 1) is an autoregressive noise and
prediction deviations for 𝑗-th bus at 𝑡-th hour respectively ,
𝛼 = 0.9 and 𝜎 = 0.3

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

365

https://github.com/djbogucki/EnEnv


𝑌𝑗,𝑡 =

𝜅𝑡

(
𝑃
𝑑,𝑛𝑜𝑚
𝑗

· exp(𝑋 𝑗,𝑡 )
)

∑
𝑖 𝑃

𝑑,𝑛𝑜𝑚
𝑖

· exp(𝑋𝑖,𝑡 )
(12)

where

𝜅𝑡 =
𝑃𝑑𝑡

𝑃𝑝𝑒𝑎𝑘
, (13)

𝑃
𝑑,𝑎𝑐𝑡𝑢𝑎𝑙
𝑗,𝑡

= 𝑌𝑗,𝑡 · 𝑃𝑑𝑡 , (14)

where, 𝑌𝑗,𝑡 is the scaling factor for load demand. 𝜅𝑡 , 𝑃𝑑𝑡 , and
𝑃𝑝𝑒𝑎𝑘 are the hourly load factor, hourly load demand, and
peak demand, respectively, obtained from the Germany load
curve. 𝑃𝑑,𝑛𝑜𝑚

𝑗
and 𝑃

𝑑,𝑎𝑐𝑡𝑢𝑎𝑙
𝑗,𝑡

are the nominal load demand
and actual hourly load demand given for a 𝑗-th bus of the
power network.

(2) Load Forecasting: After distributing the load demand to all
the load buses, the load demand predictions 𝑃𝑑 𝑗,𝑡+ℎ |𝑡 are
based on the actual demand 𝑃𝑑,𝑎𝑐𝑡𝑢𝑎𝑙

𝑗,𝑡+ℎ according to (9), with
the average relative error 𝜀 = 2.3% for the prediction horizon
𝐻 = 24[ℎ𝑜𝑢𝑟𝑠].

5.2.3 Fossil fuel generators. Considering the convenience of power
plant operators and the techno-economic operations and constraints
of fossil fuel generators (FGs), we assumed that FGs are scheduled
to supply a fixed base load for the network.

Also, considering the current scenario in Germany, where re-
newable energy penetration in the system is around 60%, and FGs
are serving 40% of the load demand, we set the power generation
of FGs as follows:

𝑃𝑔,𝐹𝐺 = 𝜏𝑓 · 𝑃𝑑,𝑎𝑣𝑔 (15)

where 𝜏𝑓 = 0.4 and 𝑃𝑔,𝐹𝐺 is the total power generation from FGs.
Furthermore, we calculate the contribution factor 𝜆 to allocate the
scheduled generation to each FG in the network.

𝜆𝑖 =
𝑃
𝑔,𝐹𝐺,𝑛𝑜𝑚

𝑖∑
𝑗 𝑃

𝑔,𝐹𝐺,𝑛𝑜𝑚

𝑗

(16)

where 𝑃𝑔,𝐹𝐺,𝑛𝑜𝑚

𝑖
and 𝜆𝑖 are the nominal power produced given in

the basic network and contribution factor of the 𝑖-th FG, respec-
tively.

Then,

𝑃
𝑔,𝐹𝐺,𝑎𝑐𝑡𝑢𝑎𝑙

𝑖
= max(𝑃𝑔,𝐹𝐺,𝑚𝑖𝑛

𝑖
, 𝑃𝑔,𝐹𝐺 · 𝜆𝑖 ) (17)

where 𝑃𝑔,𝐹𝐺,𝑎𝑐𝑡𝑢𝑎𝑙

𝑖
and 𝑃

𝑔,𝐹𝐺,𝑚𝑖𝑛

𝑖
represent the actual generated

power and the minimum power generation limit of the 𝑖-th FG,
respectively.

5.2.4 Renewable generation. The uncertain wind speed and solar
radiation cause fluctuations in the hourly power output of wind tur-
bines and solar panels. Therefore, wind speed and solar irradiation
are predicted as follows:

(1) Wind Forecasting: The wind forecasts 𝑣̂ 𝑗,𝑡+ℎ |𝑡 are based on
their actual values 𝑣𝑎𝑐𝑡𝑢𝑎𝑙

𝑗,𝑡+ℎ according to (9) with 𝜀 = 25% for
forecast horizon of 𝐻 = 72 [9].

(2) Solar Forecasting: The solar irradiation forecasts𝐺 𝑗,𝑡+ℎ |𝑡 are
based on their actual values 𝐺𝑎𝑐𝑡𝑢𝑎𝑙

𝑗,𝑡+ℎ according to (9) with
𝜀 = 12% for single hour forecast 𝐻 = 1 [4]. The irradiation
predictions are also limited by their maximum historical
values at a given hour of the day and week of the year. This
capping procedure allows us to avoid forecasting values
greater than clear-sky values.

(3) Renewable generators placement: In the proposed bench-
mark, the PQ type of wind and solar distributed generators
(DGs) are considered in the system. These generators can
supply active (P) and reactive power (Q). However, these gen-
erating units can generate very low amount of reactive power.
Generally, solar panels cannot produce reactive power by
themselves; these generating units are inverter-based re-
sources (IBR), meaning the inverter connected to these units
can provide some reactive power control by adjusting its
parameters. Similarly, the reactive power generated by wind
turbines is also very low. Therefore, in this work, we con-
sider the total reactive power support from these devices to
be very low and set to 25% of total active power generation.
The total WT and PV units in the systems are 4, 11, and
37 units within IEEE 33, PEGASE 89, and Illinois 200, re-
spectively. In IEEE 33 bus systems, these units are placed on
bus no. 5, 14, 24 and 30 [37] whereas, in PEGASE 89 and Illi-
nois 200 bus system, units are placed together on randomly
selected load buses within the network.
60% of the total demand is assumed to be served by renewable
energy generators (RGs), i.e., wind turbines (WT) and solar
panels (PV) with equal share. The peak power of all the WT
and PV installations are determined, respectively, as follows:

𝑃𝑊𝑇,𝑝𝑒𝑎𝑘 = 𝜏𝑤 · 𝑃𝑑,𝑎𝑣𝑔 (18)

𝑃𝑃𝑉 ,𝑝𝑒𝑎𝑘 = 𝜏𝑠 · 𝑃𝑑,𝑎𝑣𝑔, (19)

where 𝑃𝑑,𝑎𝑣𝑔 is the average load demand of the system, 𝜏𝑤 =

0.3 · 2.45 and 𝜏𝑝 = 0.3 · 7.3 because wind turbines and solar
panels generate average power which is, respectively, 2.45
and 7.3 times smaller than their peak power, due to varying
wind speed and sun irradiation.
The nominal wind and solar capacities are later distributed
between load buses, on which BESs are placed in the consid-
ered systems. This is done as follows:

Λ𝑚 =
𝑃
𝑑,𝑛𝑜𝑚
𝑚∑

𝑚∈𝐿𝐵 𝑃
𝑑,𝑛𝑜𝑚
𝑚

(20)

𝑃
𝑊𝑇,𝑝𝑒𝑎𝑘
𝑚 = Λ𝑚 · 𝑃𝑊𝑇,𝑝𝑒𝑎𝑘 (21)

𝑃
𝑃𝑉 ,𝑝𝑒𝑎𝑘
𝑚 = Λ𝑚 · 𝑃𝑃𝑉 ,𝑝𝑒𝑎𝑘 (22)

where LB is a set of load buses with BESs, on which re-
newable generators are placed,𝑚 ∈ 𝐿𝐵, Λ𝑚 is the share of
nominal RG capacity to be distributed on bus𝑚, 𝑃𝑑,𝑛𝑜𝑚𝑚 is
the nominal load demand at𝑚-th load bus, 𝑃𝑊𝑇,𝑝𝑒𝑎𝑘

𝑚 and
𝑃
𝑃𝑉 ,𝑝𝑒𝑎𝑘
𝑚 are the peak power of wind and solar units placed
at𝑚-th bus, respectively.
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The power output of the wind turbine at the 𝑡 time step is given
below:

𝑃
𝑔,𝑊𝑇
𝑚,𝑡 =


(

𝑣𝑗,𝑡−𝑣𝑖𝑛
𝑣𝑝𝑒𝑎𝑘−𝑣𝑖𝑛

)
𝑃
𝑊𝑇,𝑝𝑒𝑎𝑘
𝑚 if 𝑣𝑖𝑛 ≤ 𝑣 𝑗,𝑡 < 𝑣𝑝𝑒𝑎𝑘

𝑃
𝑊𝑇,𝑝𝑒𝑎𝑘
𝑚 if 𝑣𝑝𝑒𝑎𝑘 ≤ 𝑣 𝑗,𝑡 ≤ 𝑣𝑜𝑢𝑡

0 if 𝑣 𝑗,𝑡 < 𝑣𝑖𝑛 or 𝑣 𝑗,𝑡 > 𝑣𝑜𝑢𝑡 .

(23)
where 𝑣 𝑗,𝑡 is the current wind speed at a given bus. 𝑣𝑖𝑛, 𝑣𝑜𝑢𝑡 , 𝑣𝑝𝑒𝑎𝑘
are respectively wind turbine cut-in, cut-out, and peak wind speeds
[𝑚𝑠−1]. 𝑃𝑊𝑇,𝑝𝑒𝑎𝑘

𝑚 is the peak power of the wind turbine, whereas
𝑃
𝑔,𝑊𝑇
𝑚,𝑡 is the power produced by the wind turbine at𝑚-th bus and
𝑡-th hour.

The peak power output of the PV system can be obtained at an
irradiation level of 1000𝑊 /𝑚2, which is the maximum experienced
on Earth. The actual power output of the PV system is proportional
to the irradiation and given by (24):

𝑃
𝑔,𝑃𝑉
𝑚,𝑡 = 𝜂 ·

𝐺𝑚,𝑡 · 𝑃𝑃𝑉 ,𝑝𝑒𝑎𝑘
𝑚

1000
(24)

where 𝐺𝑚,𝑡 is the current sun irradiance [𝑊𝑚−2] and 𝜂 = 0.85 is
the combined efficiency of the solar panel and the converter.

5.2.5 Battery energy storage. In the proposed environment, the
number of distributed BES agents that are considered to be con-
trolled in different grid networks are 4, 11, and 37 in IEEE 33, PE-
GASE 89, and Illinois 200, respectively. The BES units are placed
on load buses along with wind turbines and solar panels.

5.3 Environment, observations, actions
This section presents the details of the communication between the
agents and the environments in our proposed benchmark. The re-
ward function is a part of the problem definition and was presented
in Section 4.1.1.

5.3.1 Environment. In our work, the environment consists of en-
ergy grid topology, WT, PV, BESS, and electricity consumers.

5.3.2 States. This work considers S is a set of environmental states
which define the weather and other system conditions such as wind
speed 𝑣𝑚,𝑡 , solar irradiation 𝐺𝑚,𝑡 , load demand 𝑃𝑑𝑚,𝑡 , renewable
energy generation 𝑃

𝑔,𝑊𝑇
𝑚,𝑡 and 𝑃𝑔,𝑃𝑉𝑚,𝑡 , and current SoC 𝐶𝑖,𝑡 of each

BESS agent.

5.3.3 Observations. The observations O𝑖 (𝑠𝑡 ) can be obtained after
running the hourly load flow analysis (LFA). The purpose of LFA is
to observe total power losses in lines/cables, the surplus or deficit
amount of renewable energy in the system represented by power
flow at the slack bus 𝑃𝑠𝑙𝑎𝑐𝑘𝑡 , voltage limit violation at each bus, and
thermal limit/current limit violation of each line.

At the time 𝑡 = 1, 2, . . . each 𝑖-th agent makes an observation,
𝑜𝑖𝑡 = O𝑖 (𝑠𝑡 ), of the environment state 𝑠𝑡 . These observations include
the following:

(1) System-specific variables, the same for all the agents:
(a) Day of the year sine and cosine trigonometric functions

that represent current progress through the seasons of the
year (2 variables),

(b) Hour of the day sine and cosine trigonometric functions
that stand for day-night cycle related observation (2 vari-
ables),

(c) Day of the week one-hot encoding - weekday related
trends in energy consumption (7 variables),

(d) Global net energy forecast - the sum of all energy gen-
eration and consumption for different forecast horizons
(number of variables equal to the number of forecast hori-
zons),

(e) Global SoC - overall energy stored in the BESS (1 variable).
(2) Agent-specific variables:
(a) Local SoC - It is the energy available inside the 𝑖-th BESS

agent (1 variable per agent),
(b) Overcharge/overdischarge flag - equals 1 whenever the

battery is fully charged, -1 in case of full discharge, and 0
otherwise (1 variable per agent),

(c) Net regional energy forecast - it is the net energy attrib-
uted to a certain agent based on its distance to neighboring
buses. The calculation for the distance matrix is discussed
in Appendix B (number of variables equal to the number
of forecast horizons per agent).

The methodology for creating the regions in the energy grid and
observation standardization are presented in Appendices B and C.

5.3.4 Actions. 𝑖-th agent action 𝑎𝑖𝑡 belongs to the interval [−1, 1],
where −1 denotes full-speed battery discharging, 0 denotes no
exchange between the battery and the grid, and 1 denotes full-speed
battery charging. Intermediate values denote the proportional speed
of battery (dis)charging.

5.3.5 Episode initialization. Before the beginning of each training
episode, the SoCs for all batteries are initialized as follows. Firstly,
their average is drawn from the uniform distribution, 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ∼
𝑈 (0, 1). Secondly, for each battery, its SoC is drawn from the beta
distribution with parameters 𝛼, 𝛽 equal to

⟨𝛼, 𝛽⟩ =
{

⟨𝑎𝑣𝑒𝑟𝑎𝑔𝑒/(1 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒), 1⟩ if 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ≤ 0.5,
⟨1, 𝑎𝑣𝑒𝑟𝑎𝑔𝑒/(1 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒)⟩ otherwise. (25)

The expected value of this beta distribution is equal to 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 . For
evaluation episodes, we assume initial SoCs equal to 0.5.

6 EXPERIMENTS
6.1 Setup
We have conducted experiments with both SARL and MARL algo-
rithms. For SARL algorithms (A2C, PPO, DDPG, SAC, TD3), we
have created a custom training script based on SB3. For multi-
agent algorithms, both those where the critic has full observability
(MAPPO, MADDPG, MASAC) or is limited to the agent’s obser-
vations (IPPO, IDDPG, ISAC), we have modified the BenchMARL
library to work with our environment wrapped in a PettingZoo
interface. The parameters we used for every tested algorithm are
available in Appendix D.

The training lasted 1500 2-week episodes sampled randomly
from January 2017 to June 2022. The evaluation was done every 25
training episodes on a single one-year episode from July 2022 to
June 2023. We report the results from the best evaluation episodes.
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Algorithm/System IEEE 33 PEGASE 89 Illinois 200
A2C -1577.47 ±41.06 -2300.12 ±2.31 -
PPO -1479.64 ±12.29 -2317.56 ±62.55 -2186.11 ±0.21
DDPG -1558.28 ±104.37 -2205.06 ±54.93 -2188.43 ±1.92
SAC -1416.94 ±17.65 -2048.70 ±11.96 -1957.83 ±7.91
TD3 -1430.40 ±15.91 -2111.67 ±84.28 -2171.86 ±36.35
MAPPO -1439.14 ±36.70 -2364.96 ±92.92 -2408.29 ±116.08
IPPO - - -
MADDPG -1632.83 ±0.00 -2304.70 ±2.36 -2312.29 ±123.28
IDDPG -1423.79 ±12.10 -2324.58 ±2.23 -
MASAC -1632.78 ±0.01 -2302.33 ±0.19 -2200.07 ±20.91
ISAC -1404.41 ±6.02 -2174.00 ±25.99 -1977.55 ±18.95
No batteries -1633.23 -2296.06 -2181.36

Table 1: Average highest evaluation rewards with standard deviations achieved by every tested algorithm on every system.
Dashes denote experiments that failed to produce meaningful results due to instability or lack of convergence on at least one
of the runs. A single reward is provided for the no batteries scenario, as it is not dependent on learning.

All experiments were repeated on five random seeds for SARL
algorithms and three for MARL algorithms.

For every tested energy grid, we provide information about the
reward with no batteries in the system as a point of comparison.

6.2 Results
Results for all tested algorithms and systems are presented in Table
1. In the bottom row of this table, we report the systems’ per-
formance with no batteries at all as a reference point for the RL
algorithms. It is relatively simple to achieve this reference point. It
is enough to produce for all agent actions equal to 0 at all times.
Surprisingly, in many cases, the algorithms were only able to reach
efficiency of this strategy. In some cases, the tasks proved too diffi-
cult to achieve this efficiency.

It is seen that SAC is the best-performing single-agent algorithm,
achieving the best results of all tested algorithms on two out of three
systems. TD3 also achieved good results, only failing to improve
control over no batteries on the largest system. The rest of the SARL
methods showed poor performance, slightly improving the results
over the no batteries scenarios, failing to do so, or, in the case of
the A2C, showing a lack of convergence.

ISAC performs best for multi-agent algorithms, outperforming
the no batteries benchmark score on every tested system (the only
multi-agent algorithm to do so for PEGASE 89 and Illinois 200 sys-
tems). For the IEEE 33 system, ISAC, IDDPG, and MAPPO improved
over the no batteries benchmark score, with ISAC being the best
algorithm tested. The rest of the algorithm-system combinations
failed to improve the control performance over the no batteries
scenario, with IPPO failing to converge on two of the systems.

6.3 Discussion
It is visible that larger systems significantly complicate the batter-
ies’ control in the power grid. Most tested algorithms improved
operations over the no batteries case on the smallest IEEE 33 system.
In contrast, most failed to do so on bigger PEGASE 89 and Illinois
200 systems. As the system complexity grows, finding the optimal
control becomes more difficult.

We’ve tested many different neural network configurations for
policies and critics for different algorithms. However, this did not
affect the results, so we kept the same architecture across all systems
and algorithms.

Formulti-agent algorithms, thosewith decentralized criticsmostly
perform better than those where the critic has full observability.
This is especially true for multi-agent SACs, where ISAC achieves
good control, while MASAC cannot improve over the scenario of no
batteries in every tested system. SAC-based algorithms performed
best in single-agent and multi-agent experiments, getting the best
results across all systems and being the only methods to improve
control on the Illinois 200 system. The superior performance of
SAC-based algorithms may be due to how they manage uncertainty.
In the presented environments exploration is generally challenging
as random charging and discharging the batteries directly translate
into energy losses and decrease the rewards. Also, future power
net surplus predictions represent important observations available
to the agents. The role of the agents boils down to accumulating or
disposing of energy in the storage to prepare the system for future
deficit or surplus. However, these predictions are burdened with
significant noise.

7 CONCLUSIONS
In this paper, we formalized the control of BESS under the non–
controllable RES as a Multi-Agent Partially Observable Markov
Decision Problem. The proposed benchmark has many practical
applications, including comparing existing control methods, devel-
oping new control algorithms (both RL-based and non-RL-based),
testing these methods across various energy systems, and design-
ing reinforcement learning-maintained energy grids. The research
community can broadly use this framework to investigate solutions
for efficient EG control further. Moreover, we tested the perfor-
mance of standard SARL and MARL algorithms in three benchmark
environments for reinforcement learning algorithms that simulate
the control of a realistic distributed battery energy storage system
(BESS). These environments vary in difficulty of the control prob-
lem they represent, showing that the fraction of failing algorithms
increases with the complexity of the controlled system.
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