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ABSTRACT
To safely and efficiently solve motion planning problems in multi-

agent settings, most approaches attempt to solve a joint optimiza-

tion that explicitly accounts for the responses triggered in other

agents. This often results in solutions with an exponential compu-

tational complexity, making these methods intractable for complex

scenarios with many agents. While sequential predict-and-plan ap-

proaches are more scalable, they tend to perform poorly in highly

interactive environments. This paper proposes a method to improve

the interactive capabilities of sequential predict-and-plan methods

in multi-agent navigation problems by introducing predictability

as an optimization objective. We interpret predictability through

the use of general prediction models, by allowing agents to pre-

dict themselves and estimate how they align with these external

predictions. We formally introduce this behavior through the free-

energy of the system, which reduces (under appropriate bounds)

to the Kullback-Leibler divergence between plan and prediction,

and use this as a penalty for unpredictable trajectories. The pro-

posed interpretation of predictability allows agents to more robustly

leverage prediction models, and fosters a ‘soft social convention’

that accelerates agreement on coordination strategies without the

need of explicit high level control or communication. We show

how this predictability-aware planning leads to lower-cost trajecto-

ries and reduces planning effort in a set of multi-robot problems,

including autonomous driving experiments with human driver

data, where we show that the benefits of considering predictabil-

ity apply even when only the ego-agent uses this strategy. The

code and experiment videos can be found in the following page:

https://romanchiva.github.io/PAProjectPage/
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1 INTRODUCTION
Many modern robotics applications involve autonomous agents

navigating multi-agent environments where they will be required

to interact with humans and other robots without full knowledge or

extensive communication capabilities [33]. This involves planning

trajectories in a complex system governed by a mix of rational

and non-rational, stochastic and possibly game theoretic behaviors.

To achieve safe and efficient interactions, agents need to reason

about each other and coordinate. However, this poses critical chal-

lenges due to the high uncertainty associated with estimating other

agents’s objectives [16] and a computational complexity that ren-

ders problems intractable for more than a handful of agents.

RecedingHorizon TrajectoryOptimization allows for flexible and

anticipative planning while ensuring compliance with e.g. safety
constraints in multi-agent navigation problems. However, planning

a trajectory that explicitly accounts for interactions among agents

generally requires solving a joint optimization problem. A variety

of joint planning methods can be found in literature, e.g. [10, 22], of
which game theoretic approaches best capturing agent interaction

complexities [33]. Bymodeling other agents as rational actors, game

theoretic approaches cast the joint optimization as a constrained

dynamic game and seek to find equilibrium solutions. Although

this often results in stable and coordinated interactions [11, 16],

game theoretic approaches suffer from the curse of dimensionality,

as the planning complexity grows exponentially with the number

of agents [30]. Additionally, modeling other agents as rational is a

strong assumption which will not hold in practice, especially when

interacting with human agents [4, 12].

Alternatively, predict-and-plan approaches scale well with num-

ber of agents, however they tend to perform poorly in interactive

environments. By separating prediction and planning, the problem
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simplifies to a single-agent collision avoidance problem with dy-

namic obstacles [5, 13]. The accuracy of the prediction model limits

how well agents can coordinate. A system of interacting agents

is highly complex, making it difficult to predict the diversity of

possible futures, especially when considering interactions. This can

lead to ambiguous predictions, making agents unable to anticipate

their environment, and thus have to re-plan more often or engage

in riskier behaviors [33].

Ideally, every agent in the environment would be able to accu-

rately anticipate surrounding agents’ future trajectories allowing

for efficient and safe interaction. Sequential planning agents use

prediction models to avoid collisions with others, however, this

fails to acknowledge that surrounding agents also hold predictions

about the ego-agent, and plan their trajectory based on these pre-

dictions. Unless the optimal avoidance strategy falls within the

range of predicted behaviors, other agents will react to the unex-

pected avoidance strategy by modifying their own trajectory. To

mitigate this issue, we propose the following: in the same way a

prediction model is used to predict other agents, the ego-agent

can use it to approximate how other agents expect it to behave.

This information can be used in planning to introduce a penalty

for trajectories other agents will find surprising, bringing the opti-

mal trajectory closer to the expectation surrounding agents hold.

Accounting for predictability in this way mirrors the principle of

free-energy minimization in active inference [29] (and control sys-

tems [31]), where an agent not only seeks to maximize reward but

also aims to minimize the discrepancy between some prediction

model and observations. In multi-agent interactions [24], agents

hold probabilistic beliefs about the behavior of others, and the ac-

curacy of these beliefs is directly influenced by the agent’s own

actions. By minimizing free energy, the agent balances actions that

reduce uncertainty and confirm its internal model of the world

with those that maximize reward. This approach ensures that the

agent’s behavior is not only goal-directed but also aligned with

maintaining coherent and accurate beliefs about the surrounding

agents.

1.1 Contribution
We explore how sequential planning agents can improve their co-

ordination capabilities by accounting for the predictability of their

planned trajectories. When a group agents accounts for predictabil-

ity, they are able to foster a ‘soft social convention’ dictated by the

prediction model which results in a decrease of uncertainty about

the environment for all agents in the group. This helps agents re-

solve coordination problems without having to explicitly model

interactions. Formally, the contribution of this paper is threefold:

(1) We exploit ideas on free-energy to formulate a cost function

that uses feedback from a prediction model to include pre-

dictability as an objective and analyze how this cost function

can be integrated with a planner.

(2) We provide results showing how our predictability aware-

ness mechanism leads to ‘soft social conventions’ forming-

based interaction strategies encoded in prediction models

for multi-robot navigation problems. This allows agents to

achieve smoother coordination by improving the effective-

ness of prediction models in interactive environments.

(3) Accounting for predictability causes agents to adopt social
norms and pro-social behaviors encoded in learned predic-

tion models, allowing to more closely mimic experts’ be-

haviors without needing cost function learning. We provide

evidence for these behaviors in an experiment where an

agent interacts with human drivers in scenarios from the

Waymo Open Motion Dataset.

2 RELATEDWORK
Integration of Prediction Models and Planners. Trajectory

prediction has significantly advanced in recent years, particularly

with the development of transformer-based generative models ca-

pable of producing interaction-aware joint trajectory predictions,

e.g. [8, 9, 21]. While these models show impressive performance in

open-loop evaluations, integrating them with planners in highly

interactive settings remains challenging [20]. Effective interactive

planning often necessitates joint prediction and planning. Addition-

ally, the planner often requires some form of learned cost function

[23]. Otherwise, if the behavior of the expert significantly differs

from the expert in the training data, this will throw the model out

of distribution yielding low quality predictions.

Many studies have focused on developing ego-conditioned pre-

diction models [27]; however, their integration with planners faces

obstacles primarily due to computational complexity. For instance,

in [22] Tree Policy Planning (TPP) has been employed to generate

an initial set of partial trajectories, which condition the prediction

model and create a scenario tree. This tree is evaluated using a

cost function combining designed and learned features to identify

and expand promising scenarios, efficiently allocating computa-

tional resources. A novel approach by [10] leverages unconditioned

prediction models to provide initial estimates of other agents’ tra-

jectories, capitalizing on the models’ ability to predict general inten-

tions accurately while acknowledging their limitations in capturing

short-term interaction details. This approach optimizes the ego and

agent trajectories together, minimizing disturbances from the ini-

tial agent paths and utilizing homotopy classes to ensure diversity

and avoid local minima. Instead of conditional prediction models,

some methods develop fully differentiable stacks [23, 25] enabling

gradient backpropagation through the planner, which allows for

combined prediction model fine-tuning and cost function learning

aligned with expert behavior in the training data. While avoiding

the joint optimization, our approach links prediction and planning

without the need for retraining or fine-tuning by including a term

in the cost function that helps guide the agent’s behavior to not

compromise its predictions. This allows for maintaining flexibility

in selecting prediction models and planner combinations while

being compute-efficient.

Predictability and Legibility of Motion. In the field of Human-

Robot Interaction, legibility and predictability of motion have been

studied to improve coordination by designing agent behaviors that

clearly communicate intention and avoid surprising observers [15].

Often both objectives overlap [3]. Traditional formulations of this

problem are not well suited for receding horizon applications as

they optimize over complete trajectories and rely on utility-based

analytical models of observer expectations [14]. Additionally, the

observer is modeled as inactive, thus having no influence on the
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planning agent. This assumption breaks down in multi-agent navi-

gation where the observer and the agent share the workspace and

influence each other. Several works have explored the adaptation

of these concepts to an interactive multi-agent context. [2] define

dynamic goal regions around neighboring agents and optimize for

reduced uncertainty about the collision avoidance strategy. [19]

show how increasing action penalties at later horizon steps causes

agents to more rapidly demonstrate their avoidance strategy. This

accelerates intent inference giving agents better anticipation. [6]

defines hand-crafted legibility costs for planning in highway driv-

ing. These methods are often designed to target a specific type of

observer model. In contrast, our approach minimizes a predictabil-

ity surrogate that allows modeling the observers with an arbitrary

prediction model choice.

3 TRAJECTORY PLANNING
The general optimization problem for a single-agent in stochastic

motion planning can be formulated as follows:

min

𝒖∈U,𝒙∈X

𝐾−1∑︁
𝑘=0

𝐽𝑘 (𝒙𝑘 , 𝒖𝑘 ) + 𝐽𝐾 (𝒙𝐾 ) (1a)

s.t. 𝒙0 = 𝒙 init, (1b)

𝒙𝑘+1 = 𝑓 (𝒙𝑘 , 𝒖𝑘 ), 𝑘 = 0, ..., 𝐾 − 1 (1c)

P
[
𝐶 (𝒙𝑘 , 𝜹𝑜𝑘 ),∀𝑜

]
≥ 1 − 𝜖𝑘 ,∀𝑘, (1d)

where 𝒖 = {𝒖0, ..., 𝒖𝐾 } ∈ U are the system inputs subject to input

constraints, 𝒙𝑘 ∈ X denotes the states of the robot, 𝑓 (·) corre-
sponds to the nonlinear system’s dynamics, 𝐽𝑘 (𝒙𝑘 , 𝒖𝑘 ) ≥ 0 is the

cost function specifying performance metrics, and 𝐾 is the length

of the planning horizon. In this formulation, 𝐶 (·) is the collision
avoidance constraint, and 𝜹𝑜

𝑘
is the uncertain position of obstacle

𝑜 at stage 𝑘 obtained through a prediction model P(X) that takes
into account the concatenated states of all agents in the scene. The

chance constraint in Eq. (1d), guarantees that the probability that

the robot collides with the dynamic obstacle is below a specified

threshold 𝜖𝑘 .

In a game theoretic setting where all agents are controlled by

a centralized planner, the problem reduces to solving a joint opti-

mization program over all agents and all possible trajectories, such

that from the set of joint trajectories that satisfy the constraints,

the agents execute the optimal ones. This naturally carries high

computational complexity, access to some centralized controller,

and full information assumptions. Consider instead the case where

𝑁 (interactive) agents solve the optimization problem (1) indepen-

dently and use model P (X) to predict each other (and thus estimate

the probabilities of constraint satisfaction). Agents can then query

the prediction model to observe the predictions others have about

them. Our method reduces to the following intuition: Agents can

use this information to shift their behaviors towards the distribu-

tion coming out of the prediction model. This ‘closes the loop’ on

prediction errors, intuitively improving the planning problem in

two ways. First, inducing implicit decentralized coordination: an

ideal situation is one where all agents act following the model-

predicted distribution, and this distribution perfectly optimizes the

cost of each agent. Second, it ‘robustifies’ the prediction model a

posteriori: once the model has been trained on offline data, agents

actively shift their plans towards the predicted distributions, collec-

tively reducing prediction errors and widening the space of suitable

prediction models for a given problem.

4 PROPOSED METHOD: FREE ENERGY AS A
PREDICTABILITY SURROGATE

4.1 Derivation of a predictability aware cost
function

Our objective is to design a framework that allows agents to trade off

predictability with progress toward the goal. If we define an agent’s

optimal trajectory distribution as Q∗
, in the best-case scenario, an

agent’s optimal trajectory distribution aligns with the predictions

held by other agents. This alignment allows the agent to minimize

its own cost while avoiding any disruption or interference with the

trajectories of surrounding agents. In this case, no trade-off needs

to be performed, however, deviations from this ideal scenario are

to be expected. To formalize this as a planning objective, agents

should seek to minimize the cost of trajectories sampled from their

corresponding prediction in P (X). Drawing inspiration from the

path integral control derivation in [35], we begin by defining the

free energy of a trajectory distribution:

F (𝑆,P, 𝜆) = −𝜆 log(E𝒙∼P [exp(− 1

𝜆
𝑆 (𝒙))]),

where 𝑆 is a state cost function that represents some (trajectory
planning) objective, P denotes a prediction distribution, 𝑥 is a tra-

jectory sampled from P, and 𝜆 represents the inverse temperature

controlling the strictness of the efficiency criterion. This control

theoretic free energy can be interpreted as a measure of how ef-

ficient a prediction distribution is at minimizing cost 𝑆 . The free

energy is minimized by pushing P as close as possible to Q∗
.

The free energy as defined so far is a function of prediction

distribution P, however, agents won’t plan trajectories by sampling

from P. Instead, we define 𝑄 as a trajectory distribution an agent

has control over. Let the states 𝒙 = {𝒙0, ..., 𝒙𝐾 }, which the ego-

agent occupies along its planned trajectory 𝜏0,𝐾 , be represented as

narrow Gaussians 𝑞(𝒙𝑘 ) with mean 𝒙𝑘 covariance Σ𝑘 :

𝜏0:𝐾 = {𝑞(𝒙𝑘 )}𝐾𝑘=0,
𝑞(𝒙𝑘 ) = N(𝒙𝑘 , Σ𝑘 ).

(2)

By applying an expectation switch, these distributions can be

incorporated into the free energy definition, making it a function

of the agent’s plan,

F (𝑆,P, 𝜆) = −𝜆 log(E𝒙∼Q [exp(− 1

𝜆
𝑆 (𝒙)) 𝑝 (𝒙)

𝑞(𝒙) ]), (3)

where 𝑝 is the density function of the prediction. By concavity of

the logarithm and Jensen’s inequality,

F (𝑆,P, 𝜆) ≤ −𝜆E𝒙∼Q [log(exp(− 1

𝜆
𝑆 (𝒙))) + log( 𝑝 (𝒙)

𝑞(𝒙) )] .

Finally, using the definition of Kullback-Leibler Divergence and

simplifying,

F (𝑆,P, 𝜆) ≤ E𝒙∼Q [𝑆 (𝒙)] + 𝜆KL(𝑞(𝒙) | |𝑝 (𝒙)), (4)
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where KL denotes the KL-Divergence. The right-hand side pro-

vides an upper bound on the free energy, and one can minimize

this instead of the free energy. It resembles a standard control ob-

jective, and the terms allow for good conceptual understanding

of the effect they have: A Performance Cost and Predictability
Cost respectively, which penalizes agents for acting unpredictably.

Using this newly found expression as a stage cost, we can craft the

following cost function as a stage cost for a planning problem:

𝐽 (𝜏0:𝐾 ) =
𝐾∑︁
𝑘=0

𝐽𝑘 (𝒙𝑘 , 𝒖𝑘 ) + 𝜆KL(𝑞(𝒙𝑘 ) | |𝑝 (𝒙𝑘 )),

where we implicitly assume 𝐽𝑘 to be composed by some state

cost 𝑆 and some control action cost. Minimizing this cost function

allows agents to trade off predictability and progress toward the

goal by means of the free energy, and 𝜆 can be selected to control

how much weight is assigned to predictability during planning.

Remark 1. We can emphasize now the intuition behind using
the free energy as a way of incorporating predictability into optimal
control. Eq. (4) is minimized precisely when Q = Q∗ = P. That is, the
trajectory distribution executed is exactly the optimal cost trajectory
distribution, and this matches the predicted distribution. Under this
condition, the agent is behaving without surprising external observers
and simultaneously obtaining optimal cost in its objective.

4.2 Integration with a Planner and Practicalities
The KL-Divergence expression only has closed form solutions for a

restricted set of distributions, thus to accommodate arbitrary dis-

tributions, the KL divergence term will often need to be evaluated

through sampling with Q the candidate trajectory distribution and

𝑃 the prediction distribution from KL(P∥𝑄) = E𝒙∼𝑃
[
log

P(𝒙 )
𝑄 (𝒙 )

]
.

Since sampling is required to evaluate the cost function, this could

render the use of gradient based MPC unfeasible for real time plan-

ning, additionally prediction distributions 𝑄 (𝒙) may not always

be differentiable. We find it is more practical to rely on sampling

based MPC approaches, as they don’t require a differentiable cost

function and computations can be easily parallelized to handle large

numbers of samples even when it is computationally expensive to

evaluate the cost function. In our experiments, Section 5, we rely

on an Model Predictive Path Integral (MPPI) control method [35].

Another consideration is that predictions about an agent’s future

are updated as new observations are received. For this reason, it is

most effective to focus on early horizon time-steps when evaluating

a plan’s predictability. Thus we propose to discount the predictabil-

ity cost along the horizon with factor 𝛾 to account for uncertainty

about future predictions:

𝐽 (𝜏0:𝐾 ) =
𝐾∑︁
𝑘=0

𝐽𝑘 (𝒙𝑘 , 𝒖𝑘 ) + 𝛾𝑘𝜆KL(𝑞(𝒙𝑘 ) | |𝑝 (𝒙𝑘 )) . (5)

Remark 2. It should be noted that our method is agnostic to the
choice of the planner. However, in case MPPI is used as the planner,
similar to [32], our approach can be interpreted as leveraging the dis-
tribution of the prediction model as an ancillary controller to influence
the MPPI sampling process.

5 EXPERIMENTS
We present here the experiments carried out to validate our method.

The first experiment investigates how accounting for predictabil-

ity affects an individual agent’s behavior, comparing the results

with other observer-aware planning approaches. The second ex-

periment examines the impact of predictability within a group of

agents, focusing on swapping tasks in an open environment to

give insight without external environmental influences. In the third

experiment, we explore a practical driving scenario, demonstrating

how predictability-aware agents can better coordinate and utilize

prediction models. We also observe that agents indirectly exhibit

expert-like behaviors, such as following social norms, without ex-

plicitly encoding them in the planner. Finally, the fourth experiment

explores this direction further by testing interactions with recorded

human driver data using a state-of-the-art prediction model, show-

ing that predictability-aware agents achieve safer trajectories as a

result of more closely mimicking human behavior.

5.1 Planner
For all experiments in this section, we use a sampling-based planner,

namelyModel Predictive Path Integral (MPPI) control [28], based on

the methodology presented in [35]. MPPI places no restrictions on

dynamics model or cost function and converges well toward optima

with a moderate amount of samples [34]. Given a nominal control

sequence as an initial guess, MPPI applies Gaussian noise at each

step to generate a set of𝑀 control sequence samples. It then uses

a state transition function 𝑓 (·) to simulate their corresponding𝑀

state trajectories. Each of the resulting state trajectories is evaluated

based on the cost defined in (5), resulting in a total sample cost

𝐽𝑚 . Once 𝐽𝑚 , ∀𝑚 ∈ [1, ..., 𝑀] is computed, importance sampling

weights,𝑤𝑚 , can be calculated as:

𝑤𝑚 =
1

𝜂
exp

(
− 1

𝜆
(𝐽𝑚 − 𝐽min)

)
,

𝑀∑︁
𝑚=1

𝑤𝑚 = 1,

where 𝐽min is the minimum sampled cost, 𝜂 is a normalization

factor and 𝜆 is a controlling parameter that controls the width of the

weight distribution. These weights prioritize lower-cost trajectories.

The optimal control sequence𝑈 ∗
is then calculated as the weighted

sum of all sampled control sequences:

𝑈 ∗ =
𝑀∑︁
𝑚=1

𝑤𝑚𝑈𝑚,

where we use 𝑈𝑚 = {𝒖0, 𝒖1, ..., 𝒖𝐾 } to denote the 𝑚-th sampled

control sequence. It is common to use a time-shifted version of 𝑈 ∗

to warm-start the sampling strategy at the next time-step.

5.2 Metrics
As a proxy to measure coordination, we propose the use of planning

effort. Planning effort is a metric taken from [7] to quantify how

much trajectories deviate from an initial estimate. The authors

point out this serves as a proxy for how well the agent is able to

anticipate the evolution of its surroundings. We adapt planning

effort for receding horizon tasks with the following formulation:
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𝑃𝐸 (𝜉0:𝑇 ) =
1

𝑇 − 1

𝑇−1∑︁
𝑡=0

𝑀𝑆𝐸 (𝜏𝑡 , 𝜏𝑡+1), with

𝑀𝑆𝐸 (𝜏𝑡 , 𝜏𝑡+1) =
𝐾∑︁
𝑘=0

∥𝒙𝑡
𝑘
− 𝒙𝑡+1

𝑘
∥,

(6)

where 𝑇 and 𝐾 denote the total time duration of the simulation

and planning horizon length respectively. 𝜉0:𝑇 denotes the set of

all the plans along a trajectory 𝜉0:𝑇 = {𝜏0, 𝜏1, . . . , 𝜏𝑇−1}: with 𝜏𝑡 the
plan at time-step 𝑡 . 𝒙𝑡

𝑘
represents the state at horizon step 𝑘 for the

plan 𝜏𝑡 . In this context, planning effort measures, on average, the

magnitude of an agent’s plan update per time-step. Generally, for

a given task, a more accurate prediction model corresponds to a

lower planning effort.

5.3 Single Agent Experiments
Experiment Objective. In this experiment, we present a sin-

gle agent interacting with a hand-crafted multi-modal prediction

model, serving as a model of an observer’s expectation. This is

a benchmark task used by previous works on legibility and pre-

dictability [14], [26] to provide clear insight into the relationship

between predictability and the agent’s intrinsic motivation.

Setup. Consider an environment with two possible goals: G =

{𝐴 : [20, 10], 𝐵 : [20,−10]}. The robot starts at position 𝒙0 =

[0, 0] and is tasked with reaching goal 𝐵. The predictions model

an uncertain observer that holds mistaken initial beliefs B about

the agents goals: 𝑏𝐴
0
= 0.7 and 𝑏𝐵

0
= 0.3. Based on these beliefs a

Gaussian Mixture 𝑝𝑡 (𝒙) is used as a prediction, with each mode

assuming a Constant Velocity (CV) trajectory towards its respective

goal. For timestep 𝑡 at each horizon step 𝑘 :

𝑝𝑡,𝑘 (𝒙) =
∑︁
𝑔∈G

𝑏
𝑔
𝑡 𝑝𝑡,𝑘 (𝒙), (7)

where 𝑝𝑡,𝑘 (𝒙) = N(𝜇𝑔𝑡 , Σ) with 𝜇
𝑔

𝑡,𝑘
is the CV prediction for goal

𝑔 ∈ G at horizon step 𝑘 , Σ is a fixed covariance and 𝒙 is a state. We

model the observer’s changing beliefs B via Bayesian inference.

With every new observation, beliefs are updated using the mode

predictions 𝑝𝑡,𝑘 (𝒙) as likelihood functions:

𝑏
𝑔
𝑡 =

𝑝𝑡−1,0 (𝒙𝑡 )𝑏𝑔𝑡−1∑
𝑔∈G 𝑝𝑡−1,0 (𝒙𝑡 )𝑏

𝑔

𝑡−1
. (8)

Keeping a fixed discount 𝛾 = 0.6 in Eq. (5), we vary the magnitude

of 𝜆 to generate results shown in Figure 1.

Results Discussion. We use this example to study how 𝜆 should

be tuned to control the trade-off. If predictability dominates (e.g.,

𝜆 = 20 or 𝜆 = 40), this results in observations that further reinforce

the observer’s mistaken belief. It becomes more costly for the robot

to pursue its intrinsic motivation with each time-step, thus it fails

to complete the task. Conversely, if 𝜆 is too low, the robot may still

behave unpredictably
1
. For reference, the resulting behavior of an

agent optimizing for legibility as per the method of [26] is shown

1
In practice, the influence seems to be very dependent on the structure of the main

objective cost function, so we recommend tuning 𝜆 empirically based on the specific

planner and prediction model used.

(a) Belief updates over trajectories. (b) Trajectories for different 𝜆.

Figure 1: Figure 1a shows that increasing 𝜆 effectively decrease the belief
update rate for the observer. In Figure 1b, the nominal trajectory is rendered
in red. Given the observer holds mistaken initial beliefs about the robot’s goal,
we observe that increasing the predictability score 𝜆 results in trajectories that
are more compliant with the observer’s expectation.

as the black line in Figures 1b and 1a. From the perspective of coor-

dination, [26] can be understood as an anticipatory mechanism: By

conveying intention in advance, other agents anticipate better in

their planning. Our approach similarly mitigates sudden environ-

mental changes, however instead of aiming to directly influence

the other agents’ beliefs, we rely on a prediction model to avoid

the surprising observations throughout the interaction. While this

can occasionally result in slightly more costly trajectories for the

agent, we achieve similar results without requiring explicit mod-

eling of the other agent, making it more computationally efficient

and robust to situations where the agent may not be able to suc-

cessfully convey its intention. As demonstrated in Figure 1, when

the observer’s beliefs are misaligned, the agent adopts a pro-social

behavior, gently guiding the observer toward the correct belief.

5.4 Robot-Robot Interactions
5.4.1 Swapping Tasks.

Experiment Objective. These experiments explore the benefits

of accounting for predictability in robot-robot interactions through

swapping-tasks, a common benchmark for robot coordination [3],

[37]. By performing tests in an open environment these tests avoid

interference of external environmental influences.

Setup. In the experiments, agents are initially positioned on

the vertices of a square and tasked with swapping positions with

the agent on the opposite vertex (Figure 2a). The optimal solution

requires all agents to coordinate by selecting the same collision

avoidance strategy, either passing left or right. Additionally, two

more scenarios were tested: an asymmetrical swapping task and

a double-crossing task, to explore different geometries and inter-

actions. The experiments use a game-theoretic prediction model

based on the ALGAMES framework [11], which solves constrained

dynamic games to find an optimal joint strategy over a 20-step

horizon. The model generates prediction distributions for each

horizon step as a Gaussian with user-specified covariance Σ. By
testing three values of the predictability parameter 𝜆 {0.0, 2.5, 5.0},

we investigate how accounting for predictability impacts agent

coordination. Each task was run 50 times, and the results for all

three tasks are reported in Table 1
2
. An illustration comparing the

trajectories for all 3 scenarios can be found in Figure 2.

2
For 𝜆 = 0 safety constraint violations are low at 1-2 for all the tasks. For higher 𝜆 it

was 0 for all tasks. As this is not a very informative result it was not included in the

tables
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(a) Symmetrical swapping (b) Unsymmetrical swapping (c) Double crossing

(d) Symmetrical swapping (e) Unsymmetrical swapping (f) Double crossing

Figure 2: The first row shows the results with 𝜆 = 0 whereas the second row shows the results for 𝜆 = 5.0. When agents account for predictability, aside from faster
convergence to a coordination strategy, this also results in smoother trajectories as a consequence of better anticipation of the environment.

Table 1: Table summarizing results for the 3 swapping tasks: Symmetrical,
Unsymmetrical, and Double-Crossing

Exp. Metric 𝜆 = 0.0 𝜆 = 2.5 𝜆 = 5.0

Sym

PE (m2) 2.116 ±1.000 0.516 ±0.161 0.501 ± 0.145
Acc (m/s2) 0.209 ±0.101 0.038 ± 0.008 0.043 ±0.009
Ang (rad/s) 0.283 ±0.041 0.225 ±0.026 0.219 ± 0.026

Unsym

PE (m2) 0.877 ±0.489 0.291 ±0.178 0.187 ± 0.162
Acc (m/s2) 0.196 ±0.114 0.138 ±0.090 0.112 ± 0.080
Ang (rad/s) 0.363 ±0.112 0.221 ±0.095 0.177 ± 0.071

D-Cross

PE (m2) 0.969 ±0.416 0.388 ±0.124 0.311 ± 0.116
Acc (m/s2) 0.249 ±0.124 0.123 ± 0.080 0.125 ±0.070
Ang (rad/s) 0.434 ±0.128 0.283 ±0.096 0.252 ± 0.078

Results Discussion. As seen in Table 1, increasing the pre-

dictability parameter 𝜆 consistently led to improved performance

across all metrics: planning effort (PE), acceleration (Acc), and an-

gular velocity (Ang). Notably, even selecting a small 𝜆 causes a

pronounced decrease in planning effort, with further increases in 𝜆

yielding diminishing returns. This phenomenon can be attributed to

the coordination challenge agents face in this environment, which

primarily involves equilibrium selection. In situations where agents

must choose between two equally viable strategies, such as passing

left or passing right, our method addresses this challenge by relying

on a prediction model to establish a ‘soft social convention’. This

introduces a subtle bias towards one of the strategies, improving

implicit coordination. This mechanism is particularly relevant, as

prediction models often excel at capturing an agent’s overarching

intent and high-level strategy. However, equilibrium selection sce-

narios are inherently stochastic and unpredictable, making them

challenging to model accurately [33]. Thus, our method enhances

robustness in such situations by guiding agents towards a coordi-

nated strategy selected by the prediction model. In general, agents

need a precise and accurate prediction model for efficient coordi-

nation. However, due to the inherent uncertainty of interactions,

this is often very hard to achieve. By accounting for predictability,

a group of agents is able to establish a ‘soft social convention’ to

mitigate some of this uncertainty. From the perspective of an agent,

this results in more accurate predictions, allowing for smoother

and more efficient coordination. This mechanism is especially ef-

fective for interactions where the main coordination challenge lies

in equilibrium selection.

5.4.2 Robot-Robot Traffic Scenario.

Experiment Objective. In this experiment, we focus on robot-

robot coordination in driving scenarios, where the environment

has a stronger influence on agent’s behavior. This time, we use a

data-driven prediction model to explore how predictability impacts

coordination in more complex environments.

Setup. We use CommonRoad [1] as a simulator, which includes

the Wale-Net [17] prediction model, a learning-based model that

outputs predictions as Gaussians, accounting for uncertainty, road

geometry, and the interaction with surrounding agents. Consistent

with previous experiments, we employ an MPPI based planner. To

account for safety in planning, we implement the constraints intro-

duced by [18], building upon and extending the code from this prior

work. We perform tests in two scenarios: A T-Junction and a Lane-

Merge. For both scenarios, we perform tests with 𝜆 = {0.0, 2.5, 5.0}
for 30 iterations applying small changes in the initial positions

and velocities. An illustration of the lane merge environment is

presented in Figure 3. The results for T-Junction and lane-merge

are presented in Table 2.
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(a) Lane merge 𝜆 = 0 (b) Lane Merge 𝜆 = 5 (c) T-Junction 𝜆 = 0 (d) T-Junction 𝜆 = 5

Figure 3: a) Illustration of a deadlock With 𝜆 = 0, where a sequence of faulty predictions reinforces both agent’s hesitation. b) For 𝜆 = 5, the agents can leverage the
prediction model to coordinate which agent gives way and which passes first.

Table 2: Results for T-Junction and Lane Merge Scenarios (Dlk indicates Dead-
locks)

Exp Metric 𝜆 = 0.0 𝜆 = 2.5 𝜆 = 5.0

T-J

Dlk (%) 30.0 0.0 0.0
Dist (m) 30.172 51.248 47.000

PE (m2) 1.366 ±1.126 2.318 ±0.313 2.507 ±0.759
Acc (m/s2) -0.142 ±0.238 0.293 ±0.045 0.287 ±0.233
Ang (rad/s) 0.0037 ±0.0028 0.0005 ±0.0002 0.0028 ±0.0026

LM

Dlk (%) 73.3 0.0 0.0
Dist (m) 46.878 75.800 69.909

PE (m2) 2.079 ±0.785 3.513 ±0.564 3.315 ±0.760
Acc (m/s2) 0.111 ±0.092 0.337 ±0.054 0.317 ±0.087
Ang (rad/s) 0.0032 ±0.0032 0.0009 ±0.0006 0.0001 ±0.0001

Results Discussion. When agents fail to coordinate in road

scenarios, they often experience deadlocks or, in the worst case,

collisions. In Figure 3a, an example of a deadlock is illustrated. Dead-

locks are common in limited space environments such as intersec-

tions or narrow passages. Initially, the model may predict one agent

will yield while the other advances. However, as deviations occur

and both agents hesitate, their predictions begin to reinforce each

other’s hesitation, creating the deadlock. The model may then be

unable to introduce asymmetry to prioritize one of the agents in am-

biguous situations, preventing the agents from breaking away from

the deadlock. Results show that agents incorporating predictability

into their models achieve better coordination, as indicated by less

pronounced slowdowns resulting in higher traveled distance and

the disappearance of deadlocks as seen in Table 2. When examining

other metrics, the benefits of incorporating predictability are not

as pronounced, especially for higher 𝜆. This occurs because the

prediction model is not explicitly conditioned to align with the road

geometry (Figures 3c,3d). Since the planner is required to track a

reference path, deviations between the predictions and the refer-

ence path can push the agent to deviate from the path, requiring

small adjustments more frequently for higher higher 𝜆. Although

this problem has marginal impact on the overall performance of

the agent, the reduction in planning effort may be mitigated.

Similar to the Swapping Task tests, we see that agents are able

to use the prediction model to coordinate by reducing uncertainty

on equilibrium selection, namely, which agent gives way. However,

a noteworthy observation is that, beyond reducing uncertainty,

agents enhance their performance by adopting pro-social behaviors

embedded in the model’s latent space. These behaviors include

adherence to social norms and subtle cues learned from training

data, mirroring the behavior of experts used to train the model.

This behavior resembles imitation learning, where agents learn

cooperative strategies directly from expert demonstrations embed-

ded in the prediction model. As seen in Figure 3b, although both

outcomes are equally plausible from the raw planning problem,

agents consistently converge on the solution where the merging

agent yields, which aligns with typical human driving patterns.

5.5 Experiments with human-driver data
Experiment Objective. The goal of this experiment is to evalu-

ate whether predictability can bridge the gap between algorithmic

planning and the natural driving patterns observed in humans,

facilitating smoother and more adaptive interactions in complex

driving environments. We test this by incorporating predictability

with simple MPPI-based reference-tracking planner using a SOTA

data-driven prediction model.

Setup. We utilize a state-of-the-art (SOTA) prediction model

introduced by [23], a multi-modal, transformer-based architecture

trained on the Waymo Open Motion Dataset. The model gener-

ates scene-centric predictions with three modes, representing the

most likely joint trajectories of up to 11 agents, including the ego

agent. An MPPI planner is used for reference tracking, incorporat-

ing collision avoidance as outlined in [23]. For this experiment, we

replay recorded scenes from the Waymo dataset’s test set, meaning

agents in the environment follow pre-recorded, non-interactive

trajectories. The goal is for the ego agent to replicate expert behav-

ior observed during training. We perform tests for 𝜆 = 0, 75, 1203,

over 30 iterations in selected scenarios that require human-like

interactions, similar to the approach of [23]. A screenshot of the

crossing scenario is shown in Figure 4, and results are reported in

Table 3.

Results Discussion. From Table 3, it is evident that increasing

the weight of the predictability objective results in fewer collisions

and smoother control inputs. Interestingly, however, this does not

necessarily correlate with improved progress along the reference

3
The large 𝜆 values here respond to the particular magnitude of the planning cost

function and the prediction model used. We found that values of a higher order of

magnitude were needed to obtain predictable behavior shifts.
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Figure 4: Illustration of the navigation problem in
Crossing1. The reference global path is rendered
as a smooth yellow line. TheAV’s plan is rendered
in red. Predictions for other agents are rendered
in purple, showing only the most likely mode for
clarity. The ego-prediction is multi-modal with 3
modes represented by the yellow, green, and blue
trajectories.

Table 3: Results comparing the performance of an MPPI-based planner on Waymo Open Motion Dataset
scenarios for different 𝜆 values. For 30 iterations we present the number of collisions and the mean value
of other performance metrics

Scenario 𝜆 Col (%) Dist (m) Acc (m/s2) Lat_Acc (m/s2) L2 (m)

Crossing1

0 43.3 74.540 ±1.928 1.085 ±0.121 1.615 ±0.578 4.101 ±0.532
75 0 68.353 ±0.982 0.681 ±0.025 0.412 ±0.044 3.358 ±0.221
120 0 55.796 ±1.321 0.472 ±0.035 0.149 ±0.025 2.554 ±0.053

Crossing2

0 86.6 75.843 ±4.803 1.418 ±0.099 2.121 ±0.295 12.707 ±1.112
75 0 55.353 ±1.403 0.957 ±0.091 0.314 ±0.036 4.603 ±1.246
120 23.3 37.518 ±12.954 1.534 ±0.736 0.227 ±0.084 2.947 ±3.206

Intersection

0 26.6 69.747 ±4.794 1.450 ±0.153 1.817 ±0.782 24.808 ±3.632
75 0 72.700 ±0.115 0.709 ±0.029 0.493 ±0.075 24.618 ±1.036
120 0 71.885 ±0.227 0.613 ±0.043 0.304 ±0.026 19.900 ±0.733

Emergency

0 53.3 61.377 ±20.244 1.258 ±0.175 0.882 ±0.141 8.631 ±5.877
75 0 68.883 ±0.525 0.763 ±0.010 0.365 ±0.031 1.961 ±0.069
120 0 60.058 ±0.797 0.581 ±0.019 0.184 ±0.016 1.515 ±0.091

path. This can be attributed to the planner inducing less distribu-

tional shift in the prediction model. The model, trained on scenes

where all agents exhibit expert behaviors, struggles when the plan-

ner deviates significantly from these patterns, as it encounters

situations outside its training distribution. In such cases, the model

attempts to extrapolate and produces sub-optimal predictions, such

as incorrectly anticipating that an agent may yield or maneuver

differently than it actually does based on the recorded data. This

misalignment leads to overconfident behavior in some instances,

which, while promoting progress along the reference path, increases

the risk of collisions. Evidence supporting this hypothesis is found

in the Human L2 loss metric, which measures the L2 loss between

the agent’s trajectory and the corresponding human trajectory that

the planner aims to replicate. For 𝜆 = 0, the higher L2 loss indi-

cates significant deviation from human behavior, suggesting that

the agent diverges more from the expert’s trajectory. In contrast,

when predictability is considered, the L2 loss decreases, indicating

that the agent’s behavior aligns more closely with the human data.

This results in reduced distributional shift and, consequently, more

accurate predictions and smoother trajectories.

6 DISCUSSION
Discussion. The method assumes that agents can approximate

each other’s expectations, often implying a shared prediction model.

Although this might seem impractical, certain decentralized settings

could accommodate shared models. For instance, in a warehouse

environment where multiple Autonomous Ground Vehicles (AGVs)

transport valuable goods, a shared prediction model could be fea-

sibly developed and implemented [37]. When integrated with our

methodology, such a model could establish ’operational norms’, en-

abling agents to coordinate efficiently and robustly without the need

for centralized control, thus reducing computational and infrastruc-

ture demands. A comparable scenario is anticipated in future mar-

kets where autonomous vehicles (AVs) from different manufacturers

must interact. Recent studies pointed at the importance of estab-

lishing a unified driving convention [36], as the absence of such

a standard could lead to exploitative strategies from different AV

companies pursuing competitive advantage, and thereby compro-

mise safety. Different companies can cooperate to develop a shared

prediction model to serve as an industry standard. Given a model all

AVs in traffic share, our method would enable AVs to anticipate each

other’s actions and more effectively settle on coordination, thereby

providing enhanced road safety without explicit coordination or

reliance on infrastructure for centralized coordination.

Future Work. Balancing predictability and performance cost,

determined by 𝜆, is complex and context-dependent. Dynamically

adjusting 𝜆 as agents interact could improve performance, increas-

ingly prioritizing predictability in safety-critical moments. Develop-

ing adaptive heuristics for this adjustment, as suggested by previous

work [2, 14], would be a valuable research direction. Alternatively,

using lexicographic optimization could enhance generalizability by

providing a structured trade-off that eliminates the need for tun-

ing a magnitude dependent weighting parameter. However, This

requires adpatation of the cost function computation to account

for the lexicographic priorities, where predictability is prioritized

subject to a performance constraint.

Conclusion. We present a novel approach to enhance multi-

agent interaction capabilities for sequential predict-and-plan frame-

works by introducing predictability as a key optimization objective.

Accounting for predictability in this manner can be understood as

an implicit cooperation mechanism whereby agents use a predic-

tion model to actively reduce uncertainty about the environment

for other agents. This not only improves the robustness of coordi-

nation strategies but also reduces planning effort without requiring

explicit communication or high-level control, and does so indepen-

dently of the number of interacting agents. Through experiments,

including robot-robot interactions and human-interaction scenar-

ios, our method improved agent coordination, reduced collisions,

and led to smoother, more efficient trajectories (particularly in com-

plex coordination environments). We also demonstrated that the

benefits extend to interactions with human drivers by allowing the

agent to more reliably use its prediction model.
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