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ABSTRACT

An opinion illusion refers to a phenomenon in social networks

where agents may witness distributions of opinions among their

neighbours that do not accurately reflect the true distribution of

opinions in the population as a whole. A specific case of this oc-

curs when there are only two possible choices, such as whether to

receive the COVID-19 vaccine or vote on EU membership, which is

commonly referred to as a majority illusion. In this work, we study

the topological properties of social networks that lead to opinion

illusions and focus on minimizing the number of agents that need

to be influenced to eliminate these illusions. To do so, we propose

an initial, but systematic study of the algorithmic behaviour of this

problem.

We show that the problem isNP-hard even for underlying topolo-
gies that are rather restrictive, being planar and of bounded diame-

ter. We then look for exact algorithms that scale well as the input

grows (FPT). We argue the in-existence of such algorithms even

when the number of vertices that must be influenced is bounded,

or when the social network is arranged in a “path-like” fashion

(has bounded pathwidth). On the positive side, we present an FPT
algorithm for networks with “star-like” structure (bounded vertex

cover number). Finally, we construct an FPT algorithm for “tree-

like” networks (bounded treewidth) when the number of vertices

that must be influenced is bounded. This algorithm is then used to

provide a PTAS for planar graphs.
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1 INTRODUCTION

Opinion illusion occurs for an agent in a social network when the

perception within its immediate neighbourhood differs from the

broader network’s predominant opinion. In democratic societies,

decisions often hinge on binary choices such as EU membership

or the rightfulness of COVID-19 vaccination. Opinion illusion in

situations with binary choices is called amajority illusion. Over time,

an agent under illusion may alter its opinion if left unaddressed.

This change further influences other agents to reconsider their

opinions. This cascading effect leads to the spread ofmisinformation

and bias in the community, an undesirable scenario. An exemplary

visualisation of the problem is presented in Figure 1.
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Figure 1: In the leftmost figure, the vertex 𝑣7 is under illu-

sion. It may change its colour over time and subsequently

influence the colour of 𝑣6 followed by 𝑣5 and 𝑣4. The final

configuration is presented in the rightmost figure.

The process of false information spreadingmay create significant

differences in the outcome of an election. For example, the outcome

of the 2018 French and 2018 Italian elections was aligned with the

information/misinformation spread from bots [1, 24]. Castiglioni et

al. did a theoretical study of the problem of manipulating elections

through social influence [10]. Wu et al. [41] showed that although

controlling election is generally NP-hard, agents can be partitioned

into similar groups and the problem becomes tractable. Faliszewski

et al. [23] further showed FPT algorithms to influence the agents

in a social network to obtain desirable election outcomes.

The spread of opinion in social networks and arriving at a con-

sensus has been extensively studied earlier [2, 9, 23]. Auletta et

al. [2] studied the complexity questions of finding a minimum-sized

set of agents to maximise the spread of information. This problem

is known under the name of target set selection [29]. Bredereck and

Elkind considered the problem of maximising opinion diffusion

under majority settings with the help of bribery (or influence) [9].

They further established a connection between their model and the

target set selection problem. To counter misinformation spreading,
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a tried and tested approach involves network intervention [38].

This is often achieved by appointing champions, typically opin-

ion leaders or influencers [32]. This method has effectively driven

change, notably in health behaviour modification [37, 39].

Lerman et al. [34] first considered majority illusion, examining

social networks where such phenomena occur. A graph-theoretic

study of different variants of majority illusion is reported in [40].

Grandi et al. [26] initiated the algorithmic study of the problem of

verifying the existence of and eliminating majority illusion. They

considered the problem where along with the social network a pa-

rameter 𝑞 ∈ [0, 1] is given, which denotes at least 𝑞-fraction of the

vertices under an illusion in the social network. They showed the de-

cision problem, that there is a labelling which induces a 𝑞-majority

illusion, is NP-complete for every rational number 𝑞 ∈ ( 1

2
, 1] even

for planar graphs, bipartite graphs as well as graphs of bounded

maximum degree. On the positive side, they showed FPT algo-

rithms when parameterised by neighbourhood diversity, vertex

cover, maximum degree with treewidth or cliquewidth. Further-

more, they proposed two editing operations, edge addition and edge

deletion to eliminate majority illusion. From a theoretical point of

view, it is rather natural to consider these two operations. However,

one should also consider their associated cost, meant to model the

effort required to create or remove connections between strangers

or friends respectively.

We study the theoretical model of the majority illusion prob-

lem while considering the practicality of the proposed solution.

A theoretical study of eliminating undesirable properties within

social networks is not new. It has been extensively explored in

recent years [4, 12]. We consider the network intervention method

as suggested in [32, 38], where the objective is to find the mini-

mum number of leaders or influencers. The task of the leader or

influencer is to sync its opinion with the global majority opinion
1

and by doing so we remove all illusions of the network. Finding a

smallest possible set of nodes/agents in a social network to create

desirable influence is a well-established research interest and has

been studied in the context of digital marketing [19, 20, 27, 36].

Related problem of independent theoretical interest. We begin this

work by observing a strong relation (polynomial equivalence) be-

tween the Elimininating Illusion (EI for short) problem and a

variation of the classic dominating set problem, known as Total

Vector Domination (TVD for short). To the best of our knowl-

edge, the TVD problem has only been considered in [14, 28]. We

would like to stress here that none of our infeasibility results fol-

low directly from the known results for the TVD problem. On the

contrary, our reduction serves as a way to translate many of the

efficient algorithm that can be conceived for EI, including the PTAS
we provide, into their direct counterparts for the TVD problem. This

last observation has particular importance in view of the sparsity

of positive results that exist for the TVD problem.

Our Contribution. We begin by showing the aforementioned

equivalence between the EI and TVD problems. We then focus on

the EI problem. We show that this problem is NP-hard even on

planar bipartite graphs. Moreover, the problem is W[2]-hard when

1
A similar solution has recently been proposed independently by Chitnis and Ku-

mar [11].

parameterised by the solution size, i.e., the minimum number of

vertices that must be influenced. Both of the previous results hold

even if we restrict the input graph to have bounded diameter. It

is then natural to wonder about a possible efficient algorithm for

solving the problem when considering structural parameters of the

input graph. Unfortunately, we show that the problem is XNLP-
hard when parameterised by the pathwidth of the input graph

(implying the same result when parameterised by the treewidth).

Nevertheless, we do provide an FPT algorithm parameterised by

the vertex cover number of the input graph. Finally, we provide

a PTAS for planar graphs. To achieve this we also construct an

FPT algorithm parameterised by the treewidth of the input graph

plus the solution size. This implies an XP algorithm parameterised

just by the treewidth, which is then used as a building block for the

aforementioned PTAS.

2 PRELIMINARIES

Formally, we consider social networks as graphs 𝐺 = (𝑉 , 𝐸) where
each vertex has a labelling 𝑓 : 𝑉 (𝐺) → {0, 1}. We assume there are

strictly more vertices with label 0 than 1 in𝐺 . We say that a vertex is

under illusion if the label 1 has a surplus in its neighbourhood. That

is, a vertex 𝑣 ∈ 𝑉 is under illusion by 𝑓 if |{𝑢 ∈ 𝑁 (𝑣) : 𝑓 (𝑢) = 1}| >
|{𝑢 ∈ 𝑁 (𝑣) : 𝑓 (𝑢) = 0}|. We say that a labelling 𝑓 ′ is a solution to

the majority illusion problem on 𝐺 if 𝑓 ′ induces no illusion; the

size of this solution is |{𝑣 ∈ 𝑉 (𝐺) : 𝑓 (𝑣) ≠ 𝑓 ′ (𝑣)}|.

Elimininating Illusion

Input: A graph 𝐺 = (𝑉 , 𝐸), a labelling 𝑓 : 𝑉 → {0, 1} and an

integer 𝑘 ≥ 1.

Task: Is there a labelling 𝑓 ′ : 𝑉 → {0, 1} such that 𝑓 ′ induces
no illusion and |{𝑣 ∈ 𝑉 : 𝑓 (𝑣) ≠ 𝑓 ′ (𝑣)}| ≤ 𝑘 .

We will follow the usual graph theory notation [18]. For any

vertex 𝑣 of a graph𝐺 , we denote by 𝑑𝐺 (𝑣) degree of 𝑣 in𝐺 , which is

equal to the number of neighbours of 𝑣 in𝐺 . Whenever it is obvious

from the context, the subscript will be dropped.

Parameterised Complexity. The goal in the field of parameterised

complexity is to construct exact algorithms that are efficient with

respect to a measure of time that is extended by a secondary mea-

sure of the problem, commonly referred to as the parameter. Let 𝑛

denote the size of the input of a problem, 𝑘 denote the considered

parameter and 𝑓 be an arbitrary computable function. We consider

that a parameterised problem is solved efficiently if it can be deter-

mined in 𝑓 (𝑘) ·𝑛O(1)
time. In such cases, we say that the problem is

fixed-parameter tractable and that it belongs to the class FPT. A pa-

rameterised problem is slicewise polynomial if it can be determined

in 𝑛𝑓 (𝑘 ) time. In such cases, we say that the problem belongs to

the class XP. It should be noted that, unlike NP-complete problems,

there is actually a whole hierarchy of infeasibility for parameterised

problems, referred to as the W hierarchy. A problem is presumably

not in FPT if there exists a 𝑡 ≥ 1 such that the problem isW[𝑡]-hard

(by a parameterised reduction). Moreover, it is hypothesised that

W[𝑡] ⊆ W[𝑡 + 1] for every 𝑡 ≥ 1. Finally, we will need the definition

of the recently introduced XNLP class [8]. This class contains the

parameterised problems whose input can be encoded with 𝑛 bits

and can be solved non-deterministically in time 𝑓 (𝑘) · 𝑛O(1)
and
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space 𝑓 (𝑘) log𝑛. We refer the interested reader to now classical

monographs [15, 22, 25, 35] for a more comprehensive introduction

to the topic of parameterised complexity.

Structural Parameters. Let 𝐺 = (𝑉 , 𝐸) be a graph. A set 𝑈 ⊆ 𝑉 is

a vertex cover if for every edge 𝑒 ∈ 𝐸 it holds that 𝑈 ∩ 𝑒 ≠ ∅. The
vertex cover number of 𝐺 , denoted vc(𝐺), is the minimum size of a

vertex cover of 𝐺 .

A tree decomposition T = (𝑇, {𝑋𝑡 }𝑡 ∈𝑉 (𝑇 ) ) of 𝐺 is a tree 𝑇 , such

that the following hold:

• Every node 𝑡 ∈ 𝑉 (𝑇 ) has an associated bag 𝑋𝑡 ⊆ 𝑉 such

that the union of all bags is equal to 𝑉 (𝐺).
• For each edge {𝑢, 𝑣} ∈ 𝐸 (𝐺), there has to exist at least one

bag 𝑋𝑡 with 𝑢, 𝑣 ∈ 𝑋𝑡 .

• For each vertex 𝑣 ∈ 𝑉 (𝐺), the nodes whose bags contain 𝑣

induce a connected subtree of 𝑇 .

The width of a tree decomposition is max{|𝑋𝑡 | | 𝑡 ∈ 𝑉 (𝑇 )} − 1.

The treewidth tw(𝐺) of a graph 𝐺 is the smallest value, such that

there exists a tree decomposition of 𝐺 with this width.

It is known that computing a tree decomposition of minimum

width is fixed-parameter tractablewhen parameterised by the treewidth [5,

30], and even more efficient algorithms exist for obtaining near-

optimal tree decompositions [31].

A tree decomposition (𝑇, {𝑋𝑡 }𝑡 ∈𝑉 (𝑇 ) ) is nice [6] if𝑇 is rooted in

𝑟 ∈ 𝑉 (𝑇 ) and every node 𝑡 ∈ 𝑉 (𝑇 ) is exactly of one of the following
four types:

(1) Leaf: 𝑡 is a leaf of 𝑇 and |𝑋𝑡 | = 1.

(2) Introduce: 𝑡 has a unique child 𝑖 and there exists 𝑣 ∈ 𝑉 such

that 𝑋𝑡 = 𝑋𝑖 ∪ {𝑣}.
(3) Forget: 𝑡 has a unique child 𝑖 and there exists 𝑣 ∈ 𝑉 such

that 𝑋𝑖 = 𝑋𝑡 ∪ {𝑣}.
(4) Join: 𝑡 has exactly two children 𝑖, 𝑗 and 𝑋𝑡 = 𝑋𝑖 = 𝑋 𝑗 .

It is well known that every graph 𝐺 = (𝑉 , 𝐸) admits a nice tree

decomposition rooted in 𝑟 ∈ 𝑉 (𝑇 ), that has width equal to tw(𝐺),
|𝑉 (𝑇 ) | = O(|𝑉 |) and 𝑋𝑟 = {∅} [6].

The notions of (nice) path decomposition and pathwidth are de-

fined analogously, by replacing the third item in the definition of

a tree decomposition by the following: for every vertex 𝑣 ∈ 𝑉 ,

the nodes whose bags contain 𝑣 induce a connected subpath of T .

Finally, nice path decompositions do not contain any join nodes.

Approximation. The goal of an approximation algorithm is to

obtain an approximated solution of an intractable problem in poly-

nomial time. Formally speaking, given a minimisation problem P,

a polynomial time algorithm 𝐴 is an approximation algorithm with

an approximation ratio 𝛼 ∈ R if for all instances 𝐼 ∈ P, 𝐴 produces

a feasible solution SOL(𝐼 ) such that |SOL(𝐼 ) | ≤ 𝛼 · |OPT(𝐼 ) |, where
OPT(𝐼 ) is the optimum solution of 𝐼 . A PTAS for a minimisation

problem is an approximation algorithm which for every 𝜀 > 0 out-

puts a solution of size (1 + 𝜀) |OPT| in time polynomial in the size

of the input.

3 CONNECTION TO TOTAL VECTOR

DOMINATION

In this section, we will establish a polynomial-time equivalence

between the TVD and Elimininating Illusion problems. This

equivalence allows us to, to some extent, interchange results and

complexity analyses between the two problems. We begin by for-

mally stating the definition of the TVD problem:

Total Vector Domination

Input: A graph 𝐺 = (𝑉 , 𝐸) and a vector (𝑘 (𝑣) : 𝑣 ∈ 𝑉 ) where
𝑘 (𝑣) ∈ {0, 1, . . . , 𝑑 (𝑣)} for all 𝑣 ∈ 𝑉

Task: Find a minimum-size set 𝑆 ⊆ 𝑉 such that |𝑆 ∩ 𝑁 (𝑣) | ≥
𝑘 (𝑣) for all 𝑣 ∈ 𝑉 .

From EI to TVD

Given an EI instance (𝐺, 𝑓 ), we will construct a TVD instance

(𝐺 ′, 𝑘). The main obstacle we have to overcome is that there are

some vertices already labelled as 0 in (𝐺, 𝑓 ) that should influence

the TVD solution, but are not in the solution of EI. We construct

the graph 𝐺 ′ = (𝑉 ′, 𝐸′) in a specific way to combat this limitation.

We start with a copy of 𝐺 = (𝑉 , 𝐸). Then, for each vertex 𝑣 ∈ 𝑉

with 𝑓 (𝑣) = 0, we attach a leaf𝑤 to the vertex 𝑣 . This finishes the

construction of 𝐺 ′
. We then define 𝑘 (𝑣) for all 𝑣 ∈ 𝑉 ′

as follows:

𝑘 (𝑣) =
{
⌈𝑑𝐺 (𝑣)

2
⌉ if 𝑣 ∈ 𝑉

1 if 𝑣 ∈ 𝑉 ′ \𝑉
This construction ensures that vertices labelled 0 in𝐺 are selected

in the TVD solution of 𝐺 ′
, as we force the leaves of 𝐺 ′

to have

𝑘 (𝑤) = 1. Moreover, any TVD solution eliminates all the illusions

in the original graph, as we set 𝑘 (𝑣) to be at least half of the nodes

for all vertices 𝑣 ∈ 𝑉 . It is important to note that the solution given

by the TVD problem will always choose vertices of 𝐺 as they are

at least as good as the new vertices added. This leads us to the

following lemma.

Lemma 1. A solution to the TVD problem on (𝐺 ′, 𝑘) corresponds
to a solution of the EI problem on (𝐺, 𝑓 ), excluding vertices of 𝐺

originally labelled 0.

Observe that𝐺 ′
is essentially the same as𝐺 , with some additional

leaves. Thus, we obtain the following corollaries that follow directly

from results in [13, 28]:

Corollary 1. There is a polynomial time algorithm for EI on

trees.

Corollary 2. There is an FPT algorithm for EI on planar graphs.

From TVD to EI

We now present the reverse reduction, transforming a TVD instance

into an equivalent Elimininating Illusion instance.

Given a TVD instance (𝐺,𝑘), we construct an EI instance (𝐺 ′, 𝑓 )
as follows. We start with 𝐺 ′ = (𝑉 ′, 𝐸′) being a copy of 𝐺 = (𝑉 , 𝐸),
with one copy of the 𝑃2 path attached to each 𝑣 ∈ 𝑉 . We say that

the vertices that are common between𝐺 and𝐺 ′
(i.e., 𝑣 ∈ 𝑉 \𝑉 ′

) are

the original vertices, while any other vertex is auxiliary. We label

all the original vertices of 𝐺 ′
by 1 and its auxiliary vertices by 0.

Then, for each original vertex 𝑣 of 𝐺 ′
, we define the budget of 𝑣 to

be the value 𝐵(𝑣) = 2𝑘 (𝑣) + 1 − 𝑑𝐺 (𝑣). Observe that a vertex might

have a negative budget. For each original vertex 𝑣 ∈ 𝑉 ′
such that

𝐵(𝑣) ≥ 0, we add 𝐵(𝑣) copies of the 𝑃3 path to 𝐺 ′
, attached to 𝑣 ,

labelled by the labels 1, 0, 0, with the newly added vertex labelled 1
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Figure 2: The graph𝐺𝐼 constructed in the proof of Theorem 1.

The white vertices have label 0, and the grey vertices have

label 1.

being the neighbour of 𝑣 . Then, for each original vertex 𝑣 ∈ 𝑉 ′
such

that 𝐵(𝑣) < 0, we add |𝐵(𝑣) | copies of the 𝑃2 path to 𝐺 ′
, attached

to 𝑣 and labelled by the labels 0, 0. This finishes the construction of

the instance (𝐺 ′, 𝑘).
Notice that the above construction ensures that label 0 is indeed

the majority. Moreover, we may assume that any optimal solution

of EI on (𝐺 ′, 𝑓 ) only relabels a subset of the original vertices of

𝐺 ′
. Indeed, if an optimal solution contains an auxiliary vertex 𝑢

belonging to some path attached to an original vertex 𝑣 , then it

suffices to relabel any original neighbour of 𝑣 instead of 𝑢. Finally,

the choices of 𝑓 and 𝐵(𝑣), for each original vertex 𝑣 , are such that

all the original vertices of 𝐺 ′
are under illusion, and this can only

be corrected if at least 𝑘 (𝑣) neighbours of 𝑣 are relabelled. From
the above observations we obtain the following:

Lemma 2. A solution to the EI problem on (𝐺 ′, 𝑓 ) corresponds to
a solution of the TVD problem on (𝐺,𝑘), restricted to the original

vertices of 𝐺 ′
.

4 THE PROBLEM IS HARD

In this section we provide two reductions, both showing hardness

under very restricted properties.

The first reduction is from the Set Cover problem. Given a

connected bipartite graph 𝐼 = (𝑆 ∪𝑈 , 𝐸) the Set Cover problem

asks for a smallest cover 𝐶 of 𝑈 , i.e., a minimum size subset 𝐶 of 𝑆

such that every vertex in𝑈 is adjacent to at least one vertex in 𝐶 .

This problem is known to be W[2]-hard when parameterised by

the size of 𝐶 [21].

Theorem 1. EI is NP-hard, as well asW[2]-hard when parame-

terised by the solution size, even if the input graph is bipartite and

has bounded diameters.

Proof. Let 𝐼 = (𝑆 ∪ 𝑈 , 𝐸) be an instance of Set Cover. We

assume that |𝑆 |, |𝑈 | > 0 and that there is a 𝑢 ∈ 𝑈 adjacent to

all 𝑠 ∈ 𝑆 . We construct the graph 𝐺𝐼 as follows. We start from the

graph 𝐼 . For each𝑢 ∈ 𝑈 , we add𝑑𝐼 (𝑢)−1 leaves attached to𝑢, where

𝑑𝐼 (𝑢) is the degree of 𝑢 in the graph 𝐼 . For each 𝑠 ∈ 𝑆 we attach a

single vertex, with two leaves, to 𝑠 . Hence, the diameter of the graph

is at most 6. To ease the exposition, we will refer to the vertices of

𝑉 (𝐺𝐼 ) ∩ 𝑆 and 𝑉 (𝐺𝐼 ) ∩𝑈 as the vertices of 𝑆 and 𝑈 respectively.

We assign 𝑓 (𝑣) = 0 for all 𝑣 ∉ 𝑆 and 𝑓 (𝑣) = 1 for all 𝑣 ∈ 𝑆 .

By the construction of 𝐺𝐼 it follows that 0 is the strict majority.

Moreover, only the vertices of𝑈 are under illusion. Furthermore,

for each 𝑢 ∈ 𝑈 , it is sufficient that one of its neighbours belonging

in 𝑆 changes its labelling to 0 in order for 𝑢 to no longer be under

illusion. An exemplary visualisation of 𝐺𝐼 can be seen in Fig. 2.

vX1

vX1

vX1

vX2

vX2

vX2

vXk

vXk

vXk. . .

vX3

vX3

vX3

vc1

vc2

v1c1 v2c1

v1c2 v2c2

Figure 3: The graph𝐺𝜙 constructed in the proof of Theorem 2.

The white vertices have label 0, and the grey vertices have

label 1. The clauses are 𝑐1 = (𝑋1 ∨𝑋2 ∨𝑋3) and 𝑐2 = (𝑋2 ∨𝑋3 ∨
𝑋𝑘 ).

We will show that 𝐼 has a set cover 𝐶 ⊆ 𝑆 of order at most 𝑘 if

and only if there is a solution 𝑓 ′ of 𝐺𝐼 of size at most 𝑘 .

Let 𝐶 ⊂ 𝑆 be a covering of 𝑈 of size 𝑘 in 𝐼 . For every 𝑠 ∈ 𝐶 we

set 𝑓 ′ (𝑠) = 0 in𝐺𝐼 . For all other vertices 𝑣 in𝐺𝐼 we set 𝑓
′ (𝑣) = 𝑓 (𝑣).

Therefore, 𝑓 and 𝑓 ′ differ in exactly 𝑘 vertices. Further, since 𝐶 is a

covering of 𝑈 , each 𝑢 ∈ 𝑈 is adjacent to at least one 𝑠 ∈ 𝐶 whose

label was changed to 0. Therefore, no vertex in 𝐺𝐼 is under illusion

in 𝑓 ′. □

The second hardness reduction is from the Planar Monotone

3-SAT problem, a restricted variant of 3-SAT. In this variant, each

clause consists exclusively of either positive or negative literals.

Moreover, the graph admits a straight-line drawing in which all

variables lie on a horizontal line. In this representation, every posi-

tive (negative) clause is positioned in the upper (lower) half-plane.

This problem is well known to be NP-complete [17]. Similar to the

proof idea of Theorem 3 in [16], we can further assume that each

literal appears at most three times.

Theorem 2. EI is NP-hard, even if the input graph 𝐺 is restricted

to be bipartite, planar and of maximum degree 5.

Proof. Given a formula 𝜙 that is an instance of Planar Mono-

tone 3-SAT where each literal appears in at most three clauses, we

construct an instance 𝐺𝜙 of EI. For every variable 𝑋 , we add the

variable-vertices 𝑣𝑋 , 𝑣𝑋 . For every clause 𝑐 ∈ 𝜙 , we add a clause-

vertex 𝑣𝑐 . For every clause-vertex 𝑣𝑐 , we add the edge 𝑣𝑐𝑣𝑋 (𝑣𝑐𝑣𝑋
resp.) for every literal 𝑋 (𝑋 resp.) that appears in 𝑐 . Further, for ev-

ery pair of literal vertices 𝑣𝑋 , 𝑣𝑋 , we add a new vertex 𝑣𝑋 , referred

to as the controller of 𝑋 , as well as the edges 𝑣𝑋 𝑣𝑋 and 𝑣𝑋 𝑣
𝑋
. For

every clause-vertex 𝑣𝑐 , we add two leaves 𝑣
1

𝑐 and 𝑣2

𝑐 . Finally, we add

a leaf attached to the controller 𝑣𝑋 of every literal 𝑋 . Let 𝐺𝜙 be

the resulting graph. It is straightforward to see that 𝐺𝜙 is a planar

bipartite graph. Moreover, observe that, in 𝐺𝜙 , the degree of every

vertex is at most 5. Thus, 𝐺𝜙 is bipartite, planar and of maximum

degree 5. For every vertex 𝑣 = 𝑣𝑋 or 𝑣 = 𝑣
𝑋
, for every literal 𝑋 , we

assign 𝑓 (𝑣) = 1. For every other vertex 𝑣 of𝐺𝜙 , we assign 𝑓 (𝑣) = 0.

Notice that 0 is the strict majority, and that the vertices under il-

lusion are precisely the clause-vertices 𝑣𝑐 and the controllers 𝑣𝑋 .

Each of them requires at least one of their neighbours to change its

label from 1 to 0 in order to not be under illusion. A visualisation

of 𝐺𝜙 can be seen in Fig 3.

Let 𝑘 be the number of variables in 𝜙 . We will show that there

exists a solution 𝑓 ′ for 𝐺𝜙 of size at most 𝑘 if and only if 𝜙 is

satisfiable.
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If 𝜙 is satisfiable, there exists a truth assignment 𝑡 from the

variables to {True, False}. For every variable 𝑋 , we set 𝑓 ′ (𝑣𝑋 ) =
0, 𝑓 ′ (𝑣

𝑋
) = 1 if 𝑡 (𝑋 ) = True, and 𝑓 ′ (𝑣𝑋 ) = 1, 𝑓 ′ (𝑣

𝑋
) = 0 if

𝑡 (𝑋 ) = False. For all other vertices 𝑣 in𝐺𝜙 , we set 𝑓
′ (𝑣) = 𝑓 (𝑣) = 0.

In this way, 𝑓 and 𝑓 ′ differ on precisely 𝑘 vertices. For every 𝑋 , the

controller 𝑣𝑋 is not under illusion in 𝑓 ′ since the label of precisely
one of 𝑣𝑋 , 𝑣𝑋 was changed. For every clause 𝑐 , we know that 𝑐

was satisfied by 𝑡 . Hence, there is at least one variable-vertex that

neighbours 𝑣𝑐 whose label was changed and 𝑐 is not under illusion

in 𝑓 ′. These were the only vertices under illusion in 𝑓 , thus 𝑓 ′ is a
solution for 𝐺𝜙 .

Conversely, assume there exists a solution 𝑓 ′ for 𝐺𝜙 of size

exactly 𝑘 . Since no vertex is under illusion under 𝑓 ′, for every
variable 𝑋 , at least one neighbour 𝑣𝑋 or 𝑣

𝑋
of 𝑣𝑋 was relabelled.

Actually, it is exactly one of the vertices 𝑣𝑋 or 𝑣
𝑋
that was relabelled,

since there are exactly 𝑘 variables. Since 𝑓 ′ is a valid solution, every
clause is adjacent to at least one vertex that was relabelled. Thus, the

truth assignment that sets 𝑋 to True (False resp.) for each variable

𝑋 such that 𝑓 ′ (𝑣𝑋 ) = 0 (𝑓 ′ (𝑣
𝑋
) = 0 resp.), yields a satisfying truth

assignment for 𝜙 . □

5 STRUCTURAL PARAMETERS

Theorem 3. EI is solvable in FPT time parameterised by the vertex

cover number of the input graph.

Proof. Let 𝐺 = (𝑉 , 𝐸) be the input graph and 𝑓 be the initial

labelling of 𝐺 . Moreover, let vc be the vertex cover number of 𝐺

and let𝑈 ⊆ 𝑉 be a vertex cover of 𝐺 of minimum size. Recall that

𝐼 = 𝑉 \𝑈 is an independent set of𝐺 . Since |𝑈 | ≤ vc, we may guess

an optimal labelling 𝑓 ′ |𝑈 of 𝐺 such that no vertex of 𝐼 is under

illusion by 𝑓 ′ |𝑈 (there are at most 2
vc
such labellings). The labelling

𝑓 ′ |𝑈 is optimal in the sense that it differs from 𝑓 on a minimum

number of vertices. All that remains to be done is to extend 𝑓 ′ |𝑈
into an optimal solution 𝑓 ′ of𝐺 by making sure that 𝑓 ′ induces no
illusion on the vertices of 𝑈 .

To achieve this, we first arrange the vertices of 𝐼 into sets ac-

cording to their neighbourhoods in 𝑈 . In particular, we partition

𝐼 into the sets 𝐼1, . . . , 𝐼𝑝 , for 𝑝 ≤ 2
vc
, such that for every 𝑖 ∈ [𝑝],

the vertices of 𝐼𝑖 are twins, i.e., they have the same neighbourhood.

Formally, for every 𝑢, 𝑣 ∈ 𝐼 , we have that 𝑢 ∈ 𝐼𝑖 and 𝑣 ∈ 𝐼𝑖 , for

some 𝑖 ∈ [𝑝], if and only if 𝑁𝐺 (𝑢) = 𝑁𝐺 (𝑣). Then we compute the

exact number of vertices of 𝐼𝑖 , for each 𝑖 ∈ [𝑝], whose label must

be changed in order for the resulting labelling 𝑓 ′ to be a solution

of EI by modelling this problem as an ILP on bounded number of

variables.

Variables

𝑥𝑖 𝑖 ∈ [𝑝] number of vertices of 𝐼𝑖 labelled 1 by 𝑓 ′

Constants

𝑎(𝑖) 𝑖 ∈ [𝑝] number of vertices of 𝐼𝑖
labelled 1 by 𝑓

𝑛(𝑢) 𝑢 ∈ 𝑈
number of neighbours of 𝑢

in𝑈 labelled 1 by 𝑓 ′ |𝑈
𝑑 (𝑢) 𝑢 ∈ 𝑈 degree of 𝑢 in 𝐺

𝑖 (𝑢, 𝑖) 𝑢 ∈ 𝑈 , 𝑖 ∈ [𝑝] set to 0 if 𝑢 ∉ 𝑁 (𝑣),∀𝑣 ∈ 𝐼𝑖 ,
and to 1 otherwise

Objective

max

∑︁
𝑖∈[𝑝 ]

𝑥𝑖 (1)

Constraints

𝑛(𝑢) + 𝑖 (𝑢, 𝑖) · 𝑥𝑖 ≤ 𝑑 (𝑢)/2 ∀𝑖 ∈ [𝑝], 𝑢 ∈ 𝑈 (2)

𝑥𝑖 ≤ 𝑎(𝑖) 𝑖 ∈ [𝑝] (3)

The variable 𝑥𝑖 represents the number of vertices of 𝐼𝑖 that were

labelled 1 by 𝑓 and whose label will remain unchanged in 𝑓 ′. Con-
straint 3 makes sure that there are not more vertices in 𝐼𝑖 labelled

1 by 𝑓 ′ than they were by 𝑓 . Constraint 2 ensures that no vertex

𝑢 ∈ 𝑈 is under illusion by 𝑓 ′. Since the model has 𝑝 ≤ 2
vc

variables,

we can and obtain the 𝑥𝑖s’ in FPT time, parameterised by vc (by
running the Lenstra algorithm [33]). Finally, note that the 𝑥𝑖s’ are

enough to compute a solution 𝑓 ′. Indeed, it is sufficient to change

the label of any |𝐼𝑖 | − 𝑥𝑖 vertices of 𝐼𝑖 , for each 𝑖 ∈ [𝑝], from 1 to 0

in order to extend 𝑓 ′ |𝑈 into 𝑓 ′. This is immediate by the definition

of the 𝐼𝑖s’. □

From Theorem 1 we already know that EI isW[2]-hard if param-

eterised by the solution size. However, it is in XP parameterised

by the solution size 𝑘 , since trying all possible solutions of size

at most 𝑘 is bounded by O(|𝑉 |𝑘 ). Looking for other promising

parameters, and in view of Corollary 1, one could hope for the exis-

tence of an FPT algorithm for EI parameterised by the treewidth

of the input graph. In the following theorem, we show that this is

highly unlikely. We provide a reduction from the Minimum Max-

imum Outdegree (MMO for short) problem. In this problem, we

are given a graph 𝐺 = (𝑉 , 𝐸), an edge weighting 𝑤 : 𝐸 → N and

a bound 𝑅 ∈ N (both 𝑤 and 𝑅 are given in unary). The question

is to find an edge orientation 𝐸′ of 𝐸, such that for every 𝑣 ∈ 𝑉 ,

the weighted outdegree of 𝑣 in 𝐺 ′ = (𝑉 , 𝐸′) is at most 𝑅. It was

recently shown that MMO is XNLP-hard when parameterised by

the pathwidth of the input graph [7]. This means that MMO is

𝑊 [𝑡]-hard for every 𝑡 ∈ Z≥1. It follows from our reduction that:

Theorem 4. EI is XNLP-hard parameterised by the pathwidth of

the input graph.

Proof. Let 𝑥1, 𝑥2 be two vertices with label 1. A switch structure

between the vertices 𝑥1 and 𝑥2 is a vertex 𝑦 with label 0 that is

incident to both of them and has an additional leaf attached to 𝑦

labelled 0. Notice that 𝑦 is under illusion, and in order for this to

change at least one of 𝑥1, 𝑥2 must be relabelled. A chessboard of

size 𝑘 is a graph with 4𝑘 vertices labelled 1, arranged on a 2𝑘×2 grid

with a switch structure between all vertex pairs having aManhattan

distance of 1 on the grid. We denote by grid vertices the vertices of

a chessboard that also belong to the underlying grid. Because of

the switch structures, for every pair 𝑢, 𝑣 of adjacent grid vertices,

either 𝑢 or 𝑣 (or both) must be relabelled to eliminate all illusions

in the chessboard. Therefore, a chessboard of size 𝑘 requires at

least 2𝑘 label changes. Further, 2𝑘 label changes are enough if and

only if all relabelled vertices have an even distance to each other

on the underlying grid. Note that the pathwidth of a chessboard

is constant, since traversing the grid from left to right yields a

decomposition with bags of constant size.

Now let𝐺 = (𝑉 , 𝐸),𝑤 ,𝑅 be an instance of MMO. Slightly abusing

the notation, we denote the weighted degree of 𝑣 in 𝐺 by 𝑑𝐺 (𝑣),
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Figure 4: A chessboard structure between vertices 𝑢 and 𝑣 ,

used in the proof of Theorem 4. The grey vertices have label

1, and the others label 0.

for every 𝑣 ∈ 𝑉 . If 𝐸′ is an edge orientation of 𝐸 and 𝐺 ′ = (𝑉 , 𝐸′)
is the corresponding graph, we denote by 𝑑−

𝐺 ′ (𝑣) (𝑑+𝐺 ′ (𝑣) resp.) the
weighted indegree (outdegree resp.) of 𝑣 in 𝐺 ′

. Further, we denote

by𝑊 the sum of edge weights in 𝐺 . Observe that for every edge

orientation 𝐸′, and for any 𝑣 ∈ 𝑉 , we have that 𝑑+
𝐺 ′ (𝑣) ≤ 𝑅 if and

only if 𝑑−
𝐺 ′ (𝑣) ≥ 𝑑𝐺 (𝑣) − 𝑅.

We construct a new graph𝐺∗
with vertex labels in the following

way. First, we add all vertices in𝑉 to𝐺∗
and label them with 0. For

each 𝑒 = 𝑢𝑣 ∈ 𝐸, we replace 𝑒 with a chessboard C𝑒 of size 𝑤 (𝑒).
For 𝑖 ∈ [2] and 𝑗 ∈ [2𝑘], let 𝑧𝑖, 𝑗 be the grid vertex of C𝑒 that lies

on the 𝑖𝑡ℎ row and 𝑗𝑡ℎ column in the underlying grid of C𝑒 . Then,
we connect 𝑢 to 𝑧1,1, 𝑧1,3, . . . , 𝑧1,2𝑘−1

and 𝑣 to 𝑧2,1, 𝑧2,3, . . . , 𝑧2,2𝑘−1
.

This construction is illustrated in Fig. 4. For every 𝑣 ∈ 𝑉 (𝐺), we
add leaves attached to 𝑣 such that the demand of 𝑣 , i.e., difference

between |{𝑢 ∈ 𝑁 (𝑣) : 𝑓 (𝑢) = 1}| and |{𝑢 ∈ 𝑁 (𝑣) : 𝑓 (𝑢) = 0}|,
in𝐺∗

becomes precisely 𝑑𝐺 (𝑣) −𝑅. This can be achieved by adding

leaves labelled 1 (0 resp.) as long as the demand of 𝑣 is smaller

(larger resp.) than 𝑑𝐺 (𝑣) −𝑅. Since every added leaf can change the

demand by at most one, and two leaves of the same type change

the demand of 𝑣 by at least two, this procedure can be applied to set

an arbitrary demand for 𝑣 . Adding the chessboards and the leaves

increases the pathwidth of the resulting graph only by a constant.

Further, the number of vertices we added is linear in𝑊 +𝑅. Since𝑤
and 𝑅 were given in unary, the size of𝐺∗

is polynomial in (𝐺,𝑤, 𝑅).
Wewill now show that there exists a solution for EI in𝐺∗

, labelled

as described above, of size 2𝑊 if and only if there exists a solution

for MMO for 𝐺 = (𝑉 , 𝐸),𝑤, 𝑅.

u

v

. . .

. . .

. . .

Figure 5: The same structure as in Fig. 4. The grey vertices

were relabelled with label 0. This corresponds to the edge

𝑢𝑣 ∈ 𝐸 (𝐺) being directed from 𝑢 to 𝑣 in 𝐺∗
. The only other

valid relabelling with size 2𝑤 (𝑢, 𝑣) is the reversed relabelling.

Assume there exists a solution 𝐸′ for MMO in 𝐺 = (𝑉 , 𝐸), 𝑤, 𝑅.

For every (𝑢, 𝑣) ∈ 𝐸′, we relabel the vertices of C𝑢𝑣 that are adjacent
to 𝑣 . Then, we also relabel the grid vertices of C(𝑢𝑣) that are not
adjacent to 𝑢 and were not relabelled in the previous step. In this

manner, we relabelled precisely 2𝑤 (𝑢, 𝑣) of the chessboard vertices

that replaced the edge 𝑢𝑣 . In total, we relabel 2𝑊 vertices. See

Fig. 5 for such a relabelling. We claim that after this relabelling, no

vertex in 𝐺∗
remains under illusion. We have already shown that

the relabelling of the chessboards satisfies every internal vertex of

the chessboard. Further, all leaves that were added to adjust the

demand for the original vertices have only one neighbour with the

label 0, therefore they were not under illusion from the start. Thus,

the only vertices left to verify, are those that came from 𝑉 (𝐺). Let
us consider such a vertex 𝑣 . Since 𝐸′ is a valid solution of MMO,

we have that 𝑑−
𝐺 ′ (𝑣) ≥ 𝑑𝐺 (𝑣) − 𝑅. Therefore, 𝑣 has at least 𝑑 (𝑣) − 𝑅

relabelled vertices as neighbours, and these relabelled neighbours

are precisely those chessboard vertices that correspond to incoming

edges of 𝑣 in 𝐺 ′
. Since this was the demand of 𝑣 in 𝐺∗

, it follows

that 𝑣 is not under illusion in the relabelled graph.

Next, assume that there exists a solution 𝑓 ∗ of 𝐺∗
of size 2𝑊 .

For every edge 𝑒 ∈ 𝐸, we have that C𝑒 requires at least 2𝑤 (𝑒) rela-
bellings. Since the total sum of sizes among all included chessboards

is𝑊 , this means that every chessboard is labelled optimally. There-

fore, for every edge 𝑒 = 𝑢𝑣 ∈ 𝐸, either all neighbours of 𝑢 in C𝑢𝑣 ,
or all neighbours of 𝑣 in C𝑢𝑣 , are relabelled. We add (𝑢, 𝑣) to 𝐸′ if
all neighbours of 𝑣 are relabelled, otherwise, we add (𝑣,𝑢) to 𝐸′.
Then, we set 𝐺 ′ = (𝑉 , 𝐸′). Now, for every 𝑣 ∈ 𝑉 (𝐺 ′), we have that
𝑑−
𝐺 ′ (𝑣) is equal to the number of relabelled neighbours of 𝑣 , which

is at least 𝑑𝐺 (𝑣) − 𝑅. Equivalently, 𝑑+
𝐺 ′ (𝑣) ≤ 𝑅 for every 𝑣 ∈ 𝑉 (𝐺 ′),

and the edge orientation 𝐸′ is a valid solution for 𝐺,𝑤, 𝑅. □

6 A PTAS FOR PLANAR GRAPHS

In this section, we use the classic layering technique introduced

by Baker [3] for designing approximation algorithms on planar

graphs. On a high level, we break the input graph into layers to

solve the problem optimally in each layer. Then we take a union of

these solutions to return a feasible solution for the original input.

Our algorithm computes this solution on several layered decompo-

sitions and returns the minimum among them. In order to solve

the problem in each layer, we run the XP algorithm (parameterised

by the treewidth) that solves the following generalisation of the EI

problem, which follows from the upcoming Theorem 5.

Subset Elimininating Illusion

Input: A graph 𝐺 = (𝑉 , 𝐸), a set 𝑆 ⊆ 𝑉 , a labelling 𝑓 : 𝑉 →
{0, 1} and an integer 𝑘 ≥ 1.

Task: Is there a labelling 𝑓 ′ : 𝑉 → {0, 1} such that 𝑓 ′ induces
no illusion on the vertices of 𝑆 and |{𝑣 ∈ 𝑉 : 𝑓 (𝑣) ≠ 𝑓 ′ (𝑣)}| ≤ 𝑘 .

Before we proceed with the next theorem, allow us to introduce

some additional notation. We denote the set {0, . . . 𝑘} by [𝑘]. When

considering the Subset Elimininating Illusion problem, let 𝜇 :

𝑆 → [𝑀] be a function that is equal to the minimum number of

vertices adjacent to 𝑣 that must be relabelled such that 𝑣 is not

under illusion any more, for every vertex 𝑣 ∈ 𝑆 . We will also extend

this function such that 𝜇 (𝑣) = 0 for every 𝑣 ∈ 𝑉 \ 𝑆 . We say that 𝜇

is the demand function and denote𝑀 as the maximum demand.

Theorem 5. There exists an FPTalgorithm for Subset Elimin-

inating Illusion parameterised by the treewidth tw(𝐺) of the input
graph and the maximum demand𝑀 , with running time𝑀O(tw(𝐺 ) ) ·
𝑛O(1)

.
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Proof. Let (𝐺, 𝑆, 𝑓 ) be an instance of Subset Elimininating

Illusion and let T = (𝑇, {𝑋𝑡 }𝑡 ∈𝑉 (𝑇 ) ) be a nice tree decomposition

of𝐺 , with𝑇 being rooted at a leaf 𝑟 ∈ 𝑉 (𝑇 ). For some 𝑡 ∈ 𝑉 (𝑇 ), we
define the subgraph 𝐺𝑡 of 𝐺 to be the graph induced by the union

of bags contained in the subtree of 𝑇 rooted at 𝑡 . For instance, the

induced graph 𝐺𝑟 with respect to the subtree rooted at the root

node 𝑟 is precisely 𝐺 . We use dynamic programming on T to find

the minimum number of vertices in 𝑉 (𝐺) whose label is required
to change, such that no vertex in 𝑆 remains under illusion. Before

we describe how the dynamic step is performed on each type of

node in the tree decomposition, we introduce some notation. We

use vectors 𝐷𝑡 ∈ [𝑀] |𝑋𝑡 |
to express the remaining demand for

vertices in 𝑋𝑡 . In particular, for every 𝑣 ∈ 𝑋𝑡 ∩ 𝑆 , the value of

𝐷𝑡 [𝑣] is the number of vertices that still need to be relabelled in

the neighbourhood of 𝑣 in order to bring 𝑣 out of illusion. Also, for

every 𝑣 ∈ 𝑋𝑡 \ 𝑆 , we set 𝐷𝑡 [𝑣] = 0. We also define some operations

on these vectors. We denote by𝐷𝑡 +𝛿𝑣 the operation where for each
𝑤 ∈ (𝑁 (𝑣) ∩𝑋𝑡 ) ∩𝑆 , the entry of 𝐷𝑡 [𝑤] is increased by one and for
each𝑤 ∈ (𝑁 (𝑣) ∩ 𝑋𝑡 ) \ 𝑆 , the entry of 𝐷𝑡 [𝑤] remains unchanged.

Furthermore, we write 𝐷𝑡 |𝐷𝑖
for the restriction of the vector 𝐷𝑡 to

𝐷𝑖 . That is, 𝐷𝑡 |𝐷𝑖
is a vector whose entries for the vertices 𝑋𝑡 ∩𝑋𝑖

is the same as 𝐷𝑡 .Finally, we use 𝐷
𝑣=𝑎

to represent a vector with

an entry 𝐷 [𝑣] equal to 𝑎.
We define𝑊 [𝑡, 𝐷𝑡 ,𝑈 ] to be the minimum number of relabellings

such that:

(1) the labels of vertices in 𝑈 ⊆ 𝑋𝑡 are relabelled,

(2) the labels of vertices in 𝑋𝑡 \𝑈 are not relabelled,

(3) no vertex of (𝑉 (𝐺𝑡 ) ∩ 𝑆) \ 𝑋𝑡 is under illusion and

(4) vertices 𝑣 ∈ 𝑋𝑡 have a remaining demand of at most 𝐷𝑡 [𝑣].

From this definition, it follows that the minimum number of rela-

bellings required is exactly𝑊 [𝑟, ∅, ∅]. We now proceed to describe

the recursive formulas for the different node types of T .

Leaf node. A leaf node ℓ ≠ 𝑟 corresponds to an empty graph. Thus

𝑊 [ℓ, 𝐷ℓ ,𝑈 ] = 0, as no vertex can be under illusion. Therefore, leaf

nodes serve as our base case.

Introduce node. Let 𝑣 be the vertex that has been introduced in

node 𝑡 and let node 𝑖 be the only child of 𝑡 . If 𝐷𝑡 [𝑣] < 𝜇 (𝑣) −
|𝑁 (𝑣) ∩ 𝑈 |, we set𝑊 [𝑡, 𝐷𝑡 ,𝑈 ] = ∞ since this violates property

4 as by definition of T the neighbourhood of 𝑣 that has been in-

troduced so far must be contained in 𝑋𝑡 . Otherwise, we distin-

guish between two cases. If 𝑣 ∈ 𝑈 , then relabelling 𝑣 decreases

the remaining demand for all of its adjacent vertices. Thus, 𝑣 re-

laxes the remaining demand vector 𝐷𝑡 by one for all vertices in

the neighbourhood of 𝑣 introduced so far. We can therefore cal-

culate 𝑊 [𝑡, 𝐷𝑡 ,𝑈 ] with the help of the child 𝑖 and the relaxed

vector:𝑊 [𝑡, 𝐷𝑡 ,𝑈 ] = 𝑊 [𝑖, 𝐷𝑡 |𝐷𝑖
+ 𝛿𝑣,𝑈 \ {𝑣}] + 1.If 𝑣 ∉ 𝑈 , we

can look up the required number of relabelling in the child node,

since in this case 𝑈 ⊆ 𝑋𝑖 by the definition of a nice tree decom-

position:𝑊 [𝑡, 𝐷𝑡 ,𝑈 ] =𝑊 [𝑖, 𝐷𝑡 |𝐷𝑖
,𝑈 ] .To process a specific node

of type introduced, we need to consider each possible vector 𝐷𝑡

and each possible subset 𝑈 ⊆ 𝑋𝑡 . For a given 𝐷𝑡 and 𝑈 we can

look up the solution in polynomial time in the size of the bag 𝑋𝑡 .

This yields an overall runtime of O((𝑀 + 1) |𝑋𝑡 | · 2
|𝑋𝑡 | · |𝑋𝑡 |𝑐 ) ⊆

O(tw(𝐺)𝑐 · (𝑀 +1)tw(𝐺 ) · 2tw(𝐺 ) ), where 𝑐 is a constant, to process
a node of type introduce.

Forget node. Let 𝑣 be the vertex that has been forgotten at node 𝑡

with child node 𝑖 . Since 𝑣 is removed from𝑋𝑡 , we need to guarantee

that property 3 holds, i.e., the remaining demand of 𝑣 must be 0.

If 𝑣 ∉ 𝑆 , then we are done, as in this case 𝜇 (𝑣) = 𝐷𝑡 [𝑣] = 0 by

definition. So, we may assume that 𝑣 ∈ 𝑆 . For a vector 𝐷𝑣=0

𝑡 , the

vertex 𝑣 can either be in the set of vertices 𝑈 that are relabelled

or not. We take the minimum of all these cases: 𝑊 [𝑡, 𝐷𝑡 ,𝑈 ] =

min{𝑊 [𝑖, 𝐷𝑣=0

𝑡 ,𝑈 ],𝑊 [𝑖, 𝐷𝑣=0

𝑡 ,𝑈 ∪ {𝑣}}. The processing time of a

node of type forget is analogous to the processing time of a node of

type introduce, resulting in the same runtime of O(tw(𝐺)𝑐 · (𝑀 +
1)tw(𝐺 ) · 2

tw(𝐺 ) ), where 𝑐 is a constant.
Join node. Let 𝑡 be a join node with children 𝑖 and 𝑗 . Node 𝑡

merges two previously disjoint subgraphs 𝐺𝑖 and 𝐺 𝑗 . Consider a

vertex 𝑣 ∈ 𝑋𝑡 = 𝑋𝑖 = 𝑋 𝑗 . The vector 𝐷𝑡 [𝑣] describes the remain-

ing demand of 𝑣 by the property 4. Thus, at least 𝜇 (𝑣) − 𝐷𝑡 [𝑣]
vertices have been relabelled in the neighbourhood of 𝑣 . These

relabelled vertices in the neighbourhood of 𝑣 can either be al-

ready forgotten in 𝐺𝑖 or 𝐺 𝑗 or still remain in 𝑈 ⊆ 𝑋𝑡 . Therefore,

𝜇 (𝑣) −𝐷𝑡 [𝑣] = (𝜇 (𝑣) −𝐷𝑖 [𝑣]) + (𝜇 (𝑣) −𝐷 𝑗 [𝑣]) − |𝑁 (𝑣) ∩𝑈 | from
which follows that 𝐷𝑖 [𝑣] + 𝐷 𝑗 [𝑣] = 𝐷𝑡 [𝑣] + 𝜇 (𝑣) − |𝑁 (𝑣) ∩ 𝑈 |,
where we need to subtract |𝑁 (𝑣) ∩𝑈 | since these vertices are ac-
counted for in 𝜇 (𝑣) − 𝐷𝑖 [𝑣] and 𝜇 (𝑣) − 𝐷 𝑗 [𝑣]. To determine the

minimum number of relabellings 𝑊 [𝑡, 𝐷𝑡 ,𝑈 ], we must identify

combinations 𝐶𝑣 of values (𝑎𝑖 , 𝑏 𝑗 ) satisfying 𝑎𝑖 + 𝑏 𝑗 = 𝐷𝑡 [𝑣] +
𝜇 (𝑣) − |𝑁 (𝑣) ∩ 𝑈 | for each vertex 𝑣 ∈ 𝑋𝑡 . These pairs represent

distinct valid pairings of vectors 𝐷𝑖 and 𝐷 𝑗 for the specific entry

𝑣 . For every valid combination in 𝐶𝑣 , we can pair it with all other

valid combinations 𝐶𝑢 of vertices 𝑢 ∈ 𝑋𝑡 \ {𝑣} to generate vector

pairs (𝐷′
𝑖
, 𝐷′

𝑗
) ∈ 𝐶 (𝐷𝑡 ) that are valid for all vertices 𝑣 ∈ 𝑋𝑡 . Using

𝐶𝑡 , we can then calculate𝑊 [𝑡, 𝐷𝑡 ,𝑈 ] with the following equation:

𝑊 [𝑡, 𝐷𝑡 ,𝑈 ] = min(𝐷 ′
𝑖
,𝐷 ′

𝑗
) ∈𝐶 (𝐷𝑡 ) {𝑊 [𝑖, 𝐷′

𝑖
,𝑈 ] +𝑊 [ 𝑗, 𝐷′

𝑗
,𝑈 ] − |𝑈 |}.

To compute a join node, we need to calculate 𝐶𝑣 for each 𝑣 ∈ 𝑋𝑡

for a given 𝐷𝑡 and𝑈 . This can be done in O(𝑀) time. To construct

a single vector pair in 𝐶 (𝐷𝑡 ), we need O(|𝑋𝑡 |) time. In total, we

have |𝐶 (𝐷𝑡 ) | ∈ O((𝑀 + 1) |𝑋𝑡 | ) many valid vectors that need to be

checked, yielding a processing time of O((𝑀 + 1) |𝑋𝑡 | · 2
|𝑋𝑡 | · (𝑀 +

1) |𝑋𝑡 | ·𝑀 · |𝑋𝑡 |) ⊆ O((𝑀 + 1)2 tw(𝐺 )+1 · 2
tw(𝐺 ) · tw(𝐺)𝑐 ), for some

constant 𝑐 .

The number of nodes in 𝑉 (𝑇 ) is in O(tw(𝐺) · 𝑛), where 𝑛 =

|𝑉 (𝐺) |. So the runtime of our algorithm is O((𝑀 + 1)2 tw(𝐺 )+1 ·
2

tw(𝐺 ) · tw(𝐺)𝑐 · 𝑛), for some constant 𝑐 . □

Since the maximum demand𝑀 is a lower bound for the solution

size 𝑘 , which is upper bounded by the number of vertices 𝑛 in the

input graph, we obtain the following.

Corollary 3. There exists an FPT algorithm for Subset Elimin-

inating Illusion parameterised by the treewidth tw of the input

graph plus the solution size. This implies an XP algorithm for the

same problem parameterised just by tw.

We are now ready to present the PTAS for planar graphs. A

description of our algorithm is given in Algorithm 1.

Theorem 6. For any given 𝜀 > 0, there exists an approximation

algorithm which computes the solution of the EI problem on a planar

graph in O(𝑛
1

𝜀 ) time and computes a solution which is (1 + 𝜀)-times

the optimum.
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Algorithm 1: PTAS on planar graphs

Input: 𝐺 , 𝑓 , 𝜀

𝑘 = 4/𝜀;
Find the outerplanar layers of the vertices;

for 𝑖 = 0, . . . , 𝑘 − 1 do

Find the components 𝐺𝑖
1
,𝐺𝑖

2
, . . . , of 𝐺 , where 𝐺𝑖

𝑗

contains vertices on the layers from 𝑖 + 𝑗 (𝑘 + 1) to
𝑖 + ( 𝑗 + 1) (𝑘 + 1) + 1;

for 𝑗 = 0, 1, . . . , do

Compute 𝐴𝑖
𝑗
, the solution of Subset Elimininating

Illusion on 𝐺𝑖
𝑗
setting 𝑆 = 𝐺

𝑖
𝑗 where 𝐺

𝑖
𝑗 contains

vertices on the layers from 𝑖 + 𝑗 (𝑘 + 1) + 1 to

𝑖 + ( 𝑗 + 1) (𝑘 + 1);
𝐴𝑖 = ∪𝑗𝐴

𝑖
𝑗
;

end

end

Let 𝐴 be the minimum solution among {𝐴0, 𝐴1, . . . , 𝐴𝑘−1};
return 𝐴

Proof. For given 𝜀 > 0, let 𝑘 be the nearest positive integer

of
4

𝜀 . Consider a planar embedding of the input graph 𝐺 = (𝑉 , 𝐸).
We assign a layer to each vertex according to its depth from the

outerface, starting from layer zero for the vertices on the outer-

face. Clearly, the vertices of layer ℓ are on the outerface of the

residual graph obtained after deleting the vertices of the layers

{0, 1, 2, . . . , ℓ − 1}. Clearly, each𝐺𝑖
𝑗
𝐺𝑖
𝑗
, as defined in Algorithm 1, is

at most a 𝑘-outerplanar graph. That is, for each vertex 𝑣 of𝐺𝑖
𝑗
, there

exists a sequence of at most 𝑘 consecutive layers of 𝐺 such that 𝑣

belongs in the 𝑘𝑡ℎ such layer. It is known that every 𝑘-outerplanar

graph has treewidth bounded by 3𝑘 − 1 [6]. It follows from Corol-

lary 3 that there exists an algorithm which runs in 𝑛O(𝑘 ) · 𝑛O(1)

time and solves Subset Elimininating Illusion optimally on 𝐺𝑖
𝑗

for each 𝑖, 𝑗 considering 𝑆 = 𝐺
𝑖
𝑗 as defined in Algorithm 1. For every

𝑖 , we join the solutions we computed for the 𝐺𝑖
𝑗
’s. We return the

solution which is minimum among all 𝑖’s. Hence, the running time

of this algorithm is O(𝑛
1

𝜀 ).
Let 𝐴𝑖

𝑗
be the solution of the problem on 𝐺𝑖

𝑗
for each 𝑖, 𝑗 using

Corollary 3. Let 𝐺𝑖
𝑗
⊂ 𝐺𝑖

𝑗
be the induced subgraph on the vertices

of layers 𝑖 + 𝑗 (𝑘 + 1) + 2 to 𝑖 + ( 𝑗 + 1) (𝑘 + 1) − 1. Let 𝐴
𝑖
𝑗 = 𝐴𝑖

𝑗
∩𝐺𝑖

𝑗
.

Let 𝑆 be the minimum set of vertices that must be relabelled to

eliminate all the illusions in 𝐺 . Let 𝑆
𝑖
𝑗 = 𝑆 ∩𝐺𝑖

𝑗
. Clearly, 𝐴

𝑖
𝑗 = 𝑆

𝑖
𝑗 .

Let𝑉 𝑖
𝑗
⊂ 𝑉 be the vertices on layers 𝑖+ 𝑗 (𝑘+1) and 𝑖+ 𝑗 (𝑘+1)+1. Let

𝑆𝑖
𝑗
= 𝑆 ∩𝑉 𝑖

𝑗
. Let 𝑆𝑖 =

⋃
𝑗 𝑆

𝑖
𝑗
. Observe that 𝑆

𝑖
𝑗 and 𝑆

𝑖
are disjoint and∑𝑘

𝑖 |𝑆𝑖 | = 2|𝑆 |. Hence, there exists one 𝑖∗ such that |𝑆𝑖∗ | ≤ 2|𝑆 |/𝑘 .
Let 𝐴 =

⋃
𝑗 𝐴

𝑖∗
𝑗
be the union of the solution of the 𝐺𝑖

𝑗
’s. Then, 𝐴 is

a potential candidate set of vertices for relabelling for the graph

𝐺 , as for a fixed 𝑖 we get that the 𝐺𝑖
𝑗
’s cover the entire graph 𝐺 .

Let, 𝐴 𝑗 = 𝐴 ∩𝑉 𝑖∗
𝑗

be the output of the algorithm restricted on the

vertices on layers 𝑖∗ + 𝑗 (𝑘 + 1) and 𝑖∗ + 𝑗 (𝑘 + 1) + 1.

We claim that for every 𝑗 , we have that |𝐴 𝑗 | ≤ 2|𝑆𝑖∗
𝑗
|. Indeed, the

set 𝑆𝑖
∗
𝑗
contains the subset of the optimum solution restricted to

the vertices on layers 𝑖∗ + 𝑗 (𝑘 + 1) and 𝑖∗ + 𝑗 (𝑘 + 1) + 1. Hence, 𝑆𝑖
∗
𝑗

can be seen as the union of two sets 𝑆𝑖
∗
𝑗
and 𝑆𝑖

∗
𝑗 ′ where 𝑆

𝑖∗
𝑗
contains

the vertices on layers 𝑖∗ + 𝑗 (𝑘 + 1) and 𝑆𝑖∗
𝑗 ′ contains the vertices on

layers 𝑖∗ + 𝑗 (𝑘 + 1) + 1. Moreover, the set 𝐴 𝑗 can be seen as a union

of four sets; 𝐴𝑖∗
𝑗
, 𝐴𝑖∗

𝑗 ′ , 𝐴
∗
𝑗
and 𝐴∗

𝑗 ′ where

• 𝐴𝑖∗
𝑗
contains vertices from the layer 𝑖∗ + 𝑗 (𝑘 + 1) that appear

in the solution of the piece 𝐺𝑖∗
𝑗−1

; and

• 𝐴𝑖∗
𝑗 ′ contains vertices from the layer 𝑖∗ + 𝑗 (𝑘 + 1) + 1 that

appear in the solution of the piece 𝐺𝑖∗
𝑗
; and

• 𝐴∗
𝑗
contains the vertices from the layer 𝑖∗ + 𝑗 (𝑘 + 1) that

appear in the solution of the piece 𝐺𝑖∗
𝑗
; and

• 𝐴∗
𝑗 ′ contains the vertices from the layer 𝑖∗ + 𝑗 (𝑘 + 1) + 1 that

appear in the solution of the piece 𝐺𝑖∗
𝑗−1

.

Now, neighbours of a vertex at some layer 𝑖 can only be present in

layers 𝑖 − 1, 𝑖 and 𝑖 + 1. Hence, vertices of 𝐴𝑖∗
𝑗
are essential for the

solution of 𝐺𝑖∗
𝑗−1

and vertices of 𝐴∗
𝑗
are essential for the solution of

𝐺𝑖∗
𝑗
. Thus, |𝐴∗

𝑗
∪ 𝐴𝑖∗

𝑗
| ≤ 2|𝑆𝑖∗

𝑗
|. Following a similar argument, we

can show that |𝐴∗
𝑗 ′ ∪𝐴𝑖∗

𝑗 ′ | ≤ 2|𝑆𝑖∗
𝑗 ′ |. Together, these two inequalities

imply that |𝐴 𝑗 | ≤ 2|𝑆𝑖∗
𝑗
|.

To finish the proof, it suffices to set 𝑘 to be 4/𝜀. As discussed
above, a solution using our algorithm is a feasible solution for the

problem. Consider the solution 𝐴 which is the minimum among

different choices of 𝑖 . It holds that |𝐴| =
∑

𝑗 |𝐴𝑖∗
𝑗
| + ∑

𝑗 |𝐴 𝑗 | ≤
|𝑆 | + 4|𝑆 |/𝑘 = (1 + 𝜀) |𝑆 |. Hence the theorem. □

7 CONCLUSION

In this paper, we initiated the algorithmic study of the EI problem.

The main takeaway message is that the problem is computation-

ally hard. Thus some compromises have to be made in order to

solve it efficiently. In this work, we decided to focus on solutions

whose correctness is theoretically guaranteed. This leaves the more

heuristic-oriented approach largely untouched (and highly moti-

vated).
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