
Changing the Rules of the Game:
Reasoning about Dynamic Phenomena in Multi-Agent Systems

AAAI Track

Rustam Galimullin
University of Bergen
Bergen, Norway

rustam.galimullin@uib.no

Maksim Gladyshev
Utrecht University

Utrecht, The Netherlands
m.gladyshev@uu.nl

Munyque Mittelmann
University of Naples Federico II

Naples, Italy
munyque.mittelmann@unina.it

Nima Motamed
Utrecht University

Utrecht, The Netherlands
n.motamed@uu.nl

ABSTRACT
The design and application of multi-agent systems (MAS) require
reasoning about the effects of modifications on their underlying
structure. In particular, such changes may impact the satisfaction of
system specifications and the strategic abilities of their autonomous
components. In this paper, we are concerned with the problem of
verifying and synthesising modifications (or updates) of MAS. We
propose an extension of the Alternating-Time Temporal Logic (ATL)
that enables reasoning about the dynamics of model change, called
the Logic for ATL Model Building (LAMB). We show how LAMB
can express various intuitions and ideas about the dynamics of
MAS, from normative updates to mechanism design. As the main
technical result, we prove that, while being strictly more expressive
than ATL, LAMB enjoys a P-complete model-checking procedure.

KEYWORDS
Strategy Logics; Model Change; Formal Verification

ACM Reference Format:
Rustam Galimullin, Maksim Gladyshev, Munyque Mittelmann, and Nima
Motamed. 2025. Changing the Rules of the Game: Reasoning about Dynamic
Phenomena in Multi-Agent Systems: AAAI Track. In Proc. of the 24th Inter-
national Conference on Autonomous Agents and Multiagent Systems (AAMAS
2025), Detroit, Michigan, USA, May 19 – 23, 2025, IFAAMAS, 10 pages.

1 INTRODUCTION
Mechanism Design is a subfield of game theory concerned with the
design of mathematical structures (i.e. mechanisms) describing the
interaction of strategic agents that achieve desirable economic prop-
erties under the assumption of rational behavior [67]. Although it
originated in economics, mechanism design provides an important
foundation for the creation and analysis of multi-agent systems
(MAS) [27, 70]. In numerous situations, the protocols and insti-
tutions describing interactions have already been designed and

This work is licensed under a Creative Commons Attribution Inter-
national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems
(www.ifaamas.org).

implemented. When those do not comply with the designer’s ob-
jective (i.e. the economic properties) their complete redesign may
not be feasible. For instance, a university with a selection proce-
dure seen as unfair, would avoid implementing an entirely new
procedure, but could be willing to adjust the existing one.

Although logic-based approaches have been widely used for the
verification [25] and synthesis [28] of MAS, most research focuses
on static or parametrised models and does not capture the dynamics
of model change. One of the classic static approaches in the field
is the Alternating-time Temporal Logic (ATL) [11]. ATL expresses
conditions on the strategic abilities of agents interacting in a MAS,
represented by a concurrent game model (CGM). In this paper, we
are concerned with the problem of reasoning about the effects of
modifications on CGMs. To tackle the problem, we extend ATL in
two directions that have not been considered in the literature. First,
we augment ATL with nominals and hybrid logic operators [13].
The resulting logic is called Hybrid ATL (HATL). HATL allows us to
verify properties at states named by a given nominal, which cannot
be captured by ATL. Second, we propose the Logic for ATL Model
Building (LAMB), which enhances HATL with update operators
that describe explicit modular modifications in the model.

We define three fundamental update operators in LAMB. First,
we can change the valuation of some propositional variable in a
particular state to the valuation of a given formula. Second, we can
switch the transition from one state to another, which corresponds to
modifying agents’ abilities in a given state. Finally, we can add a new
state to the model and assign a fresh nominal to it. More complex
operations, like adding a state, assigning it some propositional
variable and adding incoming/outgoing transitions to it can be
described in our language as sequences of primitive updates.

Our intuitions on model updates are guided by research in Dy-
namic Epistemic Logic (DEL) [77], where one can reason about the
effects of epistemic events on agents’ knowledge. While epistemic
and strategic reasoning are quite different domains, various DELs
have been considered in the strategic setting (see, e.g., [6, 29, 62]).
At the same time, research on updating models for strategic rea-
soning has been relatively sporadic and predominantly within the
area of normative reasoning [9, 10].

We deem our contribution to be two-fold. On the conceptual level,
we propose the exploration of general logic-based approaches to

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

829

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

dynamic phenomena in MAS, not confined to particular implemen-
tation areas. On the technical level, we propose a new formalism,
LAMB, to reason about modifications on MAS that enables the
verification of the strategic behavior of agents acting in a chang-
ing environment, and the synthesis of modifications on CGMs. We
show how LAMB can express various intuitions and ideas about the
dynamics of MAS from normative updates to mechanism design.
We also formally study the logic (and some of its fragments) from
the point of view of expressivity and model-checking complexity.
Our results show that LAMB is strictly more expressive than HATL,
which, in turn, is strictly more expressive than ATL. Finally, we
present a P-complete algorithm for model checking LAMB.

2 REASONING ABOUT STRATEGIC ABILITIES
IN CHANGING ENVIRONMENTS

2.1 Models
Let Agt = {1, ..., 𝑛} be a non-empty finite set of agents. We will call
subsets 𝐶 ⊆ Agt coalitions, and complements 𝐶 of 𝐶 anti-coalitions.
Sometimes we also call Agt the grand coalition. Moreover, let Prop =
{𝑝,𝑞, ...} and Nom = {𝛼, 𝛽, ...} be disjoint countably infinite sets
of atomic propositions and nominals correspondingly. Finally, let
Act = {𝑎1, ..., 𝑎𝑚} be a non-empty finite set of actions.

Definition 2.1 (Named CGM). Given a set of atomic propositions
Prop, nominals Nom and agents Agt, a named Concurrent Game
Model (nCGM) is a tuple𝑀 = ∐︀𝑆, 𝜏, 𝐿̃︀, where:

● 𝑆 is a non-empty finite set of states;
● 𝜏 ∶ 𝑆 × ActAgt → 𝑆 is a transition function that assigns the
outcome state 𝑠′ = 𝜏(𝑠, (𝑎1, . . . , 𝑎𝑛)) to a state 𝑠 and a tuple
of actions (𝑎1, . . . , 𝑎𝑛);

● 𝐿 ∶ Prop ∪Nom→ 2𝑆 is a valuation function such that for all
𝛼 ∈ Nom ∶ ⋃︀𝐿(𝛼)⋃︀ ⩽ 1 and for all 𝑠 ∈ 𝑆 , there is some 𝛼 ∈ Nom
such that 𝐿(𝛼) = {𝑠}.

We denote an nCGM 𝑀 with a designated state 𝑠 as 𝑀𝑠 . Since all
CGMs we are dealing with in this paper are named, we will abuse
terminology and call nCGMs just CGMs.

Let 𝑇𝑟𝑢𝑒(𝑠) = {𝑝 ∈ Prop ⋃︀ 𝑠 ∈ 𝐿(𝑝)} ∪ {𝛼 ∈ Nom ⋃︀ 𝑠 ∈ 𝐿(𝛼)} be
the set of all propositional variables and nominals that are true in
state 𝑠 . We define the size of CGM 𝑀 as ⋃︀𝑀 ⋃︀ = ⋃︀Agt⋃︀ + ⋃︀Act⋃︀ + ⋃︀𝑆 ⋃︀ +
⋃︀𝜏 ⋃︀+ ∑

𝑠∈𝑆
⋃︀𝑇𝑟𝑢𝑒(𝑠)⋃︀, where ⋃︀𝜏 ⋃︀ = ⋃︀𝑆 ⋃︀ ⋅ ⋃︀𝐴𝑐𝑡 ⋃︀⋃︀Agt⋃︀. We call a CGM finite, if

⋃︀𝑀 ⋃︀ is finite. In this paper, we restrict our attention to finite models.

Our models differ from standard CGMs in two ways. First, simi-
larly to hybrid logic [13], states of our models have names repre-
sented by nominals Nom. So, each nominal is assigned to at most
one state, but each state may have multiple names. Observe that
differently from hybrid logic, we allow nominals to have empty
extensions, that is, to not be assigned to any state. In the next sec-
tion we will use this property to ensure that once new states are
introduced to a model, we always have names available for them.
Finally, we also assume that our models are properly named, i.e.
each state is assigned some nominal.

We also assume that all agents have the whole set Act of actions
available to them. Such an assumption is relatively common in the
strategy logics literature (see, e.g., [12, 20, 66]), and allows for a
clearer presentation of our framework.

Definition 2.2 (Strategies). Given a coalition 𝐶 ⊆ Agt, an action
profile for coalition 𝐶 , 𝐴𝐶 , is an element of Act𝐶 , and ActAgt is
the set of all complete action profiles, i.e. all tuples (𝑎1, . . . , 𝑎𝑛) for
Agt = {1, . . . , 𝑛}.

Given an action profile 𝐴𝐶 , we write 𝜏(𝑠,𝐴𝐶) to denote a set
{𝜏(𝑠,𝐴) ⋃︀ 𝐴 = 𝐴𝐶 ∪𝐴

𝐶
,𝐴

𝐶
∈ 𝐴𝑐𝑡𝐶}. Intuitively, 𝜏(𝑠,𝐴𝐶) is the set

of all states reachable by (complete) action profiles that extend a
given action profile 𝐴𝐶

1.
A (memoryless) strategy profile for𝐶 is a function𝜎𝐶 ∶ 𝑆×𝐶 → Act

with 𝜎𝐶(𝑠, 𝑖) being an action agent 𝑖 takes in 𝑠 .
Given a CGM 𝑀 , a play 𝜆 = 𝑠0𝑠1⋯ is an infinite sequence of

states in 𝑆 such that for all 𝑖 ⩾ 0, state 𝑠𝑖+1 is a successor of 𝑠𝑖 i.e.,
there exists an action profile 𝐴 ∈ 𝐴𝑐𝑡𝐴𝑔𝑡 s.t. 𝜏(𝑠𝑖 ,𝐴) = 𝑠𝑖+1. We will
denote the 𝑖-th element of play 𝜆 by 𝜆(︀𝑖⌋︀. The set of all plays that
can be realised by coalition 𝐶 following strategy 𝜎𝐶 from some
given state 𝑠 , denoted by Λ𝑠𝜎𝐶 , is defined as

{𝜆 ⋃︀ 𝜆(︀0⌋︀ = 𝑠 and ∀𝑖 ∈ N ∶ 𝜆(︀𝑖 + 1⌋︀ ∈ 𝜏(𝜆(︀𝑖⌋︀, 𝜎𝐶(𝜆(︀𝑖⌋︀))}.

Remark 1. Note that we consider only memoryless (positional)
strategies here. One can also employ memory-full (perfect recall)
strategies, where the choice of actions by a coalition depends not on
the current state, but on the whole history of the system up to the
givenmoment.We resort to the former for simplicity. Observe, however,
that for ATL, the semantics based on these two types of strategies are
equivalent [11, 50, 73]. We conjecture that this is also the case for
LAMB, and leave it for future work.

Example 2.3. Examples of CGMs are given in Figure 1, where an
arrow labelled, for example, by 𝑎𝑏 denotes the action profile, where
agent 1 takes action 𝑎 and agent 2 takes action 𝑏. In a state 𝑠 of
model 𝑀 , the two agents can make a transition to state 𝑡 , if they
synchronise on their actions, i.e. if they choose the same actions. In
model 𝑁 , on the other hand, a similar transition can be performed
whenever they choose different actions.

𝑀
𝑠 ∶ 𝛼 𝑡 ∶ 𝛽

𝑎𝑏,𝑏𝑎

𝑎𝑎,𝑏𝑏

𝑎𝑎,𝑏𝑏
𝑎𝑏,𝑏𝑎

𝑁
𝑠 ∶ 𝛼 𝑡 ∶ 𝛽

𝑎𝑎,𝑏𝑏

𝑎𝑏,𝑏𝑎

𝑎𝑏,𝑏𝑎
𝑎𝑎,𝑏𝑏

Figure 1: CGMs 𝑀 and 𝑁 for two agents and two actions.
Propositional variable 𝑝 is true in black states, and nominals
𝛼 and 𝛽 are true in their corresponding states.

2.2 Hybrid ATL
We start with an extension of ATL with hybrid logic features that
allow us to express properties at states named by a given nominal.

Definition 2.4 (Syntax of HATL). The language of Hybrid ATL
(HATL) logic is defined recursively as follows

HATL ∋ 𝜑 ∶∶= 𝑝 ⋃︀ 𝛼 ⋃︀@𝛼𝜑 ⋃︀ ¬𝜑 ⋃︀ (𝜑 ∧ 𝜑) ⋃︀ ∐︀∐︀𝐶̃︀̃︀X𝜑 ⋃︀
⋃︀ ∐︀∐︀𝐶̃︀̃︀𝜑U𝜑 ⋃︀ ∐︀∐︀𝐶̃︀̃︀𝜑R𝜑

1Here, we here slightly abuse the notation and treat, whenever convenient, action
profiles as sets rather than ordered tuples.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

830

where 𝑝 ∈ Prop, 𝛼 ∈ Nom and 𝐶 ⊆ Agt. The fragment of HATL
without 𝛼 and @𝛼𝜑 corresponds to ATL 2.

Here, ∐︀∐︀𝐶̃︀̃︀X𝜑 means that a coalition 𝐶 can ensure that 𝜑 holds
in the neXt state. The operator ∐︀∐︀𝐶̃︀̃︀𝜑U𝜓 (here U stands for Until)
means that 𝐶 has a strategy to enforce 𝜓 while maintaining the
truth of 𝜑 . ∐︀∐︀𝐶̃︀̃︀𝜑R𝜓 means that 𝐶 can maintain𝜓 until 𝜑 Releases
the requirement for the truth of𝜓 . Derived operators ∐︀∐︀𝐶̃︀̃︀F𝜑 =𝑑𝑒𝑓
∐︀∐︀𝐶̃︀̃︀⊺U𝜑 and ∐︀∐︀𝐶̃︀̃︀G𝜑 =𝑑𝑒𝑓 ∐︀∐︀𝐶̃︀̃︀�R𝜑 mean “𝐶 has a strategy to
eventually make 𝜑 true" and “𝐶 has a strategy to make sure that
𝜑 is always true" respectively. Hybrid logic operator@𝛼𝜑 means
“at state named 𝛼 , 𝜑 is true". This operator allows us to ‘switch’
our point of evaluation to the state labelled with nominal 𝛼 in the
syntax. Given a formula 𝜑 ∈ HATL, the size of 𝜑 , denoted by ⋃︀𝜑 ⋃︀, is
the number of symbols in 𝜑 .

Definition 2.5 (Semantics of HATL). Let𝑀 = ∐︀𝑆, 𝜏, 𝐿̃︀ be a CGM,
𝑠 ∈ 𝑆 , 𝑝 ∈ Prop, 𝛼 ∈ Nom, and 𝜑,𝜓 ∈ HATL. The semantics of HATL
is defined by induction as follows:

𝑀𝑠 ⊧ 𝑝 iff 𝑠 ∈ 𝐿(𝑝)
𝑀𝑠 ⊧ 𝛼 iff 𝑠 ∈ 𝐿(𝛼)
𝑀𝑠 ⊧@𝛼𝜑 iff ∃𝑡 ∈ 𝑆 ∶ {𝑡} = 𝐿(𝛼) and𝑀𝑡 ⊧ 𝜑
𝑀𝑠 ⊧ ¬𝜑 iff𝑀𝑠 ⇑⊧ 𝜑
𝑀𝑠 ⊧ 𝜑 ∧𝜓 iff𝑀𝑠 ⊧ 𝜑 and𝑀𝑠 ⊧𝜓
𝑀𝑠 ⊧ ∐︀∐︀𝐶̃︀̃︀X𝜑 iff ∃𝜎𝐶 ,∀𝜆 ∈ Λ

𝑠
𝜎𝐶 ∶ 𝑀𝜆(︀1⌋︀ ⊧ 𝜑

𝑀𝑠 ⊧ ∐︀∐︀𝐶̃︀̃︀𝜓U𝜑 iff ∃𝜎𝐶 ,∀𝜆 ∈ Λ
𝑠
𝜎𝐶 ,∃𝑖 ⩾ 0 ∶ 𝑀𝜆(︀𝑖⌋︀ ⊧ 𝜑

and𝑀𝜆(︀𝑗⌋︀ ⊧𝜓 for all 0 ⩽ 𝑗 < 𝑖

𝑀𝑠 ⊧ ∐︀∐︀𝐶̃︀̃︀𝜓R𝜑 iff ∃𝜎𝐶 ,∀𝜆 ∈ Λ
𝑠
𝜎𝐶 ,∀𝑖 ⩾ 0 ∶ 𝑀𝜆(︀𝑖⌋︀ ⊧ 𝜑

or𝑀𝜆(︀𝑗⌋︀ ⊧𝜓 for some 0 ⩽ 𝑗 ⩽ 𝑖

Observe that differently from standard hybrid logics [13], the
truth condition for @𝛼𝜑 also requires the state with name 𝛼 to
exist. This modification is necessary as we let some nominals to
have empty denotations.

Example 2.6. Recall CGM𝑀 from Figure 1. It is easy to see that
𝑀𝑠 ⊧ 𝛼 meaning that state 𝑠 is named 𝛼 ; 𝑀𝑠 ⊧ ∐︀∐︀{1, 2}̃︀̃︀X¬𝑝 , i.e.
that from state 𝑠 the grand coalition can force ¬𝑝 to hold in the next
state; and𝑀𝑠 ⊧@𝛽∐︀∐︀{1, 2}̃︀̃︀G𝛽 meaning that in the state named 𝛽

the grand coalition has a strategy to always remain in this state.

Expressivity of HATL. Even though the interplay between nom-
inals and temporal modalities has been quite extensively studied
(see, e.g., [18, 33, 42, 53]), to the best of our knowledge, the extension
of ATL with nominals has never been considered. Our Hybrid ATL
provides us with extra expressive power, compared to the standard
ATL. We can, for instance, formulate safety and liveness properties
in terms of names. For example, formula

∐︀∐︀𝐶̃︀̃︀Gsafe ∧ ∐︀∐︀𝐷̃︀̃︀¬crashedU𝛼 ∧ ∐︀∐︀∅̃︀̃︀F𝛽
states that (1) coalition 𝐶 can enforce that only safe states will be
visited, (2) coalition 𝐷 can avoid crashing until a state named 𝛼 is
visited, and (3) no matter what the agents Agt do, a state named 𝛽

will eventually be visited. Both conjuncts (2) and (3) use nominals
2We defineATL over {∐︀∐︀𝐶̃︀̃︀X𝜑, ∐︀∐︀𝐶̃︀̃︀𝜑U𝜑, ∐︀∐︀𝐶̃︀̃︀𝜑R𝜑} as it is strictly more expressive
than ATL defined over {∐︀∐︀𝐶̃︀̃︀X𝜑, ∐︀∐︀𝐶̃︀̃︀𝜑U𝜑, ∐︀∐︀𝐶̃︀̃︀G𝜑} [59].

to refer to state names in syntax, and are not expressible in ATL.
Given that (as we will show later) the valuation of propositions in
dynamic systems may change over time, as well as the transitions
affecting reachability of some states, we believe that HATL allows
for a more fine-grained way to capture safety and liveness.

Definition 2.7. Let L1 and L2 be two languages, and let 𝜑 ∈ L1
and𝜓 ∈ L2. We say that 𝜑 and𝜓 are equivalent, when for all CGMs
𝑀𝑠 :𝑀𝑠 ⊧ 𝜑 if and only if𝑀𝑠 ⊧𝜓 .

If for every 𝜑 ∈ L1 there is an equivalent𝜓 ∈ L2, we write L1 ≼ L2
and say that L2 is at least as expressive as L1. We write L1 ≺ L2 iff
L1 ≼ L2 and L2 ⇑≼ L1, and we say that L2 is strictly more expressive
than L1. Finally, if L1 ≼ L2 and L2 ≼ L1, we say that L1 and L2 are
equally expressive and write L1 ≈ L2.

Let us return to Figure 1, and assume that we have model 𝑁 ′,
which is exactly like 𝑁 with the only difference that 𝑁 ′𝑠 ⊧ 𝑞. Now,
CGMs 𝑀 and 𝑁

′ can be viewed as a disjoint union [17] 𝑀 ⊎𝑁
′

(modulo renaming states in 𝑁
′ and assigning to them other nom-

inals than 𝛼 and 𝛽 , like 𝛾 and 𝛿 correspondingly) of two isolated
submodels 𝑀 and 𝑁

′. Note that no ATL formula 𝜑 that holds in
𝑀 depends on the submodel 𝑁 ′ as there are no transitions there.
Hence, ATL cannot distinguish between𝑀 and𝑀 ⊎𝑁

′. At the same
time, in contrast to state labels, we can use nominals in the syntax.
So, formulas of HATL containing@𝛼 operators can access states in
the submodel 𝑁 ′, and hence can have different truth values in𝑀

and𝑀 ⊎𝑁
′. An example of such a formula would be@𝛾𝑞, which

is false everywhere in𝑀 (since there is no state named 𝛾), and true
everywhere in𝑀 ⊎𝑁

′. This trivially implies that HATL is strictly
more expressive than ATL (ATL ≺ HATL).

2.3 Logic for ATL Model Building
Now we turn to the full logic with dynamic update operators.

Definition 2.8 (Syntax of LAMB). The language LAMB of Logic
for ATL Model Building is defined as follows

LAMB ∋ 𝜑 ∶∶=𝑝 ⋃︀ 𝛼 ⋃︀@𝛼𝜑 ⋃︀ ¬𝜑 ⋃︀ 𝜑 ∧ 𝜑 ⋃︀ ∐︀∐︀𝐶̃︀̃︀X𝜑 ⋃︀
⋃︀ ∐︀∐︀𝐶̃︀̃︀𝜑U𝜑 ⋃︀ ∐︀∐︀𝐶̃︀̃︀𝜑R𝜑 ⋃︀ (︀𝜋⌋︀𝜑

𝜋 ∶∶=(𝑝𝛼 ∶=𝜓) ⋃︀ 𝛼
𝐴Ð→ 𝛼 ⋃︀ 𝛼l

where 𝑝 ∈ Prop, 𝛼 ∈ Nom, 𝐶 ⊆ Agt, 𝐴 ∈ ActAgt . We will also write
(︀𝜋1; ...;𝜋𝑛⌋︀𝜑 for (︀𝜋1⌋︀...(︀𝜋𝑛⌋︀𝜑 . Two important fragments of LAMB

that we will also consider are the one without constructs 𝛼 𝐴Ð→ 𝛼

and 𝛼l, called substitution LAMB (SLAMB); and the one without
𝑝𝛼 ∶=𝜓 and 𝛼l, called arrow LAMB (ALAMB).

Definition 2.9 (Semantics of LAMB). Let𝑀 = ∐︀𝑆, 𝜏, 𝐿̃︀ be a CGM,
𝑠 ∈ 𝑆 , 𝑝 ∈ Prop, 𝛼 ∈ Nom, and 𝜑,𝜓 ∈ LAMB. The semantics of LAMB
is defined as in Definition 2.5 with the following additional cases:

𝑀𝑠 ⊧ (︀𝑝𝛼 ∶=𝜓⌋︀𝜑 iff 𝑀
𝑝𝛼 ∶=𝜓
𝑠 ⊧ 𝜑

𝑀𝑠 ⊧ (︀ 𝛼l⌋︀𝜑 iff 𝑀
𝛼l
𝑠 ⊧ 𝜑

𝑀𝑠 ⊧ (︀𝛼
𝐴Ð→ 𝛽⌋︀𝜑 iff 𝑀

𝛼
𝐴Ð→𝛽

𝑠 ⊧ 𝜑

where 𝑀
𝜋 with 𝜋 ∈ {𝑝𝛼 ∶= 𝜓,𝛼

𝐴Ð→ 𝛽, 𝛼l} is called an updated
CGM, and is defined as follows:

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

831

● 𝑀
𝑝𝛼 ∶=𝜓
𝑠 = ∐︀𝑆, 𝜏, 𝐿𝑝𝛼 ∶=𝜓 ̃︀, where, if ∃𝑡 ∈ 𝑆 such that 𝐿(𝛼) =

{𝑡}, then

𝐿
𝑝𝛼 ∶=𝜓 (𝑝) =

)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝐿(𝑝) ∪ {𝑡} if𝑀𝑠 ⊧𝜓,
𝐿(𝑝) ∖ {𝑡} if𝑀𝑠 ⇑⊧𝜓,

and𝑀𝑝𝛼 ∶=𝜓 = ∐︀𝑆, 𝜏, 𝐿̃︀ otherwise.

● 𝑀
𝛼

𝐴Ð→𝛽 = ∐︀𝑆, 𝜏𝛼
𝐴Ð→𝛽

, 𝐿̃︀, where, if ∃𝑠, 𝑡 ∈ 𝑆 such that 𝐿(𝛼) = 𝑠
and 𝐿(𝛽) = 𝑡 , then

𝜏
𝛼

𝐴Ð→𝛽(𝑠′,𝐴′) =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑡, if 𝑠′ = 𝑠 and 𝐴′ = 𝐴
𝜏(𝑠′,𝐴′) otherwise,

and𝑀𝛼
𝐴Ð→𝛽 = ∐︀𝑆, 𝜏, 𝐿̃︀ otherwise.

● 𝑀
𝛼l= ∐︀𝑆 𝛼l

, 𝜏
𝛼l
, 𝐿

𝛼l̃︀, where, if 𝐿(𝛼) = ∅, then 𝑆
𝛼l= 𝑆 ∪ {𝑡}

with 𝑡 ⇑∈ 𝑆 , 𝜏 𝛼l= 𝜏 ∪ {(𝑡,𝐴, 𝑡) ⋃︀ ∀𝐴 ∈ ActAgt}, and 𝐿
𝛼l(𝛼) =

𝐿 ∪ {(𝛼, {𝑡})}. If 𝐿(𝛼) ≠ ∅, then𝑀
𝛼l= ∐︀𝑆, 𝜏, 𝐿̃︀.

Intuitively, updating a given model with 𝑝𝛼 ∶= 𝜓 assigns to
propositional variable 𝑝 in the state named 𝛼 (if there is such a state)
the truth value of𝜓 in the state of evaluation. Observe, however, that
due to the presence of operators@𝛼 , we can also let the truth-value
of 𝑝 be dependent on the truth of 𝜓 in any other state. Updating
with 𝛼

𝐴Ð→ 𝛽 results in redirecting the 𝐴-labelled arrow that starts
in state named 𝛼 from some state 𝜏(𝐿(𝛼),𝐴) to state named 𝛽 (if
states named 𝛼 and 𝛽 exist). Finally, operator 𝛼ladds a new state
to the model and gives it name 𝛼 . All propositional variables are
false in the new state and all transitions are self-loops. The self-
loops and the fact that propositional variables are false in the new
state is a design choice that achieves two goals. First, adding new
state results in a finite model (recall that to determine the size of a
model we count all true propositions), and, second, we deem this
to be the smallest meaningful change that is in line with the idea
of modularity. All valuations and self-loops can be then further
modified by the corresponding substitutions and arrow operators.

Example 2.10. Consider CGMs 𝑀 and 𝑁 from Figure 1 and an
update 𝛼 𝑎𝑎Ð→ 𝛼 . Observe that such an update leaves 𝑁 intact as
there is already a self-loop labelled 𝑎𝑎 in the 𝛼-state. Model 𝑀 ,
on the other hand, is changed and the resulting updated model

𝑀
𝛼

𝑎𝑎Ð→𝛼 is depicted in Figure 2.
Now it is easy to see, for example, that in the updated model the

first agent can force the system to stay in the 𝛼-state by choosing
action 𝑎, i.e. 𝑀𝑠 ⊧ (︀𝛼

𝑎𝑎Ð→ 𝛼⌋︀∐︀∐︀{1}̃︀̃︀X𝛼 , while it is not the case for

𝑁
𝛼

𝑎𝑎Ð→𝛼 (which is the same as 𝑁), i.e. 𝑁𝑠 ⇑⊧ (︀𝛼
𝑎𝑎Ð→ 𝛼⌋︀∐︀∐︀{1}̃︀̃︀X𝛼 .

As a more complex update, consider 𝜋1 ∶= 𝛾l;𝑝𝛾 ∶= ⊺; f𝑖𝑛𝑒𝛾 ∶= ⊺
and the resulting model𝑀𝜋1 , where we have a new state named 𝛾
that satisfies propositions 𝑝 and f𝑖𝑛𝑒 (the intuition behind f𝑖𝑛𝑒 is
given in Section 3.1). Further, we can add redirection of some edges

𝜋2 ∶= 𝜋1;𝛼
𝑎𝑏Ð→ 𝛾 ;𝛼 𝑏𝑎Ð→ 𝛾 ;𝛾 𝑎𝑎Ð→ 𝛽 ;𝛾 𝑏𝑏Ð→ 𝛽 to obtain model 𝑀𝜋2 .

The final complex update of𝑀 with SN , also presented in Figure 2,
is discussed in the next section in the context of normative updates.

𝑀
𝛼

𝑎𝑎Ð→𝛼
𝑠 ∶ 𝛼 𝑡 ∶ 𝛽

𝑎𝑏,𝑏𝑎, 𝑎𝑎

𝑏𝑏

𝑎𝑎,𝑏𝑏
𝑎𝑏,𝑏𝑎

𝑀
𝜋1

𝑠 ∶ 𝛼 𝑡 ∶ 𝛽

𝑢 ∶ 𝛾

𝑎𝑏,𝑏𝑎

𝑎𝑎,𝑏𝑏

𝑎𝑎,𝑏𝑏

𝑎𝑎, 𝑎𝑏

𝑏𝑎,𝑏𝑏

𝑀
𝜋2

𝑠 ∶ 𝛼 𝑡 ∶ 𝛽

𝑢 ∶ 𝛾

𝑎𝑎,𝑏𝑏

𝑎𝑎,𝑏𝑏

𝑎𝑏

𝑏𝑎
𝑎𝑏

𝑏𝑎
𝑎𝑎

𝑏𝑏

𝑀
SN

𝑠 ∶ 𝛼 𝑡 ∶ 𝛽

𝑢 ∶ 𝛾 𝑣 ∶ 𝛿

𝑎𝑎,𝑏𝑏

𝑎𝑎,𝑏𝑏

𝑎𝑏

𝑏𝑎
𝑎𝑏

𝑏𝑎

𝑎𝑏

𝑏𝑎
𝑎𝑏

𝑏𝑎

𝑎𝑎

𝑏𝑏

𝑎𝑎

𝑏𝑏

Figure 2: Updated CGMs𝑀𝛼
𝑎𝑎Ð→𝛼 (top left),𝑀𝜋1 (bottom left),

𝑀
𝜋2 (top right), and𝑀

SN (bottom right). Proposition 𝑝 is true
in black states, and fine is true in square states.

3 DYNAMIC MAS THROUGH THE LENS OF
LAMB

In this section, we show how our dynamic approach to CGMs allows
us to capture various ideas and intuitions from the MAS research.

3.1 Normative Updates on CGMs
Updates of CGMs play a crucial role in the area of normative MAS
(see [9] for an overview). In the context of ATL, the general idea is to
divide actions of agent’s into those that are permitted to be executed
in a current state, and into those that are not. We argue that LAMB,
thanks to its dynamic features, captures various intuitions and
technicalities of reasoning about norms in MAS.

As a use case of LAMB, we consider norm-based updates as pre-
sented in [22].3 The authors distinguish two types of norms for
CGMs: regimenting norms and sanctioning norms. Regimenting
norms prohibit certain transitions by looping them to the origin
state. This corresponds to the intuition that a selected action profile
has no noticeable effect and thus the system stays in the same state.
Note that agents in this case always have available actions. This
assumption is sometimes called reasonableness [4, 5, 7, 8, 40, 76].

While it is quite straightforward to model regimenting norms in
LAMB using arrow updates, for the sake of an example we focus
on more general and subtle sanctioning norms. Such norms put
sanctions, or fines, on certain action profiles without explicitly
prohibiting them. A bit more formally, a sanctioning norm is a
triple (𝜑,𝒜,𝒮), where 𝜑 is a formula of a logic,𝒜 is a set of action
profiles, and 𝒮 is a set of sanctions, which is a subset of the set
of propositional variables. Intuitively, sanctioning norm (𝜑,𝒜,𝒮)
states that performing action profiles from𝒜 from states satisfying
𝜑 imposes sanctions from 𝒮 .

The result of updating a CGM𝑀 with a norm SN = (𝜑,𝒜,𝒮) is
a CGM𝑀

SN such that for all𝒜-transitions from 𝜑-states, we create
copies of those states and make sanctioning atoms 𝒮 true in those
copies. Non-sanctioned transitions from the copy-states have the
same outcome as the original transitions in the initial model.
3We simplify the exposition for the sake of clarity.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

832

Consider as an example the sanctioning norm SN = (⊺, {𝑎𝑏,𝑏𝑎},
{fine}) and CGM𝑀 from Example 1. Recall that in𝑀 , agents can
switch the current state only if they cooperate (i.e. choose the same
actions). Hence, norm SN penalises non-cooperative behaviour
with the sanction fine. We can directly model the implementation
of SN on𝑀 in LAMB by translating SN into a complex update

SN = 𝛾l;𝑝𝛾 ∶= ⊺;fine𝛾 ∶= ⊺;𝛼 𝑎𝑏Ð→ 𝛾 ;𝛼 𝑏𝑎Ð→ 𝛾 ;𝛾 𝑎𝑎Ð→ 𝛽 ;

𝛾
𝑏𝑏Ð→ 𝛽 ; 𝛿l;fine𝛿 ∶= ⊺; 𝛽 𝑎𝑏Ð→ 𝛿 ; 𝛽 𝑏𝑎Ð→ 𝛿 ;𝛿 𝑎𝑎Ð→ 𝛼 ;𝛿 𝑏𝑏Ð→ 𝛼.

The result of updating 𝑀 with SN as well as some intermediate
updates is presented in Figure 2. In𝑀

SN , we create copies of states
𝑠 and 𝑡 (both satisfying ⊺), named 𝑢 and 𝑣 , which now also satisfy
sanction fine. Then, undesirable action profiles {𝑎𝑏,𝑏𝑎} originating
in 𝑠 and 𝑡 lead to the sanctioned states 𝑢 and 𝑣 . At the same time,
action profiles not from {𝑎𝑏,𝑏𝑎} behave similarly to the initial
model. It is easy to see that our LAMB update SN on 𝑀 captures
the effect of SN on𝑀 .

3.2 Synthesis
Assume that you have a model𝑀𝑠 of a MAS that does not satisfy
some safety requirement 𝜑 . One way to go about it would be to
create a completely new model from scratch, or to try to manually
fix the existing one. However, in case of large models and com-
plex safety requirements, both options may not be feasible. This is
exactly where the problem of synthesis (or modification synthesis)
comes in. The full language of LAMB is expressive enough to cap-
ture the (bounded) synthesis problem from a given specification
and starting model. In such a way, the modifications of the model
are presented as updates operators of LAMB.

Definition 3.1. For a given CGM 𝑀𝑠 , formula 𝜑 , and natural
number 𝑛, the bounded (modification) synthesis existence problem
decides whether there is an update 𝜋𝜑 ∶= (︀𝜋1, ..., 𝜋𝑘⌋︀, with the size
at most 𝑛, such that𝑀𝑠 ⊧ (︀𝜋𝜑 ⌋︀𝜑 .

The bounded synthesis existence problem is important, as it
tackles the synthesis of compact modifications. Indeed, oftentimes
designers of (a model of) MAS are interested in a modification that
achieves the goal without significantly altering the initial model.
Think of an example of a software update, where we would like to
extend the functionality of the software without rewriting most of
its code. Moreover, the bounded synthesis problem is also important
in cases where changes in the given model are costly, and we want
to avoid wasting resources as much as possible.

In Section 5, we show that the complexity of the model checking
problem for LAMB is P-complete. With this in mind, it is easy to
see that the complexity of the bounded synthesis existence problem
is NP-complete.

Proposition 3.2. The bounded synthesis problem for LAMB is
NP-complete.

Proof. To see that the problem is in NP, let𝑀𝑠 be a CGM, 𝜑 be
a formula, and 𝑛 be a natural number. We guess a 𝜋𝜑 of size at most
𝑛. It follows that (︀𝜋𝜑 ⌋︀𝜑 is of polynomial size w.r.t ⋃︀𝜑 ⋃︀ + 𝑛. Then we
can model check𝑀𝑠 ⊧ (︀𝜋𝜑 ⌋︀𝜑 in polynomial time (Theorem 5.1).

For the NP-hardness, we employ the reduction from 3-SAT prob-
lem. Let 𝜑 ∶= ⋀1⩽𝑖⩽𝑘(𝜓𝑖,1 ∨𝜓𝑖,2 ∨𝜓𝑖,3), where𝜓 ’s are literals, be an

instance of 3-SAT, and let 𝑃𝜑 = {𝑝1, ..., 𝑝𝑚} be the set of proposi-
tions appearing in 𝜑 . We construct model𝑀𝜑 over one agent con-
sisting of a single state 𝑠 with the name 𝛼 , and such that𝑉𝜑(𝑝𝑖) = ∅
for all 𝑝𝑖 ∈ 𝑃𝜑 . All transitions for the agent are self-loops. Now it is
easy to see that 𝜑 is satisfiable iff there is a 𝜋𝜑 consisting only of
substitutions 𝑝𝑖𝛼 ∶= ⊺, and thus of the size linear in ⋃︀𝑃𝜑 ⋃︀, such that
𝑀

𝜑
𝑠 ⊧ (︀𝜋𝜑 ⌋︀𝜑 . In other words, if there is an assignment that makes

𝜑 true, we can explicitly simulate it in𝑀
𝜑
𝑠 using constructs 𝑝𝑖𝛼 ∶= ⊺

for variables 𝑝𝑖 ∈ 𝑃𝜑 that should be assigned ‘true’. □

The fact that LAMB captures the modification synthesis is signif-
icant, because a constructive solution to the problem would produce
a step-by-step recipe, or an instruction, of how to modify a given
model to make it satisfy some desirable property 𝜑 . In this section
we studied the computational complexity of checking whether a
required modification of certain size exists. In future work, we will
focus on constructive solutions to the problem, i.e. providing al-
gorithms that automatically construct the required LAMB update.

3.3 Mechanisms for Social Choice
The key advantage of synthesising mechanisms from logical spec-
ifications is that, as a declarative approach, the designer is not
required to construct a complete solution for the problem of inter-
est; instead, she can describe the desired mechanism in terms of its
rules and desirable properties. Some recent approaches use model
checking and satisfiability procedures for Strategy Logic [63, 64].
We, however, focus on the dynamic LAMB approach.

Let us assume a mechanism encoded as a CGM, and a finite set
of alternatives 𝐴𝑙𝑡 . Such a mechanism may represent, for instance,
a single-winner election or a resource allocation protocol. In such
CGM, we let the atomic proposition pref(i,j)𝑎 denote that agent 𝑎
prefers the alternative 𝑖 to 𝑗 (e.g., she prefers that 𝑖 is elected over
𝑗). We also let dislike𝑎(𝑖) indicate that 𝑖 is disliked by agent 𝑎, and
𝑐ℎ𝑜𝑠𝑒𝑛𝑖 denote that the alternative 𝑖 was chosen.

We now illustrate how to capture two classic concepts from game
theory: individual rationality and Pareto optimality. Individual ra-
tionality expresses the idea that each agent can ensure nonnegative
utility [67]. In our setting, this can be seen as avoiding disliked
candidates and expressed with the following formula

⋀
𝑎∈𝐴𝑔𝑡,𝑖∈𝐴𝑙𝑡

∐︀∐︀{𝑎}̃︀̃︀G¬(chosen𝑖 ∧ disliked𝑎(𝑖))

which states that each agent has a strategy to enforce that none of
the disliked alternatives are ever chosen.

A mechanism is Pareto optimal if any change of outcome that is
beneficial to one agent is detrimental to at least one of the other
agents. The formula

𝑝𝑎𝑟𝑒𝑡𝑜𝑖 ∶= ⋀
𝑎∈𝐴𝑔𝑡,𝑗∈𝐴𝑙𝑡∖{𝑖}

((pref𝑎(𝑗, 𝑖)→ ⋁
𝑏∈𝐴𝑔𝑡

pref𝑏(𝑖, 𝑗))

expresses that an alternative 𝑖 is Pareto optimal whenever for any
other alternative 𝑗 , if 𝑗 is preferred to an agent 𝑎, then there is an
agent 𝑏 that prefers 𝑖 over 𝑗 .

We can then express that there is a strategy for the coalition 𝐶
to ensure that any chosen alternative is Pareto optimal, with the
formula 𝜑𝑝𝑜 ∶= ∐︀∐︀𝐶̃︀̃︀G⋀𝑖∈𝐴𝑙𝑡 𝑐ℎ𝑜𝑠𝑒𝑛𝑖 → 𝑝𝑎𝑟𝑒𝑡𝑜𝑖 . If we let 𝐶 = ∅,

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

833

this formula requires choices to be Pareto optimal for any possible
behavior of the agents.

Once desirable mechanism properties are expressed as ATL for-
mulas, one can use LAMB to verify whether CGM𝑀𝑠 has such prop-
erty or would have it in case a sequence of modifications 𝜋1; ..., 𝜋𝑛
was performed, i.e. whether 𝑀𝑠 ⊧ (︀𝜋1; ...;𝜋𝑛⌋︀𝜑𝑝𝑜 for Pareto opti-
mality. Further, employing the ideas of synthesis, one could auto-
matically obtain the required modifications.

4 EXPRESSIVITY
In this section, we compare the expressive power of LAMB and
its fragments. In particular, we show that, interestingly enough,
substitutions on their own do not add expressive power compared
to the base HATL (Theorem 4.1). The ability to move arrows, on the
other hand, leads to an increase in expressivity (Theorem 4.2).

First, we show that SLAMB and HATL are equally expressive.
This is quite intriguing since it means that adding substitutions
to the base logic HATL does not allow us to express anything that
we could not express in HATL. We prove this result by providing a
truth-preserving translation from formulas of SLAMB into formulas
of HATL. While expressivity results that use translation schemas
(usually based on reduction axioms) are quite ubiquitous in DEL
(see [77] for an overview, and [54, 55] for substitution specific
translations), to the best of our knowledge, this is the first time
reduction has been discussed in the context of dynamics for logics
of strategic abilities.

Theorem 4.1. HATL ≈ SLAMB

Proof. Consider the reduction axioms below.

A1 (︀𝑝𝛼 ∶=𝜓⌋︀𝑝 ↔ (𝛼 →𝜓) ∧ (¬𝛼 → 𝑝)
A2 (︀𝑝𝛼 ∶=𝜓⌋︀𝑞↔ 𝑞 for 𝑝 ≠ 𝑞
A3 (︀𝑝𝛼 ∶=𝜓⌋︀𝛽 ↔ 𝛽

A4 (︀𝑝𝛼 ∶=𝜓⌋︀@𝛽𝜑 ↔@𝛽(︀𝑝𝛼 ∶=𝜓⌋︀𝜑
A5 (︀𝑝𝛼 ∶=𝜓⌋︀¬𝜑 ↔ ¬(︀𝑝𝛼 ∶=𝜓⌋︀𝜑
A6 (︀𝑝𝛼 ∶=𝜓⌋︀(𝜑 ∧ 𝜒)↔ (︀𝑝𝛼 ∶=𝜓⌋︀𝜑 ∧ (︀𝑝𝛼 ∶=𝜓⌋︀𝜒
A7 (︀𝑝𝛼 ∶=𝜓⌋︀∐︀∐︀𝐶̃︀̃︀X𝜑 ↔ ∐︀∐︀𝐶̃︀̃︀X(︀𝑝𝛼 ∶=𝜓⌋︀𝜑
A8 (︀𝑝𝛼 ∶=𝜓⌋︀∐︀∐︀𝐶̃︀̃︀𝜑U𝜒 ↔ ∐︀∐︀𝐶̃︀̃︀(︀𝑝𝛼 ∶=𝜓⌋︀𝜑U(︀𝑝𝛼 ∶=𝜓⌋︀𝜒
A9 (︀𝑝𝛼 ∶=𝜓⌋︀∐︀∐︀𝐶̃︀̃︀𝜑R𝜒 ↔ ∐︀∐︀𝐶̃︀̃︀(︀𝑝𝛼 ∶=𝜓⌋︀𝜑R(︀𝑝𝛼 ∶=𝜓⌋︀𝜒
Soundness of the axioms can be shown by application of the defini-
tion of semantics (Definition 2.9). As an example, consider axiomA1.
Let us assume that for some CGM𝑀𝑠 it holds that𝑀𝑠 ⊧ (︀𝑝𝛼 ∶=𝜓⌋︀𝑝 .
According to the definition of𝑀𝑝𝛼 ∶=𝜓

𝑠 (Definition 2.9), we consider
two cases. First, if𝑀𝑠 ⊧ 𝛼 , then the truth-value of 𝑝 is equivalent
to whether𝑀𝑠 ⊧𝜓 . Hence, the first conjunct of the right-hand part
of A1: 𝑀𝑠 ⊧ 𝛼 → 𝜓 . Second, if 𝑀𝑠 ⇑⊧ 𝛼 , then the truth-value of 𝑝
remains intact, i.e.𝑀𝑠 ⊧ ¬𝛼 → 𝑝 . Combining two parts together, we
have that𝑀𝑠 ⊧ (︀𝑝𝛼 ∶=𝜓⌋︀𝑝 if and only if𝑀𝑠 ⊧ (𝛼 →𝜓)∧(¬𝛼 → 𝑝).

As another example, consider A7. Assume that for an arbitrary
CGM 𝑀𝑠 we have that 𝑀𝑠 ⊧ (︀𝑝𝛼 ∶= 𝜓⌋︀∐︀∐︀𝐶̃︀̃︀X𝜑 . By the definition
of semantics, the latter is equivalent to 𝑀

𝑝𝛼 ∶=𝜓
𝑠 ⊧ ∐︀∐︀𝐶̃︀̃︀X𝜑 , which

in turn is equivalent to the fact that ∃𝜎𝐶 ,∀𝜆 ∈ Λ𝑠𝜎𝐶 ∶ 𝑀𝑝𝛼 ∶=𝜓
𝜆(︀1⌋︀ ⊧ 𝜑 .

Now, by the semantics of substitutions, we have that ∃𝜎𝐶 ,∀𝜆 ∈
Λ𝑠𝜎𝐶 ∶ 𝑀𝜆(︀1⌋︀ ⊧ (︀𝑝𝛼 ∶= 𝜓⌋︀𝜑 , which in turn is equivalent to 𝑀𝑠 ⊧
∐︀∐︀𝐶̃︀̃︀X(︀𝑝𝛼 ∶=𝜓⌋︀𝜑 . Other cases can be shown in a similarly.

Now, having a set of sound reduction axioms, it is straightfor-
ward to define a truth-preserving translation 𝑡𝑟 ∶ SLAMB→ HATL.
Such a translation would work from inside-out, taking the inner-
most occurrence of a substitution and pushing it closer to proposi-
tions and nominals, eventually translating them away completely.
In particular, axioms A2 and A3 state that changing the valuation of
𝑝 does not affect other propositional variables and nominals. Axiom
A1 intuitively means that if the current state is named 𝛼 , then the
valuation of 𝑝 is the same as the valuation𝜓 in this state. And if the
current state is not 𝛼 , then 𝑝 in the current state retains its valuation.
See [54, 55, 77] for translations in the context of DEL. □

An observant reader may notice, that the presented translation
of a SLAMB formula may result in an exponentially larger formula
ofHATL (due to repetitions in A6, A8, and A9). Or, equivalently, that
the initial formula of SLAMB is exponentially more succinct than
its translation. Such a blow-up is quite natural for reduction-based
translations in DEL [35, 61]. In the next section we will show that
despite this, model checking SLAMB is P-complete.

Nowwe turn toALAMB and show that the ability tomove arrows
grants us additional expressivity.

Theorem 4.2. HATL ≺ ALAMB and SLAMB ≺ ALAMB.

Proof. The fact that HATL ≼ ALAMB follows trivially as HATL
is a fragment of ALAMB. To see that ALAMB ⇑≼ HATL recall Ex-
ample 2.10. It is easy to see that models 𝑀𝑠 and 𝑁𝑠 cannot be
distinguished by any HATL formula4. Indeed, in both models states
𝑠 and 𝑡 agree on their corresponding nominals and propositional
variables, and, moreover in all states none of the agents can force
a transition on their own. The fact that such a transition requires
different action profiles by {1, 2} in different models cannot be
captured by formulas of HATL as they do not have the access to
particular actions, rather just to abilities of the agent.

At the same time, as shown in Example 2.10, the ALAMB formula
(︀𝛼 𝑎𝑎Ð→ 𝛼⌋︀∐︀∐︀{1}̃︀̃︀X𝛼 holds in 𝑀𝑠 and is false in 𝑁𝑠 , and, therefore,
HATL ≺ ALAMB. The fact that SLAMB ≺ ALAMB follows by tran-
sitivity of the expressivity relation from HATL ≈ SLAMB. □

From Theorem 4.2 it follows that HATL ≺ LAMB and SLAMB ≺
LAMB. For future work, we leave open the question of whether
LAMB is strictly more expressive than ALAMB, and conjecture that
it is indeed the case. Figure 3 summarises the expressivity results.

HATL SLAMB ALAMB LAMB
Thm. 4.1 Thm. 4.2

?

Figure 3: Overview of the expressivity results. An arrow from
L1 to L2 means L1 ≼ L2. If there is no symmetric arrow, then
L1 ≺ L2. This relation is transitive, and we omit transitive
arrows in the figure. The dashed arrow with the question
mark denotes the open question.

4In fact, there is an alternating bisimulation [3] between the models. The discussion of
an appropriate notion of bisimulation for LAMB is outside of the scope of this paper
and is left for future work.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

834

5 MODEL CHECKING
The model checking problem for LAMB consists in determining,
for a CGM 𝑀𝑠 and a formula 𝜑 , whether 𝑀𝑠 ⊧ 𝜑 . We show that
despite the increase in expressivity, the complexity of the model
checking problem for the full language of LAMB is still P-complete.

The complexity ofmodel checkingATL is known to be P-complete
[11], and it is easy to see that it remains the same also for HATL.
The algorithm for ATL uses function 𝑃𝑟𝑒(𝑀,𝐶,𝑄) that computes
for a given CGM 𝑀 , coalition 𝐶 ⊆ 𝐴𝑔𝑡 and a set 𝑄 ⊆ 𝑆 , the set of
states, from which coalition 𝐶 can force the outcome to be in one
of the 𝑄 states. Function 𝑃𝑟𝑒 can be computed in polynomial time.
We can use exactly the same algorithm for computing 𝑃𝑟𝑒 as for
the standard ATL, however in our case we will compute 𝑃𝑟𝑒 for not
only the original model model𝑀 , but its updated versions as well.

Algorithm 1 An algorithm for model checking LAMB

1: procedure MC(𝑀,𝑠,𝜑)
2: case 𝜑 = 𝛼
3: return 𝑠 ∈ 𝐿(𝛼)

4: case 𝜑 =@𝛼𝜓

5: if 𝐿(𝛼) ≠ ∅ then
6: return MC(𝑀,𝐿(𝛼),𝜓)

7: else
8: return false

9: case 𝜑 = (︀𝜋⌋︀𝜓 with 𝜋 ∈ {𝑝𝛼 ∶=𝜓,𝛼
𝐴
Ð→ 𝛽, 𝛼l}

10: return MC(Update(𝑀,𝑠, 𝜋), 𝑠,𝜓)

11: end procedure

The model checking algorithm for LAMB (Algorithm 1) is simi-
lar to the one for ATL when it comes to temporal modalities and
Boolean cases, and thus we omit them for brevity (see the full algo-
rithm in [39]). Apart from them, we have hybrid cases 𝜑 = 𝛼 and
𝜑 =@𝛼𝜓 , and the dynamic case 𝜑 = (︀𝜋⌋︀𝜓 with 𝜋 ∈ {𝑝𝛼 ∶=𝜓,𝛼

𝐴Ð→
𝛽, 𝛼l}. Regarding the 𝜑 =@𝛼𝜓 , we evaluate𝜓 at state named 𝛼 , if
the state with such a name exists. If the denotation of name 𝛼 is
empty, then @𝛼𝜓 is false.

The dynamic case 𝜑 = (︀𝜋⌋︀𝜓 is a bit more involved as the algo-
rithm evaluates𝜓 in a new updated model𝑀𝜋 . Procedure Update
for constructing updated models is captured by Algorithm 2.

Algorithm 2 An algorithm for computing updated models
1: procedure Update(𝑀,𝑠, 𝜋)
2: case 𝜋 = 𝑝𝛼 ∶=𝜓
3: if 𝐿(𝛼) ≠ ∅ then
4: if MC(𝑀,𝑠,𝜓) then
5: 𝐿𝜋 (𝑝) = 𝐿(𝑝) ∪ 𝐿(𝛼)

6: else
7: 𝐿𝜋 (𝑝) = 𝐿(𝑝) ∖ 𝐿(𝛼)

8: return𝑀𝜋 = ∐︀𝑆, 𝜏, 𝐿𝜋 ̃︀

9: else
10: return𝑀

11: case 𝜋 = 𝛼
𝐴
Ð→ 𝛽

12: if 𝐿(𝛼) ≠ ∅ and 𝐿(𝛽) ≠ ∅ then
13: 𝜏𝜋 = 𝜏 ∖ {(𝐿(𝛼),𝐴, 𝜏(𝐿(𝛼),𝐴))} ∪ {(𝐿(𝛼),𝐴, 𝐿(𝛽))}

14: return𝑀𝜋 = ∐︀𝑆, 𝜏𝜋 , 𝐿̃︀

15: else
16: return𝑀

17: case 𝜋 = 𝛼l
18: if 𝐿(𝛼) = ∅ then

19: 𝑆𝜋 = 𝑆 ∪ {𝑡}, where 𝑡 is fresh
20: 𝜏𝜋 = 𝜏 ∪ {(𝑡,𝐴, 𝑡) ⋃︀ 𝐴 ∈ ActAgt}
21: 𝐿𝜋 = 𝐿 ∪ {(𝛼, {𝑡})}

22: return𝑀𝜋 = ∐︀𝑆𝜋 , 𝜏𝜋 , 𝐿𝜋 ̃︀

23: else
24: return𝑀

25: end procedure

In the procedure, an updated model is constructed according to
Definition 2.9. For the case of substitutions, we first check whether
state named 𝛼 exists, and if it does, we update the valuation function
𝐿 based onwhether𝑀𝑠 ⊧𝜓 . For arrows𝛼

𝐴Ð→ 𝛽 , if both states named
𝛼 and 𝛽 exist, we substitute in 𝜏 transition (𝐿(𝛼),𝐴, 𝜏(𝐿(𝛼),𝐴)) (i.e.
transition from state named 𝛼 via 𝐴 to whatever state is assigned
according to 𝜏(𝐿(𝛼),𝐴)) by the required transition (𝐿(𝛼),𝐴, 𝐿(𝛽))
(line 13). Finally, to add a new state with name 𝛼 , we first check
whether the name is not used, and then extend 𝑆 , 𝜏 , and 𝐿 of the
original model accordingly.

Model checking for LAMB is done then recursively by a combi-
nation of proceduresMC, which decides whether a given formula
is true in a given model, and Update, which computes required
updated models. MC calls Update when it needs to perform an
update (line 10, Alg. 1), and Update calls MC when it needs to
compute the valuation of𝜓 for case 𝜋 = 𝑝𝛼 ∶=𝜓 (line 4, Alg. 2).

We run MC(𝑁, 𝑡,𝜓) for at most ⋃︀𝜑 ⋃︀ formulas 𝜓 and at most ⋃︀𝜑 ⋃︀
models 𝑁 . Each run, similarly to the algorithm for ATL, is done in
polynomial time with respect to ⋃︀𝑀 ⋃︀. Hence, procedure MC is used
by the model checking algorithm for a polynomial amount of time.

At the same time, we run Update(𝑁, 𝑡, 𝜋) for at most ⋃︀𝜑 ⋃︀ models
𝑁 and at most ⋃︀𝜑 ⋃︀ formulas𝜓 (the substitution case). The sizes of
updated models are bounded by ⋃︀𝜑 ⋃︀ ⋅ ⋃︀𝑀 ⋃︀ (the case of adding a new
state). Thus, each run of Update takes polynomial time, and hence
we spend a polynomial amount of time in the procedure while
performing model checking.

Both procedures, MC and Update, take polynomial time to run,
and, therefore, model checking for LAMB can be done in poly-
nomial time. The lower bound follows straightforwardly from P-
completeness of ATL model checking.

Theorem 5.1. Themodel checking problem for LAMB is P-complete.

Remark 2. To make the language of LAMB more succinct, we can
extend it with constructs (︀𝜋 ∪ 𝜌⌋︀𝜑 , meaning ‘whichever update we
implement, 𝜋 or 𝜌 , 𝜑 will be true (in both cases)’. The model checking
of the resulting logic is Pspace-complete. Details about the extension
and proofs can be found in section A Note On Succinctness in [39].

6 RELATEDWORK
Strategic Reasoning. From the perspective of strategic reasoning,

our work is related to the research on rational verification and
synthesis. The first is the problem of checking whether a temporal
goal is satisfied in some (or all) game-theoretic equilibria of a CGM
[1, 45]. Rational synthesis consists in the automated construction
of such a model [26, 32]. In this direction, [49] investigated the
problem of finding incentives bymanipulating the weights of atomic
propositions to persuade agents to act towards a temporal goal.

Recent work has also investigated the use of formal methods to
verify and synthesize mechanisms for social choice using model
checking and satisfiability procedures for variants of Strategy Logic

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

835

[63, 64]. While being able to analyse MAS with respect to com-
plex solution concepts, all these works face high complexity issues.
In particular, key decision problems for rational verification with
temporal specifications are known to be 2Exptime-complete [45]
and model checking Strategy Logic is NonElementary for mem-
oryfull agents [65]. Compared to these approaches, LAMB offers
relatively high expressivity while maintaining the P-completeness
of its model checking problem.

The recently introduced obstruction ATL [23, 24] (OATL) allows
reasoning about agents’ strategic abilities while being hindered by
an external force, called the Demon. Being inspired by sabotage
modal logic [74], in this logic the Demon is able to disable some
transitions and thus impact the strategic abilities of the agents in
a system. This is somewhat related to normative updates that we
covered in Section 3.1 and the module checking problem [51, 56],
where agents interact with a non-deterministic environment that
may inhibit access to certain paths of the computation tree.

Notice that LAMB is significantly more general than the pre-
sented approaches as it allows to not only restrict transitions or
access, but also change it in a more nuanced way by redirecting
arrows (and, e.g., granting access to a state). Moreover, LAMB also
allows adding new states, as well as changing the valuations of
propositions. Moreover, updates in LAMB are explicitly present in
the syntax that enables explicit synthesis of model modifications.

Nominals. Nominals are an integral part of hybrid logic [13] and
is a common tool whenever one needs to refer to particular states on
the syntax level. For example, nominals and other hybrid modalities
are ubiquitous in the research on logics for social networks (see [69,
Chapter 3] for a comprehensive overview).

In the setting of DEL, tools and methods of hybrid logic have
been used, for example, to relax the assumption of common knowl-
edge of agents’ names [79], to study the interplay between public
announcements and distributed knowledge [46], and to tackle the
information and intentions dynamics in interactive scenarios [72].
Moreover, nominals were used to provide an axiomatisation of a
hybrid variant of sabotage modal logic [75], which extends the stan-
dard language of modal logic with constructs ⧫𝜑 meaning ‘after
removing some edge in the model, 𝜑 holds’ [14, 74].

Nominals were also used in linear- and branching-time temporal
logics to refer to particular points in computation (see, e.g., [18, 19,
33, 34, 42, 52, 53, 58]). In the framework of strategic reasoning, [48]
used some ideas from hybrid logic, but neither@𝛼 nor nominals
themselves. Hence, in terms of novelty, to the best of our knowledge,
the Hybrid ATL (HATL) proposed in this paper is the first attempt
to combine nominals with the ATL-style strategic reasoning.

The Interplay Between DEL and Strategic Reasoning. As we men-
tioned in the introduction, albeit DEL and various strategic logics
being very different formalism, some avenues of DEL research has
incorporated ideas from logics for strategic reasoning. Examples
include the exploration of concurrent DEL games [62], alternating-
time temporal DEL [29], coalitions announcements [6, 36] and other
forms of strategic multi-agent communication (see, e.g., [2, 41]).

To the best of our knowledge, DEL updates for CGMs, up until
now, were considered only in [37, 38], where the authors capture
granting and revoking actions of singular agents as well as updates

based on action models [15]. Both works are limited to the neXt-time
fragment of ATL (so-called coalition logic [68]). Moreover, they do
not support such expressive features of LAMB as adding new states
and changing the valuation of propositional variables. Additionally,
our arrow-redirecting operators allow for greater flexibility while
dealing with agents’ strategies.

7 DISCUSSION & CONCLUSION
We proposed LAMB, a logic for updating CGMs that combines ideas
from both the strategy logics tradition (ATL in our case) and the
DEL tradition. We have argued that LAMB can be useful for reason-
ing about a variety of dynamic phenomena in MAS thanks to the
modular nature of its primitive update operators. Finally, we have
explored the expressivity hierarchy of LAMB and its fragments,
and demonstrated that the model checking problem for LAMB is
P-complete.

As we have just scratched the surface of dynamic updates for
CGMs, there is a plethora of open questions. One of the immediate
ones is to explore the satisfiability problem for LAMB. Another one
is to assign costs to different types of model changes. In such a way,
we will be able to generalise the bounded modification synthesis to
the scenarios, where some changes are more costly to implement
and thus are less optimal. Moreover, having costs associated with
model changes will allow for a direct comparison of (this gener-
alised version of) LAMB and Obstruction ATL (see Section 6). We
conjecture that in such a scenario, LAMB will subsume OATL.

Apart from that, in Section 3.2, we mentioned the exploration of
constructive solutions to the synthesis problem, both bounded and
unbounded versions, as a promising area of further research. One
way to go about it is, perhaps, taking intuitions from the construc-
tive approaches to the ATL satisfiability [43, 44, 78]. Those solutions
can be then embedded into some of the existing model checkers,
like MCMAS [60] and STV [57], so that if a model checker returns
FALSE for a given model and property 𝜑 , the tool automatically
constructs an update that can fix the model so that it satisfies 𝜑 .

In a more general setting of CGM updates, one can also consider
modifications that cannot be captured by LAMB. For example, we
can explore the effects of granting or revoking actions to/from
certain agents, changing the number of agents, or any combinations
thereof with the LAMB updates. As mentioned in Section 6, some
preliminary work on changing the actions available to agents has
been done for the neXt-time fragment of ATL [37, 38].

Finally, as LAMB is based on ATL, we find it particularly inter-
esting to consider more expressive base languages, like, ATL⋆ or
variations of strategy logic SL [65]. Of particular interest is the sim-
ple goal fragment of SL [16], which is strictly more expressive than
ATL and yet allows for P-time model checking. We would also like
to consider the ideas of model updates in the setting of STIT logics
[21, 47]. Additionally, we believe that ideas from Separation Logics
[30, 31, 71], which were proposed to verify programs with mutable
data structures, could also provide insights on how to reason about
separation and composition-based modifications of MAS.

ACKNOWLEDGMENTS
This project has received funding from the European Union’s H2020
Marie Sklodowska-Curie project with grant agreement No 101105549.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

836

REFERENCES
[1] Alessandro Abate, Julian Gutierrez, Lewis Hammond, Paul Harrenstein, Marta

Kwiatkowska, Muhammad Najib, Giuseppe Perelli, Thomas Steeples, and
Michael J. Wooldridge. 2021. Rational verification: game-theoretic verification
of multi-agent systems. Applied Intelligence 51, 9 (2021), 6569–6584. https:
//doi.org/10.1007/S10489-021-02658-Y

[2] Thomas Ågotnes, Philippe Balbiani, Hans van Ditmarsch, and Pablo Seban. 2010.
Group announcement logic. Journal of Applied Logic 8, 1 (2010), 62–81. https:
//doi.org/10.1016/j.jal.2008.12.002

[3] Thomas Ågotnes, Valentin Goranko, and Wojciech Jamroga. 2007. Alternating-
time temporal logics with irrevocable strategies. In Proceedings of the 11th TARK,
Dov Samet (Ed.). 15–24. https://doi.org/10.1145/1324249.1324256

[4] Thomas Ågotnes, Wiebe van der Hoek, Juan A. Rodríguez-Aguilar, Carles Sierra,
andMichaelWooldridge. 2007. On the Logic of Normative Systems. In Proceedings
of the 20th IJCAI, Manuela M. Veloso (Ed.). 1175–1180.

[5] Thomas Ågotnes, Wiebe van der Hoek, and Michael J. Wooldridge. 2010. Robust
normative systems and a logic of norm compliance. Logic Journal of the IGPL 18,
1 (2010), 4–30. https://doi.org/10.1093/jigpal/jzp070

[6] Thomas Ågotnes and Hans van Ditmarsch. 2008. Coalitions and announcements.
In Proceedings of the 7th AAMAS, Lin Padgham, David C. Parkes, Jörg P. Müller,
and Simon Parsons (Eds.). IFAAMAS, 673–680.

[7] Thomas Ågotnes and Michael J. Wooldridge. 2010. Optimal social laws. In
Proceedings of the 9th AAMAS, Wiebe van der Hoek, Gal A. Kaminka, Yves
Lespérance, Michael Luck, and Sandip Sen (Eds.). IFAAMAS, 667–674.

[8] Natasha Alechina, Mehdi Dastani, and Brian Logan. 2013. Reasoning about
Normative Update. In Proceedings of the 23rd IJCAI, Francesca Rossi (Ed.). 20–26.

[9] Natasha Alechina, Mehdi Dastani, and Brian Logan. 2018. Norm Specification
and Verification in Multi-agent Systems. Journal of Applied Logics 5, 2 (2018),
457–491.

[10] Natasha Alechina, Giuseppe De Giacomo, Brian Logan, and Giuseppe Perelli. 2022.
Automatic Synthesis of Dynamic Norms for Multi-Agent Systems. In Proceedings
of the 19th KR, Gabriele Kern-Isberner, Gerhard Lakemeyer, and Thomas Meyer
(Eds.).

[11] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. 2002. Alternating-time
temporal logic. J. ACM 49 (2002), 672–713. https://doi.org/10.1145/585265.585270

[12] Benjamin Aminof, Marta Kwiatkowska, Bastien Maubert, Aniello Murano, and
Sasha Rubin. 2019. Probabilistic Strategy Logic. In Proceedings of the 28th IJCAI,
Sarit Kraus (Ed.). 32–38. https://doi.org/10.24963/IJCAI.2019/5

[13] Carlos Areces and Balder ten Cate. 2007. Hybrid logics. In Handbook of Modal
Logic, Patrick Blackburn, Johan Van Benthem, and Frank Wolter (Eds.). Studies
in Logic and Practical Reasoning, Vol. 3. Elsevier, 821–868.

[14] Guillaume Aucher, Johan van Benthem, and Davide Grossi. 2018. Modal logics
of sabotage revisited. Journal of Logic and Computation 28, 2 (2018), 269–303.
https://doi.org/10.1093/LOGCOM/EXX034

[15] Alexandru Baltag, Lawrence S. Moss, and Slawomir Solecki. 2022. Logics for
Epistemic Actions: Completeness, Decidability, Expressivity. CoRR abs/2203.06744
(2022). https://doi.org/10.48550/ARXIV.2203.06744

[16] Francesco Belardinelli, Wojciech Jamroga, Damian Kurpiewski, Vadim Malvone,
and Aniello Murano. 2019. Strategy Logic with Simple Goals: Tractable Reasoning
about Strategies. In Proceedings of the 28th IJCAI, Sarit Kraus (Ed.). 88–94. https:
//doi.org/10.24963/IJCAI.2019/13

[17] Patrick Blackburn, Maarten de Rijke, and Yde Venema. 2001. Modal Logic. Cam-
bridge Tracts in Theoretical Computer Science, Vol. 53. CUP.

[18] Patrick Blackburn and Miroslava Tzakova. 1999. Hybrid Languages and Temporal
Logic. Logic Journal of the IGPL 7, 1 (1999), 27–54. https://doi.org/10.1093/JIGPAL/
7.1.27

[19] Laura Bozzelli and Ruggero Lanotte. 2010. Complexity and succinctness issues
for linear-time hybrid logics. Theoretical Computer Science 411, 2 (2010), 454–469.
https://doi.org/10.1016/j.tcs.2009.08.009

[20] Laura Bozzelli, Aniello Murano, and Loredana Sorrentino. 2020. Alternating-
time temporal logics with linear past. Theoretical Computer Science 813 (2020),
199–217.

[21] Jan M. Broersen and Andreas Herzig. 2015. Using STIT Theory to Talk About
Strategies. In Models of Strategic Reasoning - Logics, Games, and Communities,
Johan van Benthem, Sujata Ghosh, and Rineke Verbrugge (Eds.). LNCS, Vol. 8972.
Springer, 137–173. https://doi.org/10.1007/978-3-662-48540-8_5

[22] Nils Bulling and Mehdi Dastani. 2016. Norm-based mechanism design. Artificial
Intelligence 239 (2016), 97–142.

[23] Davide Catta, Jean Leneutre, and Vadim Malvone. 2023. Obstruction Logic: A
Strategic Temporal Logic to Reason About Dynamic Game Models. In Proceedings
of the 26th ECAI (Frontiers in Artificial Intelligence and Applications, Vol. 372),
Kobi Gal, Ann Nowé, Grzegorz J. Nalepa, Roy Fairstein, and Roxana Radulescu
(Eds.). IOS Press, 365–372. https://doi.org/10.3233/FAIA230292

[24] Davide Catta, Jean Leneutre, Vadim Malvone, and Aniello Murano. 2024. Ob-
struction Alternating-time Temporal Logic: A Strategic Logic to Reason about
Dynamic Models. In Proceedings of the 23rd AAMAS, Mehdi Dastani, Jaime Simão
Sichman, Natasha Alechina, and Virginia Dignum (Eds.). IFAAMAS, 271–280.

https://doi.org/10.5555/3635637.3662875
[25] Edmund M. Clarke, Orna Grumberg, Daniel Kroening, Doron A. Peled, and

Helmut Veith. 2018. Model checking, 2nd Edition. MIT Press.
[26] Rodica Condurache, Emmanuel Filiot, Raffaella Gentilini, and Jean-François

Raskin. 2016. The Complexity of Rational Synthesis. In Proceedings of the 43rd
ICALP (LIPIcs, Vol. 55), Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval
Rabani, and Davide Sangiorgi (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 121:1–121:15. https://doi.org/10.4230/LIPICS.ICALP.2016.121

[27] Rajdeep K. Dash, Nicholas R. Jennings, and David C. Parkes. 2003. Computational-
Mechanism Design: A Call to Arms. IEEE Intelligent Systems 18, 6 (2003), 40–47.
https://doi.org/10.1109/MIS.2003.1249168

[28] Cristina David and Daniel Kroening. 2017. Program synthesis: challenges and
opportunities. Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences 375, 2104 (2017), 20150403.

[29] Tiago de Lima. 2014. Alternating-time temporal dynamic epistemic logic. Jour-
nal of Logic and Computation 24, 6 (2014), 1145–1178. https://doi.org/10.1093/
LOGCOM/EXS061

[30] Stéphane Demri and Morgan Deters. 2015. Separation logics and modalities: a
survey. J. Appl. Non Class. Logics 25, 1 (2015), 50–99.

[31] Stéphane Demri and Raul Fervari. 2019. The power of modal separation logics. J.
Log. Comput. 29, 8 (2019), 1139–1184.

[32] Dana Fisman, Orna Kupferman, and Yoad Lustig. 2010. Rational Synthesis.
In Proceedings of the 16th TACAS (LNCS, Vol. 6015), Javier Esparza and Rupak
Majumdar (Eds.). Springer, 190–204. https://doi.org/10.1007/978-3-642-12002-
2_16

[33] Massimo Franceschet and Maarten de Rijke. 2006. Model checking hybrid logics
(with an application to semistructured data). Journal of Applied Logic 4, 3 (2006),
279–304. https://doi.org/10.1016/J.JAL.2005.06.010

[34] M. Franceschet, B. Schlingloff, and M. Rijke. 2003. Hybrid Logics on Linear
Structures: Expressivity and Complexity. In Proceedings of the 10th TIME. 166–
173. https://doi.org/10.1109/TIME.2003.1214893

[35] Tim French, Wiebe van der Hoek, Petar Iliev, and Barteld P. Kooi. 2013. On
the succinctness of some modal logics. Artificial Intelligence 197 (2013), 56–85.
https://doi.org/10.1016/J.ARTINT.2013.02.003

[36] Rustam Galimullin. 2021. Coalition and relativised group announcement logic.
Journal of Logic, Language and Information 30, 3 (2021), 451–489. https://doi.org/
10.1007/s10849-020-09327-2

[37] Rustam Galimullin and Thomas Ågotnes. 2021. Dynamic Coalition Logic:
Granting and Revoking Dictatorial Powers. In Proceedings of the 8th LORI
(LNCS, Vol. 13039), Sujata Ghosh and Thomas Icard (Eds.). Springer, 88–101.
https://doi.org/10.1007/978-3-030-88708-7_7

[38] Rustam Galimullin and Thomas Ågotnes. 2022. Action Models for Coalition
Logic. In Proceedings of the 4th DaLí (LNCS, Vol. 13780), Carlos Areces and Diana
Costa (Eds.). Springer, 73–89. https://doi.org/10.1007/978-3-031-26622-5_5

[39] Rustam Galimullin, Maksim Gladyshev, Munyque Mittelmann, and Nima Mo-
tamed. 2025. Changing the Rules of the Game: Reasoning about Dynamic
Phenomena in Multi-Agent Systems. CoRR abs/2502.11785 (2025). https:
//doi.org/10.48550/arXiv.2502.11785

[40] Rustam Galimullin and Louwe B. Kuijer. 2024. Synthesizing Social Laws with
ATL Conditions. In Proceedings of the 23rd AAMAS, Mehdi Dastani, Jaime Simão
Sichman, Natasha Alechina, and Virginia Dignum (Eds.). IFAAMAS, 2270–2272.
https://doi.org/10.5555/3635637.3663130

[41] Rustam Galimullin and Fernando R. Velázquez-Quesada. 2024. Topic-Based
Communication Between Agents. Studia Logica (2024). https://doi.org/10.1007/
s11225-024-10119-z

[42] Valentin Goranko. 2000. Temporal Logics with Reference Pointers and Computa-
tion Tree Logics. Journal of Applied Non-Classical Logics 10, 3-4 (2000), 221–242.
https://doi.org/10.1080/11663081.2000.10510998

[43] Valentin Goranko and Dmitry Shkatov. 2009. Tableau-based decision procedures
for logics of strategic ability in multiagent systems. ACM Transactions on Com-
putational Logic 11, 1 (2009), 3:1–3:51. https://doi.org/10.1145/1614431.1614434

[44] Valentin Goranko and Govert van Drimmelen. 2006. Complete axiomatization
and decidability of Alternating-time temporal logic. Theoretical Computer Science
353, 1-3 (2006), 93–117. https://doi.org/10.1016/J.TCS.2005.07.043

[45] Julian Gutierrez, Muhammad Najib, Giuseppe Perelli, and Michael J. Wooldridge.
2023. On the complexity of rational verification. Annals of Mathematics and
Artificial Intelligence 91, 4 (2023), 409–430.

[46] Jens Ulrik Hansen. 2011. A Hybrid Public Announcement Logic with Distributed
Knowledge. In Int. Workshop on Hybrid Logic and Applications, HyLo 2010.

[47] John F. Horty. 2001. Agency and deontic logic. OUP.
[48] Xiaowei Huang and Ron Van Der Meyden. 2018. An Epistemic Strategy Logic.

ACM Trans. Comput. Logic 19, 4, Article 26 (nov 2018), 45 pages. https://doi.org/
10.1145/3233769

[49] David Hyland, Munyque Mittelmann, Aniello Murano, Giuseppe Perelli, and
Michael Wooldridge. 2024. Incentive Design for Rational Agents. In Proceedings
of the 21st KR, Pierre Marquis, Magdalena Ortiz, and Maurice Pagnucco (Eds.).
464–474. https://doi.org/10.24963/kr.2024/44

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

837

https://doi.org/10.1007/S10489-021-02658-Y
https://doi.org/10.1007/S10489-021-02658-Y
https://doi.org/10.1016/j.jal.2008.12.002
https://doi.org/10.1016/j.jal.2008.12.002
https://doi.org/10.1145/1324249.1324256
https://doi.org/10.1093/jigpal/jzp070
https://doi.org/10.1145/585265.585270
https://doi.org/10.24963/IJCAI.2019/5
https://doi.org/10.1093/LOGCOM/EXX034
https://doi.org/10.48550/ARXIV.2203.06744
https://doi.org/10.24963/IJCAI.2019/13
https://doi.org/10.24963/IJCAI.2019/13
https://doi.org/10.1093/JIGPAL/7.1.27
https://doi.org/10.1093/JIGPAL/7.1.27
https://doi.org/10.1016/j.tcs.2009.08.009
https://doi.org/10.1007/978-3-662-48540-8_5
https://doi.org/10.3233/FAIA230292
https://doi.org/10.5555/3635637.3662875
https://doi.org/10.4230/LIPICS.ICALP.2016.121
https://doi.org/10.1109/MIS.2003.1249168
https://doi.org/10.1093/LOGCOM/EXS061
https://doi.org/10.1093/LOGCOM/EXS061
https://doi.org/10.1007/978-3-642-12002-2_16
https://doi.org/10.1007/978-3-642-12002-2_16
https://doi.org/10.1016/J.JAL.2005.06.010
https://doi.org/10.1109/TIME.2003.1214893
https://doi.org/10.1016/J.ARTINT.2013.02.003
https://doi.org/10.1007/s10849-020-09327-2
https://doi.org/10.1007/s10849-020-09327-2
https://doi.org/10.1007/978-3-030-88708-7_7
https://doi.org/10.1007/978-3-031-26622-5_5
https://doi.org/10.48550/arXiv.2502.11785
https://doi.org/10.48550/arXiv.2502.11785
https://doi.org/10.5555/3635637.3663130
https://doi.org/10.1007/s11225-024-10119-z
https://doi.org/10.1007/s11225-024-10119-z
https://doi.org/10.1080/11663081.2000.10510998
https://doi.org/10.1145/1614431.1614434
https://doi.org/10.1016/J.TCS.2005.07.043
https://doi.org/10.1145/3233769
https://doi.org/10.1145/3233769
https://doi.org/10.24963/kr.2024/44

[50] Wojciech Jamroga. 2015. Logical Methods for Specificaion and Verification of
Multi-Agent Systems. Institute of Computer Science, Polish Academy of Sciences.

[51] Wojciech Jamroga and Aniello Murano. 2015. Module Checking of Strategic
Ability. In Proceedings of the 14th AAMAS, Gerhard Weiss, Pinar Yolum, Rafael H.
Bordini, and Edith Elkind (Eds.). ACM, 227–235.

[52] Ahmet Kara, Volker Weber, Martin Lange, and Thomas Schwentick. 2009. On
the Hybrid Extension of CTL and CTL+ . LNCS, Vol. 5734. Springer, 427–438.
https://doi.org/10.1007/978-3-642-03816-7_37

[53] Daniel Kernberger and Martin Lange. 2020. On the expressive power of hybrid
branching-time logics. Theoretical Computer Science 813 (2020), 362–374. https:
//doi.org/10.1016/j.tcs.2020.01.014

[54] Barteld Kooi. 2007. Expressivity and completeness for public update logics via
reduction axioms. Journal of Applied Non-Classical Logics 17, 2 (2007), 231–253.
https://doi.org/10.3166/JANCL.17.231-253

[55] Louwe B. Kuijer. 2014. The Expressivity of Factual Change in Dynamic Epistemic
Logic. Review of Symbolic Logic 7, 2 (2014), 208–221. https://doi.org/10.1017/
S1755020313000324

[56] Orna Kupferman, Moshe Y Vardi, and Pierre Wolper. 2001. Module checking.
Information and Computation 164, 2 (2001), 322–344.

[57] Damian Kurpiewski, Wojciech Jamroga, and Michal Knapik. 2019. STV: Model
Checking for Strategies under Imperfect Information. In Proceedings of the 18th
AAMAS, Edith Elkind, Manuela Veloso, Noa Agmon, and Matthew E. Taylor
(Eds.). IFAAMAS, 2372–2374.

[58] Martin Lange. 2009. Model Checking for Hybrid Logic. Journal of Logic, Language
and Information 18, 4 (2009), 465–491. https://doi.org/10.1007/s10849-009-9088-7

[59] Francois Laroussinie, Nicolas Markey, and Ghassan Oreiby. 2008. On the Expres-
siveness and Complexity of ATL. Logical Methods in Computer Science Volume 4,
Issue 2 (May 2008).

[60] Alessio Lomuscio, Hongyang Qu, and Franco Raimondi. 2017. MCMAS: an open-
source model checker for the verification of multi-agent systems. International
Journal on Software Tools for Technology Transfer 19, 1 (2017), 9–30. https:
//doi.org/10.1007/s10009-015-0378-x

[61] Carsten Lutz. 2006. Complexity and succinctness of public announcement logic.
In Proceedings of the 5th AAMAS, Hideyuki Nakashima, Michael P. Wellman,
Gerhard Weiss, and Peter Stone (Eds.). ACM, 137–143. https://doi.org/10.1145/
1160633.1160657

[62] BastienMaubert, Sophie Pinchinat, François Schwarzentruber, and Silvia Stranieri.
2020. Concurrent Games in Dynamic Epistemic Logic. In Proceedings of the 29th
IJCAI, Christian Bessiere (Ed.). 1877–1883. https://doi.org/10.24963/IJCAI.2020/
260

[63] Munyque Mittelmann, Bastien Maubert, Aniello Murano, and Laurent Perrussel.
2023. Formal Verification of Bayesian Mechanisms. In Proceedings of the 37th
AAAI, Brian Williams, Yiling Chen, and Jennifer Neville (Eds.). AAAI Press,
11621–11629. https://doi.org/10.1609/AAAI.V37I10.26373

[64] Munyque Mittelmann, Bastien Maubert, Aniello Murano, and Laurent Perrussel.
2025. Formal verification and synthesis of mechanisms for social choice. Artif.

Intell. 339 (2025), 104272.
[65] Fabio Mogavero, Aniello Murano, Giuseppe Perelli, and Moshe Y. Vardi. 2014.

Reasoning About Strategies: On the Model-Checking Problem. ACM Trans.
Comput. Log. 15, 4 (2014), 34:1–34:47.

[66] Fabio Mogavero, Aniello Murano, and Moshe Y. Vardi. 2010. Reasoning About
Strategies. In Proceedings of the 30th FSTTCS (LIPIcs, Vol. 8), Kamal Lodaya and
Meena Mahajan (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 133–
144. https://doi.org/10.4230/LIPICS.FSTTCS.2010.133

[67] Noam Nisan, Tim Roughgarden, Éva Tardos, and Vijay V. Vazirani (Eds.). 2007.
Algorithmic Game Theory. Cambridge University Press. https://doi.org/10.1017/
CBO9780511800481

[68] Marc Pauly. 2002. A modal logic for coalitional power in games. Journal of Logic
and Computation 12, 1 (2002), 149–166. https://doi.org/10.1093/logcom/12.1.149

[69] Mina Young Pedersen. 2024. Malicious Agents and the Power of the Few : On the
Logic of Abnormality in Social Networks. Ph.D. Dissertation. University of Bergen,
Norway. https://bora.uib.no/bora-xmlui/handle/11250/3151733

[70] Steve Phelps, PeterMcBurney, and Simon Parsons. 2010. Evolutionarymechanism
design: a review. Autonomous agents and multi-agent systems 21, 2 (2010), 237–
264.

[71] John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data
Structures. In LICS. IEEE Computer Society, 55–74.

[72] Olivier Roy. 2009. A dynamic-epistemic hybrid logic for intentions and infor-
mation changes in strategic games. Synthese 171, 2 (2009), 291–320. https:
//doi.org/10.1007/S11229-009-9644-3

[73] Pierre-Yves Schobbens. 2003. Alternating-time logic with imperfect recall. In
Proceedings of the 1st LCMAS (ENTCS, Vol. 85), Wiebe van der Hoek, Alessio
Lomuscio, Erik P. de Vink, and Michael J. Wooldridge (Eds.). Elsevier, 82–93.
https://doi.org/10.1016/S1571-0661(05)82604-0

[74] Johan van Benthem. 2005. An Essay on Sabotage and Obstruction. InMechanizing
Mathematical Reasoning (LNCS, Vol. 2605), Dieter Hutter and Werner Stephan
(Eds.). Springer, 268–276. https://doi.org/10.1007/978-3-540-32254-2_16

[75] Johan van Benthem, Lei Li, Chenwei Shi, and Haoxuan Yin. 2023. Hybrid sabotage
modal logic. Journal of Logic and Computation 33, 6 (2023), 1216–1242. https:
//doi.org/10.1093/LOGCOM/EXAC006

[76] Wiebe van der Hoek, Mark Roberts, and Michael Wooldridge. 2007. Social laws
in alternating time: effectivenss, feasibility and synthesis. Synthese 156 (2007),
1–19.

[77] Hans van Ditmarsch, Wiebe van der Hoek, and Barteld Kooi. 2008. Dynamic
Epistemic Logic. Synthese Library, Vol. 337. Springer.

[78] Dirk Walther, Carsten Lutz, Frank Wolter, and Michael J. Wooldridge. 2006. ATL
Satisfiability is Indeed EXPTIME-complete. Journal of Logic and Computation 16,
6 (2006), 765–787. https://doi.org/10.1093/LOGCOM/EXL009

[79] Yanjing Wang and Jeremy Seligman. 2018. When Names Are Not Commonly
Known: Epistemic Logic with Assignments. In Proceedgins of the 12th AiML,
Guram Bezhanishvili, Giovanna D’Agostino, GeorgeMetcalfe, and Thomas Studer
(Eds.). College Publications, 611–628.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

838

https://doi.org/10.1007/978-3-642-03816-7_37
https://doi.org/10.1016/j.tcs.2020.01.014
https://doi.org/10.1016/j.tcs.2020.01.014
https://doi.org/10.3166/JANCL.17.231-253
https://doi.org/10.1017/S1755020313000324
https://doi.org/10.1017/S1755020313000324
https://doi.org/10.1007/s10849-009-9088-7
https://doi.org/10.1007/s10009-015-0378-x
https://doi.org/10.1007/s10009-015-0378-x
https://doi.org/10.1145/1160633.1160657
https://doi.org/10.1145/1160633.1160657
https://doi.org/10.24963/IJCAI.2020/260
https://doi.org/10.24963/IJCAI.2020/260
https://doi.org/10.1609/AAAI.V37I10.26373
https://doi.org/10.4230/LIPICS.FSTTCS.2010.133
https://doi.org/10.1017/CBO9780511800481
https://doi.org/10.1017/CBO9780511800481
https://doi.org/10.1093/logcom/12.1.149
https://bora.uib.no/bora-xmlui/handle/11250/3151733
https://doi.org/10.1007/S11229-009-9644-3
https://doi.org/10.1007/S11229-009-9644-3
https://doi.org/10.1016/S1571-0661(05)82604-0
https://doi.org/10.1007/978-3-540-32254-2_16
https://doi.org/10.1093/LOGCOM/EXAC006
https://doi.org/10.1093/LOGCOM/EXAC006
https://doi.org/10.1093/LOGCOM/EXL009

	Abstract
	1 Introduction
	2 Reasoning About Strategic Abilities in Changing Environments
	2.1 Models
	2.2 Hybrid ATL
	2.3 Logic for ATL Model Building

	3 Dynamic MAS through the lens of LAMB
	3.1 Normative Updates on CGMs
	3.2 Synthesis
	3.3 Mechanisms for Social Choice

	4 Expressivity
	5 Model checking
	6 Related work
	7 Discussion & Conclusion
	Acknowledgments
	References

