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ABSTRACT

Commitments support flexible interactions between agents by cap-
turing the meaning of their interactions. However, commitment-
based reasoning is not adequately supported in agent programming
models. We contribute Azorus, a programming model based on
declarative specifications centered on commitments and aligned
with information protocols. Azorus supports reasoning about goals
and commitments and combines modeling of commitments and
protocols, thereby uniting three leading declarative approaches
to engineering decentralized multiagent systems. Specifically, we
realize Azorus over three existing technology suites: (1) Jason, a
popular BDI-based programming model; (2) Cupid, a formal lan-
guage and query-based model for commitments; and (3) BSPL, a
language and its associated tools for information protocols, includ-
ing Jason programming. We implement Azorus and demonstrate
how it enables capturing interesting patterns of business logic.
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1 INTRODUCTION

Important domains such as business and healthcare that involve
autonomous principals lend themselves to the application of decen-
tralized multiagent systems (MAS). Engineering flexible MAS calls
upon programming abstractions for social meaning, operational
interactions, and agent reasoning.

Commitments are a high-level abstraction that capture the social
meaning of a communicative act [31]. For example, an offer from
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a seller to a buyer for some Item and Price may be modeled as a
commitment from the seller to the buyer that if payment of Price
happens, then the shipment of Item will happen. Commitments
model autonomy by both enabling flexible engagements between
agents and yielding a standard for compliance [23, 39, 43]. Several
previous works address languages for specifying commitments
[2, 10, 15].

However, much of the work on commitments does not address
decentralized settings. To support such settings, commitments need
to be layered on flexible, decentralized interaction protocols that
minimally constrain when agents may perform communicative
acts [14]. For example, refund without a prior payment would be
meaningless; and accept and reject should be mutually exclusive
to be meaningful; however, shipment and payment may happen
in any order. Because of their emphasis on message ordering, tra-
ditional protocol specification approaches [3, 5, 20, 41] are not
suited to specifying flexible protocols. For this purpose, we turn
toward information protocols, specifically BSPL [32], a declarative
approach for specifying flexible protocols. Indeed a motivation for
information protocols was to provide a suitable operational layer
for commitments [32, p. 498].

Commitments are not adequately supported in programming
models for multiagent systems. Popular approaches such as JADE
[6], Jason [8], JaCaMo [7], and SARL [24] provide diverse, use-
ful abstractions for engineering multiagent systems. However, the
abstractions for communication in these approaches are either low-
level (e.g., messaging in JADE and Jason and event spaces in SARL),
limited in repertoire, inflexible (support for FIPA Interaction Pro-
tocols [22] in JADE), or promote centralization (via artifacts in
JaCaMo). MOISE (the ‘Mo’ in JaCaMo) [26] supports a notion of
commitments but tightly couples them to agent goals. Baldoni et al.
[1] model communicative acts and their effects on commitments
via JaCaMo artifacts. Kiko [17], an information protocol-based pro-
gramming model supports creating flexible, decentralized MAS but
does not support commitments.

We contribute Azorus (named after the helmsman of Jason’s
ship, the Argo), a commitment-based programming model that
enables implementing flexible MAS via BDI agents. We synthesize,
for the first time, three declarative MAS paradigms: commitments,
information protocols, and cognitive agents. For the latter, we adopt
BDI (belief-desire-intention) agents, which have beliefs and goals,
and execute plans in response to changes in beliefs and goals. Jason
[8] is a prominent exemplar of the paradigm (and the ‘Ja’ in JaCaMo).
The synthesis makes conceptual sense because, in a multiagent
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Figure 1: Azorus in a nutshell.

system, agents depend on others for the satisfaction of their goals
[30]. Commitments capture such dependencies between agents [25],
and, as described above, motivate information protocols. Winikoff
[40] notes the lack of support for flexible interactions in agent
programming. Accordingly, we contribute:

• A formalization of Cupid [15], an expressive commitment
language, as abstract Jason rules. We provide a compiler en-
abling a declarative, high-level abstraction for commitments
in Jason plans.

• A Jason communication adapter that supports an agent’s
internal reasoning by maintaining the mapping between
commitments and enactments of information protocols and
providing abstractions for querying and reacting to commit-
ment events and performing valid communicative acts.

• Reasoning patterns for realizing flexible agents in Azorus.

Organization. The rest of the paper is organized as follows. Sec-
tion 2 provides background on Jason. Section 3 describes how we
specify MAS via commitments in Cupid and information protocols.
Section 4 introduces the Azorus programming model via its archi-
tectural elements, including a semantics in Jason for inferring com-
mitment events from communicative acts. Section 5 demonstrates
patterns for implementing flexible agents. Section 6 evaluates our
contributions conceptually. Section 7 summarizes our contributions
and identifies some future directions.

2 JASON BACKGROUND

Jason extends the AgentSpeak logic-programming language for
specifying agent behavior [8]. An agent is modeled as having be-
liefs, which capture the state of the world; goals, which capture
its objectives; and plans, which are methods for realizing its goals.
Jason adopts communication primitives based on the Knowledge
Query and Manipulation Language, better known as KQML [9].

To illustrate Jason’s programming model, especially how it com-
bines communication and reasoning, Listing 1 gives a snippet of

how an agent Bob, who plays seller in Ebusiness, might be imple-
mented in Jason without any special support for protocols.

Listing 1: Jason snippet of a seller agent Bob.

buyer ( a l i c e ) .
i n _ s t o c k ( f i g s ) .
g o e s _ f o r ( f i g s , 1 0 ) .

! s t a r t .
+ ! s t a r t <−

? buyer ( Buyer ) ;
? g o e s _ f o r ( Item , P r i c e ) ;
. random ( Id ) ;
. send ( Buyer , t e l l , o f f e r ( Id , Item , P r i c e ) ) .

+ a c c ep t ( Id , Item , P r i c e , De c i s i on ) [ sou r c e ( Sender ) ]
: i n _ s t o c k ( Item ) & buyer ( Sender )
<− . send ( Sender , t e l l , shipment ( Id , Item , P r i c e ,

done ) ) .

The first few lines of Listing 1 assert beliefs that buyer is alice,
figs are in stock, and that they go for the price of 10. Then the
goal start is asserted. The following lines show two plans. The first
is for the goal start and is executed whenever it is asserted. This
plan executes two queries to bind variables Buyer, Item, and Price,
respectively. It then uses a library function to bind variable Id to a
random identifier. Finally, it uses the built-in function for sending
an offer to Buyer using the KQML speech act tell.

Jason asserts beliefs corresponding to received messages. The
second plan is for handling a belief corresponding to a received
accept and is executed whenever the belief is asserted. The plan
checks (via guards in the context) that the specific Item is in stock
and that the Sender is the buyer and, if so, sends a shipment message.

3 MODELING MULTIAGENT SYSTEMS

As explained below, we use information protocols to specify the
basic communicative acts in a MAS; meaning-level commitment
specifications refer to these acts.

3.1 Information Protocols in BSPL

Information protocols are declarative interaction specifications
[32, 33]. An interaction is specified as a composition of protocols—a
message being an atomic protocol with a special syntax—in terms
of the information dependencies between them. The idea is that an
agent can emit any message whose information dependencies are
satisfied given its local state, that is, its communication history. We
adopt information protocols because they support flexible and asyn-
chronous multiparty enactments better than traditional message
ordering-oriented representations of protocols [12].

We explain BSPL via the protocol Ebusiness in Listing 2. It speci-
fies several messages, eachwith a sender, a receiver, and information
parameters. The parameter Id is annotated key, meaning it serves
to identify enactments (and correlate messages). Adornments ⌜in⌝,
⌜out⌝, and ⌜nil⌝ for parameters capture information dependencies
and are interpreted relative to enactments. A message in some en-
actment is viable (i.e., legal for emission) if the sender’s local state
includes bindings for all the ⌜in⌝ parameters and none of the ⌜out⌝
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or ⌜nil⌝ parameters. Sending the message adds it to the agent’s
local state (along with the bindings for the ⌜out⌝ parameters, which
are computed at that point, thus making them known); the ⌜nil⌝
parameters remain unbound. Receiving a message adds it to the
receiver’s local state (along with the bindings for all its parameters,
thus making them known). Notably, information protocols do not
specify message reception order.

Listing 2: An information protocol in BSPL.

Ebus i n e s s {
r o l e s Buyer , S e l l e r , Bank
paramete r s out Id key , out Item , out P r i c e , out

S t a t u s

S e l l e r −> Buyer : o f f e r [ out Id key , out Item ,
out P r i c e ]

Buyer −> S e l l e r : a c c ep t [ i n Id key , i n Item , i n
P r i c e , out Dec i s i on ]

Buyer −> Bank : i n s t r u c t [ i n Id key , i n P r i c e ,
out D e t a i l s ]

Bank −> S e l l e r : t r a n s f e r [ i n Id key , i n P r i c e ,
i n De t a i l s , out Payment ]

S e l l e r −> Buyer : shipment [ i n Id key , i n Item ,
i n P r i c e , out S t a t u s ]

S e l l e r −> Bank : r e fund [ i n Id key , i n Item , i n
Payment , out Amount , out S t a t u s ]

}

In an enactment of Ebusiness, seller may send offer anytime
since all its parameters are ⌜out⌝. Once seller has sent offer, it
would know the bindings for Id, Item, and Price, which means it
may send shipment provided it does not already know the binding
for Status. Analogously, buyermay send accept or instruct anytime
after receiving offer; bank may send a transfer anytime after re-
ceiving instruct; and sellermay send refund anytime after sending
offer and receiving transfer. And, shipment and refund are mutually
exclusive since they both bind Status (it is ⌜out⌝ in both).

To get a sense of how flexible Ebusiness is, consider the fact
that it has 658 distinct maximal enactments (each a causally valid
permutation of sends and receives of its messages extended until
no agent is left with any viable message), including the enactment
depicted in Figure 2, which is notable because accept and transfer
are “reordered” in the communication infrastructure and seller
sends shipment even though it has not received accept.

3.2 Specifying Commitments

Cupid is an approach for specifying commitments over databases
of business events [15].

Listing 3: Commitment specification in Cupid.

commitment OfferCom S e l l e r to Buyer
c r e a t e o f f e r
detach t r a n s f e r [ , c r e a t e d OfferCom + 5]

where " Payment >= P r i c e "
d i s c h a r g e shipment [ , detached OfferCom + 5]

commitment AcceptCom Buyer to S e l l e r
c r e a t e a c c ep t

BUYER SELLER BANK

offer

accept

instruct

transfer

shipment

Figure 2: Ebusiness enactment in which shipment is sent by
seller even as accept was in transit, based on [12, p. 1380].

detach shipment [ , c r e a t e d AcceptCom + 5]
d i s c h a r g e t r a n s f e r [ , detached AcceptCom + 5]

where " Payment >= P r i c e "

commitment RefundCom S e l l e r to Buyer
c r e a t e o f f e r
detach v i o l a t e d OfferCom
d i s ch a r g e re fund [ , detached RefundCom + 2]

where " Amount >= Payment "

commitment TransferCom Bank to S e l l e r
c r e a t e i n s t r u c t
d i s c h a r g e t r a n s f e r [ , c r e a t e d TransferCom + 2]

where " Payment = P r i c e "

Listing 3 gives a Cupid specification that gives the meaning of
messages in the Ebusiness protocol in Listing 2. Specifically, events
such as offer, transfer, and so on refer to the observation of the
corresponding message. These events constitute the base events for
the specification. The attributes of a base event are the parameters
of its message plus a unique timestamp attribute.

The commitment OfferCom specifies that offer creates a commit-
ment (instance) from seller to buyer. This commitment is detached
if transfer happens within 5 time units (for purposes of this paper,
seconds) of the creation and Payment in the transfer is at least
as much as Price in the offer. The commitment expires (fails to be
detached) if either of these conditions is not met. The commitment
is discharged if shipment happens within 5 time units of being
detached. The commitment is violated (fails to be discharged) if
shipment fails to occur within the stipulated time.

AcceptCom specifies that accept creates a commitment from
buyer to seller that if shipment happens within 5 time units of
its creation, then transfer will occur within 5 time units of its be-
ing detached. RefundCom specifies that offer creates a commitment
from seller to buyer that if OfferCom is violated, then refund of
at least the Amount paid will be done with 2 time units of the vio-
lation (else, obviously, the RefundCom will be violated). RefundCom
demonstrates the use of nested commitments, which may be used
to capture patterns such as compensation. TransferCom captures
bank’s commitment to buyer to do transfer upon instruct.
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Table 1 defines the formal syntax of Cupid, which we include
here since we give it a new formal semantics based on Jason. Below,
𝒜 and 𝒯 are the sets of agent names and time instants, respectively;
in particular, 𝒯 = N ∪ {∞}, where N is the set of natural numbers
and ∞ is an infinitely distant time instant.

ComSpec gives the syntax for a commitment: the debtor and cred-
itor agents, and the create, detach, and discharge clauses. Listing 3
uses a surface syntax for readability. We write and, or, and except
for ⊓, ⊔, and ⊖ respectively. In time intervals, we omit lower and
upper instants when they are 0 and ∞, respectively. An omitted
detach clause means the commitment is unconditional. We label
commitments to simplify referring to commitment events.

Table 1: Syntax of Cupid [15].

Event −→ Base | LifeEvent
LifeEvent −→ created(𝒜, 𝒜, Expr, Expr, Expr) |

detached(𝒜, 𝒜, Expr, Expr, Expr) |
discharged(𝒜, 𝒜, Expr, Expr, Expr) |
expired(𝒜, 𝒜, Expr, Expr, Expr) |
violated(𝒜,𝒜, Expr, Expr, Expr)

Expr −→ Event[Time, Time] | Expr ⊓Expr |Expr ⊔Expr |
Expr ⊖ Expr | Expr where 𝜑

Time −→ Event + 𝒯 | 𝒯
ComSpec −→ commitment(𝒜, 𝒜, Expr, Expr, Expr)

Cupid specifies five life events for every commitment: created,
detached, expired, discharged, and violated. The semantics of Cupid
gives a query for each life event for a commitment. The idea is
to infer the life events (including their timestamps) from the base
events. Time intervals for an event ([Time, Time] in Table 1) are
interpreted strictly: the event is required to occur after (including
at) the initial moment but before the final moment of the interval.

Chopra and Singh [15] give Cupid’s semantics in relational al-
gebra; its existing implementation compiles each life event of a
commitment into an SQL query. Azorus provides a new imple-
mentation of Cupid into Jason to enable BDI programming using
commitments.

4 PROGRAMMING MODEL,

ARCHITECTURALLY

Figure 3 describes the Azorus architecture and programming model.
A MAS is specified in terms of commitments and an information
protocol. The Azorus tooling generates an adapter for the role
being played by the agent based on the specifications. The adapter
supports implementing agents via programming abstractions for
commitments and protocols. The figure shows the computational
components of the adapter. Beliefs represent an agent’s state.

Each agent sends and receives messages via an Asynchronous
Communication Service. An agent’s Local State is the protocol state
projected to the messages sent or received by the agent and is repre-
sented as a set of beliefs corresponding to themessages. The Protocol
Adapter captures the protocol constraints relative to the role played
by the agent. It sends messages using Jason’s communication prim-
itives and adds them to the Local State. (Received messages are
added to the Local State automatically by Jason.) Moreover, the

Internal Logic

Commitment Materializer

Commitment Queries

Base Event Adapter

Protocol Adapter

Commitment Events

Local State

Reasoning

Beliefs

Azorus Agent

Decentralized
Social State

partitioned across agents

Azorus Tool

Commitments (Cupid)
Protocol (BSPL)

MAS Specification

Asynchronous Communication Service

no central store

Figure 3: Azorus architecture and programming model.

Protocol Adapter computes the set of enabled communicative acts
(explained below) from the Local State.

As messages are added to the Local State, the Base Event Adapter
asserts the corresponding base events as timestamped beliefs. These
events are used by Commitment Queries to compute the commit-
ment events. The Internal Logic is a set of Jason plans that cap-
ture agent behavior (modulo protocol constraints, of course). These
plans use Commitment Queries and Protocol Adapter to reason about
commitments and send only enabled communications.

Commitment Queries may be used in the context of a Jason plan.
To accommodate a programming style where a Jason plan is trig-
gered by the occurrence of a commitment event, the Commitment
Materializer asserts commitment events as beliefs as they occur.

In Figure 3, developers provide the MAS specifications and the
internal logic of the agents. The value of Azorus arises from gener-
ating the Protocol Adapter, Base Event Adapter, Commitment Queries,
and Commitment Materializer from commitments and protocols
and packaging them as the Azorus adapter. Specifically, the agent
programmer may focus on writing the Internal Logic based on the
interface afforded by Azorus adapter: local state (the communica-
tive acts that have occurred), enabled acts (the acts that may be
performed), and commitment queries and materialized commitment
events (as capturing meaning).

Below we describe each computational component, including
how they update the stateful ones.

4.1 Protocol Adapter

Baldoni et al. [4] present Orpheus, a programming model for im-
plementing protocol-based Jason agents. Given an information
protocol, the Orpheus protocol adapter enables the implementa-
tion of Jason agents that play roles in the protocol. Specifically,
an agent’s protocol adapter maintains its local state. Based on the
state and the protocol specification, it keeps track of information-
enabled forms. The forms are necessarily partial message instances
that would be legal to send if completed. Specifically, a form’s ⌜in⌝
parameters have bindings from the local state, whereas the ⌜out⌝
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parameters are unbound because their bindings don’t exist in the
local state; ⌜nil⌝ parameters are omitted from the form because
they are neither bound in the local state nor can be bound.

Listing 4 gives a possible local state for a seller agent and List-
ing 5 shows the forms available to it in that state.

Listing 4: A possible local state for a seller agent. It contains

instances of messages in the Ebusiness protocol.
o f f e r ( 1 , f i g , 1 0 )
o f f e r ( 2 , jam , 1 0 0 )
a c c ep t ( 2 , jam , 100 , yes )
t r a n s f e r ( 1 , 1 0 , done , 1 0 )

Listing 5: Enabled forms, showing parameters to be bound.

o f f e r ( Id , Item , Price )
shipment ( 1 , f i g , 1 0 , Status )
r e fund ( 1 , f i g , 1 0 , Amount , Status )
shipment ( 2 , jam , 100 , Status )

To write an Orpheus agent, a programmer writes a set of plans.
Each plan is an event-triggered piece of code that gets some enabled
forms; completes them via some logic; and then attempts to send
them. If the attempt passes the required integrity checks, the adapter
turns the completed forms into messages on the wire and records
them in the local state. Listing 6 shows a Jason code snippet (blue for
Orpheus constructs; red for what a programmer must implement)
that represents a seller agent’s internal reasoning. The first plan
concerns communicating offers. If there is an enabled offer form,
then it completes the form by checking if it has something to offer,
and then attempts to send it. The listing also contains a plan for
completing and attempting shipment forms. The enabled predicate
and attempt are adapter abstractions. The programmer uses them
and also writes the plan for completing the form. Notably, the
programmer never writes code to receive messages.

Listing 6: Some Orpheus snippets.

@of fe r_p lan [ atomic ]
+ ! s e n d _ o f f e r
: enab led ( o f f e r ( out , out , out ) [ r e c e i v e r ( out ) ] )
<− ! comple te ( o f f e r ( Id , Item ,

P r i c e ) [ r e c e i v e r ( Buyer ) ] ) ;
! a t tempt ( o f f e r ( Id , Item ,

P r i c e ) [ r e c e i v e r ( Buyer ) ] ) .

@shipment_plan [ atomic ]
+ ! send_shipment ( Id , Item , P r i c e , Buyer )
: enab led ( shipment ( Id , Item , P r i c e ,

out ) [ r e c e i v e r ( Buyer ) ] )
<− ! comple te ( shipment ( Id , Item , P r i c e ,

S t a t u s ) [ r e c e i v e r ( Buyer ) ] ) ;
! a t tempt ( shipment ( Id , Item , P r i c e ,

S t a t u s ) [ r e c e i v e r ( Buyer ) ] ) .

+ ! comple te ( o f f e r ( Id , Item ,
P r i c e ) [ r e c e i v e r ( Buyer ) ] )

: o n _ o f f e r ( Id , Item , P r i c e ) & buyer ( Buyer )
<− − on_o f f e r ( Id , Item , P r i c e ) .

+ ! comple te ( shipment ( Id , Item , P r i c e ,
S t a t u s ) [ r e c e i v e r ( Buyer ) ] )

: i n _ s t o c k ( Item ) & c ond i t i o n ( S t a t u s ) &
buyer ( Buyer )

<− − i n _ s t o c k ( Item ) .

Orpheus abstracts away the maintenance of the local state and
presents an interface to the programmer that supplies the enabled
communicative acts. However, it does not support meaning-based
reasoning—the programmer must encode when messages should
be sent using low-level reasoning.

4.2 Base Event Adapter

Every time a message𝑚 with parameters ®𝑝 is sent or received, a
belief for the corresponding base event 𝑏 is asserted with its times-
tamp 𝑡 as the current system time. C1 gives the corresponding rule
pattern, whose instance the tooling generates for every message
and corresponding base event pair (𝑚( ®𝑝), 𝑏 ( ®𝑝, 𝑡)). We explain the
goal update in Section 4.4.

C1 +𝑚( ®𝑝) : system_time(Now) <- +𝑏(®𝑝 , Now); !update(®𝑘).

4.3 Commitment Queries

To support commitment queries, we give abstract Jason rules of the
form head :- body. The rules are substantially more modular than
in the previous semantics [15], which facilitates comprehension
and enhances confidence that they capture intuitions correctly.

We treat all expressions of type Expr in Table 1, e.g.,𝑋 ⊓𝑌 ,𝑋 ⊔𝑌 ,
and so on, uniformly as events. [[𝑋 ]] refers to the predicate for event
𝑋 . For a base event 𝐸 with attributes ®𝑎 and timestamp 𝑡 , [[𝐸]] is
simply 𝐸 ( ®𝑎, 𝑡) and its instances are asserted beliefs. For example,
the predicate for offer is offer(Seller,Buyer, Id, Item, Price,Otime).
The rules below lift [[]] to all events.

Below, 𝐸, 𝐹 , and𝐺 are base or commitment life events; 𝐿 is a life
event; more generally, 𝑋 and 𝑌 are events; ®𝑎𝑋 and 𝑡𝑋 refer to the
attributes and timestamp of 𝑋 , respectively; 𝑡𝑝 stands for a globally
unique timestamp name in every application of the rules in which
it appears. [[𝑋 ]] ®𝑎𝑡 means that [[𝑋 ]]’s attributes and timestamp are
®𝑎 and 𝑡 , respectively (omitted where obvious from the rule).

C2 says that an instance of [[𝐸 [𝑐,∞]]] is an instance of 𝐸 that
has occurred at or after 𝑐 . C3 is similar.
C2 [[𝐸 [𝑐,∞]]] :- [[𝐸]] & 𝑐 ⩽ 𝑡𝐸 .

C3 [[𝐸 [0, 𝑑]]] :- [[𝐸]] & 𝑡𝐸 < 𝑑.

A compiler uses the abstract Jason to produce actual Jason.
Thus, for example, when the compiler encounters the expression
offer[0, 5], it will map it to a unique name such as offerPred1 and
generate the Jason rule in Listing 7.

Listing 7: Compiler-generated Jason from applying C3.

o f f e r P r e d 1 ( S e l l e r , Buyer , Id , Item , P r i c e , Otime )
: − o f f e r ( S e l l e r , Buyer , Id , Item , P r i c e ,
Otime ) & Otime < 5 .

C4 says that an instance of 𝑋 ⊓𝑌 represents correlated instances
of 𝑋 and 𝑌 and whose timestamp value is the max of their times-
tamps. Further, the set of attributes of the instance is the union of
the attributes in the 𝑋 and the 𝑌 instances.
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C4 [[𝑋 ⊓ 𝑌 ]] ®𝑎𝑋∪®𝑎𝑌
𝑡𝑝

:- [[𝑋 ]] & [[𝑌 ]] & .max ( [𝑡𝑋 , 𝑡𝑌 ], 𝑡𝑝 ) .
Suppose the compiler encountered the expression offer[0,5] ⊓

accept[0,6]. Listing 8 gives the kind of actual Jason code generated.

Listing 8: Compiler-generated Jason from applying C4.

andPred3 ( S e l l e r , Buyer , Id , Item , P r i c e , T1 ) : −
/ / o f f e r P r e d 1 as d e s c r i b e d i n Listing 7
o f f e r P r e d 1 ( S e l l e r , Buyer , Id , Item , P r i c e , Otime ) &
/ / Assume a r u l e f o r a c c e p t [ 0 , 6 ] from app l y i n g C3
accep tP r ed2 ( S e l l e r , Buyer , Id , Item , P r i c e , Atime ) &
. max ( [ Otime , Atime ] , T1 ) .

C6 says that an instance of 𝐸 [𝐹 +𝑐,∞] is an instance of 𝐸 that has
occurred no earlier than 𝑐 time units after the correlated 𝐹 instance.
C8 says that an instance 𝐸 [0,𝐺 + 𝑑] is an instance of 𝐸 such that
if the correlated 𝐺 instance has occurred, then the 𝐸 should have
occurred before 𝑑 units after the 𝐺 ’s occurrence. The rest of the
rules in C5–C10 are straightforward applications of C4.
C5 [[𝐸 [𝑐, 𝑑]]] :- [[𝐸 [𝑐,∞] ⊓ 𝐸 [0, 𝑑]]] .

C6 [[𝐸 [𝐹 + 𝑐,∞]]] ®𝑎𝐸𝑡𝐸 :- [[𝐸]] & [[𝐹 ]] & 𝑡𝐹 + 𝑐 ⩽ 𝑡𝐸 .

C7 [[𝐸 [𝐹 + 𝑐, 𝑑]]] :- [[𝐸 [𝐹 + 𝑐,∞] ⊓ 𝐸 [0, 𝑑]]].

C8 [[𝐸 [0,𝐺 + 𝑑]]] ®𝑎𝐸𝑡𝐸 :- [[𝐸]] & (not [[𝐺]] | ( [[𝐺]] & 𝑡𝐸 < 𝑡𝐺 + 𝑑)) .
C9 [[𝐸 [𝑐,𝐺 + 𝑑]]] :- [[𝐸 [𝑐,∞] ⊓ 𝐸 [0,𝐺 + 𝑑]]].
C10 [[𝐸 [𝐹 + 𝑐,𝐺 + 𝑑]]] :- [[𝐸 [𝐹 + 𝑐,∞] ⊓ 𝐸 [0,𝐺 + 𝑑]]] .

C11 says that an instance of 𝑋 ⊔𝑌 is either an 𝑋 instance or a 𝑌
instance. If correlated 𝑋 and 𝑌 instances have both occurred, then
the timestamp is the min of the two. To avoid unbound attributes
in the 𝑋 ⊔ 𝑌 instance, the set of its attributes is the intersection of
the attributes of the 𝑋 instance and the 𝑌 instance. C12 is straight-
forward.
C11 [[𝑋 ⊔ 𝑌 ]] ®𝑎𝑋∩®𝑎𝑌

𝑡𝑝
:- ([[𝑋 ]] & [[𝑌 ]] & .min( [𝑡𝑋 , 𝑡𝑌 ], 𝑡𝑝 ) |

([[𝑋 ]] & not 𝑌 & 𝑡𝑝 = 𝑡𝑋 ) |
([[𝑌 ]] & not 𝑋 & 𝑡𝑝 = 𝑡𝑌 ).

C12 [[𝑋 where 𝜑]] :- [[𝑋 ]] & 𝜑 .
Let commitment(𝑥,𝑦, 𝑐, 𝑟,𝑢) be a specification with debtor 𝑥 ,

creditor 𝑦, and create, detach, and discharge expressions 𝑐 , 𝑟 , and 𝑢,
respectively. Below, we write commitment(𝑐, 𝑟,𝑢) since the debtor
and creditor are the same throughout.

C13–C15 give the rules for some of the commitment life events
of interest. For commitment(𝑐, 𝑟,𝑢), the created instances are the
𝑐 instances; detached instances represent correlated created and 𝑟
instances; and discharged instances represent correlated created
and 𝑢 instances. Notice that a commitment may be detached even if
it has been discharged. In coming up with the rules, we are guided
by flexibility and simplicity.
C13 [[created (𝑐, 𝑟,𝑢)]] :- [[𝑐]] .
C14 [[detached (𝑐, 𝑟,𝑢)]] :- [[created (𝑐, 𝑟,𝑢) ⊓ 𝑟 ]] .
C15 [[discharged (𝑐, 𝑟,𝑢)]] :- [[created (𝑐, 𝑟,𝑢) ⊓ 𝑢]] .

Formulating rules in Jason for computing expired and violated
instances of commitments require the notion of failed events. C16
says that an instance of 𝐸 fails to occur at or after 𝑐 if it occurs
before 𝑐 . C17 says that an instance of 𝐸 fails to occur before 𝑑 either
if it occurs at or after 𝑑 or it does not occur at all. In both cases,

the timestamp of failure is 𝑑 . C21 says that an instance of 𝐸 fails to
occur before 𝑡𝐺 +𝑑 if either 𝐸 occurs at or after 𝑡𝐺 +𝑑 or 𝐸 does not
occur at all. In both cases, the timestamp of failure is 𝑡𝐺 + 𝑑 . The
rest of the rules in C16–C23 are straightforward.
C16 [[𝐸 [𝑐,∞]]] :- [[𝐸 [0, 𝑐]]].
C17 [[𝐸 [0, 𝑑]]]𝑡𝑝 :- [[𝐸 [𝑑,∞]]] | not [[𝐸]]) & 𝑡𝑝 = 𝑑 .

C18 [[𝐸 [𝑐, 𝑑]]] :- [[𝐸 [𝑐,∞] ⊔ 𝐸 [0, 𝑑]]].
C19 [[𝐸 [𝐹 + 𝑐,∞]]] :- [[𝐸 [0, 𝐹 + 𝑐]]].
C20 [[𝐸 [𝐹 + 𝑐, 𝑑]]] :- [[𝐸 [𝐹 + 𝑐,∞] ⊔ 𝐸 [0, 𝑑]]].

C21 [[𝐸 [0,𝐺 + 𝑑]]] ®𝑎𝐸𝑡𝑝 :- [[𝐺]] & ([[𝐸 [𝐺 + 𝑑,∞]]] | not [[𝐸]]) &
𝑡𝑝 = 𝑡𝐺 + 𝑑 .

C22 [[𝐸 [𝑐,𝐺 + 𝑑]]] :- [[𝐸 [𝑐,∞] ⊔ 𝐸 [0,𝐺 + 𝑑]]].
C23 [[𝐸 [𝐹 + 𝑐,𝐺 + 𝑑]]] :- [[𝐸 [𝐹 + 𝑐,∞] ⊔ 𝐸 [0,𝐺 + 𝑑]]].

C24—C26 apply De Morgan’s laws to extend failure.
C24 [[𝑋 ⊓ 𝑌 ]] :- [[𝑋 ⊔ 𝑌 ]].
C25 [[𝑋 ⊔ 𝑌 ]] :- [[𝑋 ⊓ 𝑌 ]].
C26 [[𝑋 where 𝜑]] :- [[𝑋 ⊔ (𝑋 where not 𝜑)]].

C27 says that an instance of 𝑋 ⊖ 𝑌 is an instance of 𝑋 such that
the correlated 𝑌 has failed to occur. Its timestamp is the max of the
two. C28 says that an instance of the failure of 𝑋 ⊖ 𝑌 is either an
instance of the failure of 𝑋 or an instance of 𝑌 .
C27 [[𝑋 ⊖ 𝑌 ]] ®𝑎𝑋𝑡𝑝 :- [[𝑋 ]] & [[𝑌 ]] & .max ( [𝑡𝑋 , 𝑡𝑌 ], 𝑡𝑝 ).

C28 [[𝑋 ⊖ 𝑌 ]] :- [[𝑋 ⊔ 𝑌 ]].
C29–C30 compute expired (failed to detach) and violated (failed

to discharge) instances.
C29 [[expired (𝑐, 𝑟,𝑢)]] :- [[𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑐, 𝑟,𝑢) ⊖ 𝑟 ]] .
C30 [[violated (𝑐, 𝑟,𝑢)]] :- [[detached (𝑐, 𝑟,𝑢) ⊖ 𝑢]] .

Often, we are interested in life events that have occurred, that is,
their timestamp is no later than the current time, as C31 captures.
C31 [[now𝐿]] :- [[𝐿]] & 𝑡𝐿 ⩽ Now & system_time(𝑁𝑜𝑤).

4.4 Commitment Materializer

To materialize commitment events as beliefs, we assert an update
commitment events goal every time an agent asserts a base event
(as described above). Any base event affects commitments that are
relevant to some subset of enactments, as identified by the bindings
of its key attributes. Therefore, for efficiency, the update goal is
parameterized by key attributes ®𝑘 that are common to all base events
and are therefore guaranteed to occur in every life event predicate.
C1 triggers the update (®𝑘 is the set of key attributes common to all
base events, therefore ®𝑘 ⊆ ®𝑝 in C1).

C32 gives the abstract Jason plan for materializing commitment
events; [[𝑒𝑣_nowL]] is a predicate with the same attributes and
timestamp as [[nowL]]. The plan for the update goal consists of
asserting a belief corresponding to a life event if it is an instance of
the life event predicate but not yet asserted. Assume that the life
event predicates are [[𝐿1]],. . . , [[𝐿𝑛]].
C32 +!update(®𝑘) <- if ([[nowL1]] & not [[𝑒𝑣_nowL1]])

{ +[[𝑒𝑣_nowL1]]; }
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. . .
if ([[nowL𝑛]] & not [[𝑒𝑣_nowL𝑛]])
{ +[[𝑒𝑣_nowL𝑛]]; }.

Agent programmers do not need to know either the abstract
Jason rules (C1–C32) or the generated Jason rules. Their API consists
of the predicates [[𝐿]], [[𝑛𝑜𝑤𝐿]], and [[𝑒𝑣_𝑛𝑜𝑤𝐿]], where 𝐿 is a
lifecycle event.

5 IMPLEMENTING FLEXIBLE AGENTS

We now give examples of how Azorus agents can reason about
commitments to flexibly enact protocols.

5.1 With Commitments as Queries

Azorus offers a set of queries for each commitment as a module
(see Figure 3). These queries can be used for driving the choices of
the enabled messages computed by the protocol adapter module.

Listing 9: Commitments as queries in Azorus.

+ ! handle_form ( [ shipment ( Id , Item , P r i c e ,
out ) [ r e c e i v e r ( Buyer ) ] | _ ] )

: i n _ s t o c k ( Item ) &
now_detached_OfferCom ( S e l l e r , Buyer , Id ,

Item , P r i c e , Bank , Payment , Timestamp )
<− ! send_shipment ( Id , Item , P r i c e , Buyer ) .

+ ! handle_form ( [ shipment ( Id , Item , P r i c e ,
out ) [ r e c e i v e r ( Buyer ) ] | _ ] )

: not i n _ s t o c k ( Item ) &
now_detached_OfferCom ( S e l l e r , Buyer , Id ,

Item , P r i c e , Bank , Payment , Timestamp )
<− ! s end_re fund ( Id , Item , Payment , Bank ) .

+ ! handle_form ( [ re fund ( Id , Item , Payment , out ,
out ) [ r e c e i v e r ( Bank ) ] | _ ] )

: now_detached_RefundCom ( S e l l e r , Buyer , Id ,
Item , P r i c e , Bank , Payment , Timestamp )

<− ! s end_re fund ( Id , Item , Payment , Bank ) .

A common reasoning pattern is for an agent to discharge a
commitment if it is detached. The first plan in Listing 9 embodies
this pattern. The seller executes the goal send_shipment if the Item
is in stock and the commitment OfferCom is detached, that is, the
shipment occurs if the transfer has been done in a timely manner.

Otherwise, by the second plan, if the Item is not in stock but
OfferCom is detached, the goal send_refund is executed. The plan
for send_shipment is as in Listing 6 and the plan for send_refund is
analogous. The last plan is for when the commitment OfferCom is
violated (because shipping does not occur by the deadline); again,
the goal send_refund is executed. Both plans intend refund; how-
ever, the second does it simply on the basis of the detachment of
OfferCom whereas the last plan does it upon its violation.

5.2 With Commitments as Events

Besides the set of queries for each commitment, an agent program
can exploit the commitment materializer (see Figure 3), which as-
serts beliefs corresponding to the occurrence of commitment events.
These events can be exploited to support reasoning.

Listing 10: Commitments as events in Azorus.

+ ! o f f e r : o n _ o f f e r ( Id , Item , P r i c e )
<− ! s e n d _ o f f e r .

+ ev_now_detached_OfferCom ( S e l l e r , Buyer , Id ,
Item , P r i c e , Bank , Payment , Timestamp )

: i n _ s t o c k ( Item )
<− ! send_shipment ( Id , Item , P r i c e , Buyer ) .

+ev_now_detached_RefundCom ( S e l l e r , Buyer , Id ,
Item , P r i c e , Bank , Payment , Timestamp )

<− ! s end_re fund ( Id , Item , Payment , Bank ) .

For example, in Listing 10, the agent seller sends an offer to a
potential buyer. Upon a timely transfer, the commitment OfferCom
is detached and, by exploiting the rule C32, the event
+ev_now_detached_OfferCom is produced by adding the corre-
sponding belief to the seller agent’s belief base. This triggers the
plan for dealingwith such an event: the agent performs the shipment.
Analogously, in the case the event +ev_now_detached_RefundCom
is generated (the shipment does not occur within the deadline) the
agent performs the refund.

5.3 Timestamp-Based Reasoning

Recall that for a life event 𝐿, an instance of [[𝑛𝑜𝑤𝐿]] is an [[𝐿]]
instance that has actually occurred (that is, with current time as
the reference point). In general, any time instant, in the past or the
future, could be the point of reference.

Suppose the seller agent, as a matter of managing its commit-
ments, wanted to discharge the OfferCom commitments that will be
violated within 10 time units from now (unless, of course, shipment
is sent). Listing 11 shows how to accomplish this using a future
time instant as the point of reference.

Listing 11: Deadline-based reasoning.

+ ! handle_form ( [ shipment ( Id , Item , P r i c e ,
out ) [ r e c e i v e r ( Buyer ) ] | _ ] )

: i n _ s t o c k ( Item ) & v io l a t ed_Of fe rCom ( Id , . . . , T )
& system_t ime (Now) & T <= Now + 10

<− ! send_shipment ( Id , Item , P r i c e , Buyer ) .

6 CONCEPTUAL EVALUATION

Let’s summarize what must be manually specified or coded and
what Azorus provides as abstractions. The commitment specifi-
cation, the protocol, and an agent’s internal reasoning must be
manually specified. Azorus supports the coding of internal reason-
ing by providing abstractions that enable reasoning about commit-
ments and performing communicative acts that are legal from the
standpoint of the protocol.

In virtually any multiparty application, commitments and pro-
tocols are domain concepts; there is no avoiding reasoning about
them. Specifying them cleanly opens up the possibility of building
a tool-supported methodology around them, including verification
[19, 34, 36, 42] and programming abstractions (as we do in Azorus),
and other productivity tools such as IDEs. Not specifying them
means architects and programmers must figure out the possible
enactments and encode the reasoning using low-level abstractions.
Naturally, such code is likely to be ad hoc, complex, error-prone,
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and hard-to-maintain even for simple MAS involving rigid inter-
actions between two parties, let alone MAS with more than two
parties and flexible engagements (such as the Ebusiness protocol
which has 658 enactments).

Even with protocol support, as Orpheus provides, the program-
mer would still have to encode reasoning about commitments man-
ually. Consider Listing 12, which shows a seller’s code snippet.
It says that the agent sends an enabled shipment if transfer has
occurred. Since transfer is required for the detach of OfferCom,
this seems to capture the intent behind the first plan in Listing 9.
It does not though because it misses the time-related reasoning.
That is, transfer could have happened late enough that OfferCom
would have expired, in which case the agent may not want to send
shipment.

Listing 12: No support for commitment reasoning can lead

to errors by underspecification.

+ ! handle_form ( [ shipment ( Id , Item , P r i c e ,
out ) [ r e c e i v e r ( Buyer ) ] | _ ] )

: i n _ s t o c k ( Item ) &
t r a n s f e r ( Id , P r i c e , _ , Payment )

<− ! send_shipment ( Id , Item , P r i c e , Buyer ) .

Commitments without protocol support can also go wrong. In
Listing 13, shipment and refund (which should be mutually exclu-
sive) are triggered solely by their respective commitment detach-
ments. If transfer takes too long,OfferCom will be violated and
RefundCom detached. Since protocol constraints are not enforced,
both shipment and refund could be sent, violating mutual exclusion.

Listing 13: No support for protocols can lead to erroneous

communication.

+ t r a n s f e r ( Id , P r i c e , Payment )
: i n _ s t o c k ( Item ) &

now_detached_OfferCom ( S e l l e r , Buyer , Id ,
Item , P r i c e , Bank , Payment , Timestamp )

<− . send ( Buyer , t e l l , shipment ( Id , Item , P r i c e ,
done ) ) .

+ev_now_detached_RefundCom ( S e l l e r , Buyer , Id ,
Item , P r i c e , Bank , Payment , Timestamp )

: Amount=Payment
<− . send ( Bank , t e l l , r e fund ( Id , Item , Payment ,

Amount , done ) ) .

Without protocol support, in Jason, programmers typically use
tell for every message. We might as well drop KQML support (and
FIPA ACL [21] support from JADE) and instead consider the pro-
tocol messages themselves as first-class communicative acts and
express their meaning via social abstractions such as commitments
(see Singh’s essay in [11]), as Azorus does.

7 DISCUSSION

Azorus’ novelty is twofold. One, it shows how protocols as opera-
tional abstractions and commitments as high-level abstractions can
be leveraged in a multiagent programming model. Two, it intro-
duces higher-level communication abstractions to Jason, a popular

BDI-based programming model. Azorus exploits practical, expres-
sive languages for commitments and protocols and the Azorus
adapter is the first careful working out of the interplay between pro-
tocol enactment and commitment reasoning. Its significance is also
two-fold. One, Azorus simplifies the engineering of flexible, decen-
tralized MAS. Two, it brings goals, commitments, and protocols—all
of which represent autonomy—into a single programming model.
Below, we discuss concerns that require further investigation.

Specifying Commitments. Different commitment specifica-
tions could be overlaid on the same protocol. The specification in
Listing 3 is "direct" in that it gives the meaning of both offer and
accept as an exchange of shipment and transfer. An alternative com-
mitment specification could have a "waterfall" flavor: offer means
that if accept, then shipment, and accept means that if shipment, then
transfer. The possibility of alternative commitment specifications
motivates characterizing the specifications in terms of properties
and stakeholder requirements that they satisfy.

Implementing Agents. Consider buyer and seller agents imple-
mented such that the seller waited for the buyer to detach OfferCom
by effecting transfer and the buyer waited for the seller to detach
AcceptCom by doing shipment. Naturally, in every enactment, the
agents end up deadlocked (even though the Ebusiness protocol
itself is live). Such deadlocked enactments are not necessarily prob-
lematic: they arise from agents exercising their autonomy by not
sending messages.

Notions such as trust and other business requirements can fa-
cilitate progress. For example, if a buyer trusts the seller or if the
monetary amount involved is small, the buyer may be willing to
detach OfferCom from the seller, effectively moving first in the ex-
change. What we need are novel methodologies for implementing
agents that take into account the various contextual assumptions
and business requirements.

There has been some work on methodologies for specifying com-
mitments and implementing agents. Winikoff [38] and Yolum [42]
give methods for designing and checking specifications for proper-
ties related to progress, consistency, and flexibility. Marengo et al.
[28] and Günay et al. [25] relate commitments to notions of safety
and control. Some work has studied relationships between goals
(as representation of requirements) and commitments [13, 29, 37].
Yolum and Singh study commitments from the point of view of
concession (taking a risk by moving first) [44]. To ensure moni-
torability of commitments, Azorus could be combined with either
organizations and shared artifacts [18] or use alignment-producing
techniques [16, 27]. Finally, Langshaw [35] is an even higher-level
protocol language than BSPL and may simplify combining commit-
ments and protocols. These works can serve as a starting point for
methodologies for building flexible, decentralized MAS, a direction
that should yield rich dividends.

8 REPRODUCIBILITY

The entire Azorus codebase and examples as well as other related
tools are available online at https://gitlab.com/masr.
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